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The genus Thioalkalivibrio includes haloalkaliphilic chemolithoautotrophic sulfur-oxidizing
bacteria isolated from various soda lakes worldwide. Some of these lakes possess in
addition to their extreme haloalkaline environment also other harsh conditions, to which
Thioalkalivibrio needs to adapt. An example is arsenic in soda lakes in eastern California,
which is found there in concentrations up to 3000 µM. Arsenic is a widespread
element that can be an environmental issue, as it is highly toxic to most organisms.
However, resistance mechanisms in the form of detoxification are widespread and some
prokaryotes can even use arsenic as an energy source. We first screened the genomes
of 76 Thioalkalivibrio strains for the presence of known arsenic oxidoreductases and
found 15 putative ArxA (arsenite oxidase) and two putative ArrA (arsenate reductase).
Subsequently, we studied the resistance to arsenite in detail in Thioalkalivibrio jannaschii
ALM2T, and Thioalkalivibrio thiocyanoxidans ARh2T by comparative genomics and by
growing them at different arsenite concentrations followed by arsenic species and
transcriptomic analysis. Tv. jannaschii ALM2T, which has been isolated from Mono
Lake, an arsenic-rich soda lake, could resist up to 5 mM arsenite, whereas Tv.
thiocyanoxidans ARh2T, which was isolated from a Kenyan soda lake, could only grow
up to 0.1 mM arsenite. Interestingly, both species oxidized arsenite to arsenate under
aerobic conditions, although Tv. thiocyanoxidans ARh2T does not contain any known
arsenite oxidases, and in Tv. jannaschii ALM2T, only arxB2 was clearly upregulated.
However, we found the expression of a SoeABC-like gene, which we assume might
have been involved in arsenite oxidation. Other arsenite stress responses for both strains
were the upregulation of the vitamin B12 synthesis pathway, which can be linked to
antioxidant activity, and the up- and downregulation of different DsrE/F-like genes whose
roles are still unclear. Moreover, Tv. jannaschii ALM2T induced the ars gene operon and
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the Pst system, and Tv. thiocanoxidans ARh2T upregulated the sox and apr genes as
well as different heat shock proteins. Our findings for Thioalkalivibrio confirm previously
observed adaptations to arsenic, but also provide new insights into the arsenic stress
response and the connection between the arsenic and the sulfur cycle.

Keywords: RNA-Seq, arsenic, resistance, adaptation, sulfur-oxidizing bacteria, soda lake, soeABC

INTRODUCTION

The genus Thioalkalivibrio comprises a group of metabolically
diverse, haloalkaliphilic and chemolithoautotrophic sulfur-
oxidizing bacteria thriving under extreme conditions in soda
lakes. They are part of the family Ectothiorhodospiraceae within
the Gammaproteobacteria (Sorokin et al., 2001a), and include
10 described species and more than 100 isolated strains (Foti
et al., 2006; Sorokin et al., 2012). In silico analysis of the genomes
of 76 strains classified Thioalkalivibrio in 25 genomic species,
indicating a high genomic diversity within this genus (Ahn et al.,
2017). Concomitantly, members of this genus are able to use
different reduced sulfur compounds as electron donors such
as sulfide, polysulfide, thiosulfate, polythionates, and elemental
sulfur (Sorokin et al., 2001a, 2002a,b, 2003, 2004, 2012; Banciu
et al., 2004). Moreover, the strains Thioalkalivibrio paradoxus
ARh1T (Sorokin et al., 2002b), Tv. thiocyanoxidans ARh2T

(Sorokin et al., 2002b) and Tv. thiocyanodenitrificans ARhD1T

(Sorokin et al., 2004) are also able to oxidize thiocyanate (Sorokin
et al., 2001b; Berben et al., 2017), and Tv. denitrificans ALJDT

(Sorokin et al., 2001a), Tv. nitratireducens ALEN2T (Sorokin
et al., 2003), and Tv. thiocyanodenitrificans ARhD1T (Sorokin
et al., 2004) can also grow anaerobically by denitrification.
Recently, Andres and Bertin (2016) and Oremland et al. (2017)
detected the presence of an arxA gene, which in other bacteria,
is responsible for the anaerobic energy-generating oxidation of
arsenite [As(III)] to arsenate [As(V)], in the genome of 11
Thioalkalivibrio strains. Furthermore, transcripts of the arxA
gene that were highly similar to genes of Thioalkalivibrio were
discovered in high abundance in Mono Lake, an arsenic-rich soda
lake in eastern California (Edwardson and Hollibaugh, 2017).
Soda lakes in this area possess, in addition to their characteristic
extreme haloalkaline condition (Jones et al., 1977, 1998), elevated
arsenic concentrations that range from 0.8 µM in Crowley Lake,
over 200 µM in Mono Lake, to 3000 µM in Searles Lake
(Oremland et al., 2004). However, despite the multi-extreme
conditions, Thioalkalivibrio are found in abundance in these soda
lakes (Stamps et al., 2018).

Numerous microorganisms developed mechanisms to
detoxify their cells from arsenic and in some cases to even use
it as an energy source. Arsenic is well known to be highly toxic
to most organisms. It may contaminate soils and groundwaters
that are used for food production or as a drinking water
source (Mandal and Suzuki, 2002; Cavalca et al., 2013) posing
severe threats to human health (Kapaj et al., 2006). The most
common forms in the environment are arsenite [As(III)] and
arsenate [As(V)] (Smedley and Kinniburgh, 2002), of which
the reduced form is more toxic (Hughes, 2002). This toxicity is
due to the fact that As(III) is able to deactivate compounds by

binding to sulfhydryl groups, as are present in glutathione
(Scott et al., 1993) or in cysteines (Shen et al., 2013). As(V),
however, can compete with phosphate in biochemical reactions
due to its chemically similar structure and properties (Wolfe-
Simon et al., 2009; Tawfik and Viola, 2011). To survive the
presence of arsenic, prokaryotes can perform detoxification,
which includes the reduction of As(V) to As(III) followed by
As(III) methylation (Qin et al., 2006) and/or the active export of
As(III) out of the cell (Ben Fekih et al., 2018). In the methylation
process, the As(III) S-adenosylmethionine methyltransferase
ArsM transforms As(III) into methylated As(III) compounds.
By this mechanism the cell forms even more toxic, highly
volatile organic arsenic compounds that can escape from the
cell (Qin et al., 2006). In the active transport system, bacteria
pump arsenic out of the cell using the Ars gene system. It first
reduces As(V) to As(III) by the arsenate reductase ArsC (Ji
and Silver, 1992; Martin et al., 2001) and subsequently pumps
the As(III) out by the efflux pump ArsB or ACR3 (arsenic
compounds resistance) (Bobrowicz et al., 1997; Wysocki et al.,
1997; Meng et al., 2004). The activity of these pumps can
be augmented by an ATPase, the ArsA, which increases the
resistance to arsenic even more (Rosen et al., 1988; Dey and
Rosen, 1995; Rosen, 2002). ArsD is an As(III) chaperone that
transfers As(III) to ArsA (Lin et al., 2006, 2007) and it also
possesses a weak activity as transacting regulatory protein (Wu
and Rosen, 1993). The main transacting regulatory protein of
the Ars cluster is ArsR, which functions as a transcriptional
repressor that activates transcription in the presence of As(III)
(Wu and Rosen, 1991). In addition to detoxification, there are
numerous prokaryotes that can generate energy by the oxidation
of As(III) using arsenite oxidases Aio (Anderson et al., 1992) or
Arx (Zargar et al., 2010), or by the anaerobic reduction of As(V)
by the arsenate respiratory reductase Arr (Saltikov and Newman,
2003). These three proteins belong to the dimethyl sulfoxide
(DMSO) reductase family of molybdoenzymes, also known as
complex iron-sulfur molybdoenzymes (CISM) (McEwan et al.,
2002; Rothery et al., 2008). They are composed by a heterodimer
of a large subunit (AioA, ArxA, and ArrA) containing the
molybdopterin binding site and a small subunit with an iron-
sulfur cluster (AioB, ArxB, and ArrB) (Krafft and Macy, 1998;
Ellis et al., 2001; Afkar et al., 2003; Zargar et al., 2010). AioC,
ArxC, and ArrC are involved in electron transfer and in the
case of the ArxC and the ArrC, are transmembrane proteins
anchoring the protein to the periplasmic membrane (Stolz et al.,
2006; Zargar et al., 2010, 2012; Van Lis et al., 2012; Kalimuthu
et al., 2014; Andres and Bertin, 2016; Oremland et al., 2017;
Glasser et al., 2018). Only recently, the clade of the Arx arsenite
oxidase was discovered in Alkalilimnicola ehrlichii MLHE-1T

(Hoeft et al., 2007; Richey et al., 2009; Zargar et al., 2010)
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and in Ectothiorhodospira PHS-1 (Zargar et al., 2012), two
haloalkaliphilic Gammaproteobacteria isolated from Mono Lake.
These bacteria couple oxidation of As(III) as sole electron donor
with nitrate reduction (Hoeft et al., 2007; Zargar et al., 2010)
or anoxygenic photosynthesis (Kulp et al., 2008; Hernandez-
Maldonado et al., 2017), respectively. Interestingly, ArxA is
more similar to ArrA than it is to AioA (Richey et al., 2009;
Zargar et al., 2010).

The aim of our research was to understand the mechanisms
of resistance and adaptation to arsenic within the genus
Thioalkalivibrio. We first searched in 76 Thioalkalivibrio
genomes for genes that potentially can be involved in arsenic
metabolism. Subsequently, we grew two Thioalkalivibrio
strains at different As(III) concentrations. For this, we
chose Tv. jannaschii ALM2T, which was isolated from
Mono Lake (Sorokin et al., 2002a) where arsenic is present
at relatively high concentrations (Oremland et al., 2004),
and Tv. thiocyanoxidans ARh2T, which was isolated from
a Kenyan soda lake (Sorokin et al., 2002b). We measured
the As(III) oxidation capacity of the two species and
performed RNA-Seq analysis to study their gene expression
under arsenite stress. To our knowledge, this is the first
transcriptomic work done on the arsenite stress response in
chemolithoautotrophic bacteria.

MATERIALS AND METHODS

Strains and Growth Conditions
Axenic cultures of Tv. jannaschii ALM2T and Tv. thiocyanoxidans
ARh2T were grown in 200 ml batch cultures at 30◦C on a
shaker set at 100 rpm. The medium was composed of 17.5 g/l
Na2CO3, 13.9 g/l NaHCO3, 6.1 g/l NaCl, 1 g/l K2HPO4, 0.2 g/l
MgCl2, 40 mM Na2S2O3, 5 mM NH4Cl, and 1:1000 trace
metals (Pfennig and Lippert, 1966). Sterile solutions of MgCl2,
Na2S2O3 and trace elements were added from concentrated
stock solutions after autoclaving. The final pH of the culture
medium was adjusted to pH 9.8. As(III) as sodium arsenite
(NaAsO2) (Sigma Aldrich, United States) was added to the
medium just before inoculation of the bacteria. For the growth
curves of Tv. jannaschii ALM2T and Tv. thiocyanoxidans ARh2T,
the cultures were supplemented with 0.1, 0.5, 5, or 7.5 mM
As(III). Cultures without As(III) were used as reference and
growth of all cultures was monitored daily by measuring the
OD at 600 nm. Tv. thiocyanoxidans ARh2T and Tv. jannaschii
ALM2T grew up to a concentration of 0.1 and 5 mM As(III),
respectively (Supplementary Figure 1). Therefore, cultures were
prepared at 0.1 mM As(III) for Tv. thiocyanoxidans ARh2T,
and at 0.1 and 5 mM for Tv. jannaschii ALM2T to study
the As(III) resistance mechanisms by transcriptomics. Again,
cultures without As(III) were used as reference and their growth
was followed by OD measurements at 600 nm. Samples for
arsenic species and transcriptomic analysis were taken in the
exponential growth phase at an OD600∼ 0.1, which corresponded
to one [reference; 0 mM As(III)] and two [0.1 mM As(III)] days
after inoculation for the Tv. thiocyanoxidans ARh2T cultures,
and after one [reference; 0 mM As(III)], one [0.1 mM As(III)],

and five [5 mM As(III)] days for the Tv. jannaschii ALM2T

cultures. In addition, sterile culture medium was incubated under
the same conditions to check for the possibility of chemical
As(III) oxidation. To test the growth with As(III) as sole electron
donor, Tv. thiocyanoxidans ARh2T was cultivated with 0.1 mM
As(III), and Tv. jannaschii ALM2T with 0.1 and 2.5 mM As(III) in
culture medium prepared as described above with the exception
of containing 0.025 g/l MgSO4 × 7H2O and different Na2S2O3
concentrations depending on the culture (0, 1, 5, 10, and 40 mM).
All experiments were done in triplicate.

Arsenic Speciation by ICP-MS Analysis
Culture supernatant was filtered through a 0.2 µm filter
and arsenic species were determined according to Kim et al.
(2007). To quantify the total As concentration, 5 ml of
the filtrate was acidified prior the analysis with 200 µl of
2% (v/v) HNO3. For the determination of inorganic arsenic
species As(III) and As(V), 5 ml of the filtrate was added
to a Sep-Pak R© Plus Acell Plus QMA cartridge (Waters, MA,
United States). As(V) remained in the cartridge, whereas
As(III) passed through. As(III) was collected and acidified with
200 µl of 2% (v/v) HNO3. The As(V) was then washed off
the cartridge with 5 ml 0.16 M HNO3. Total As, As(III),
and As(V) concentrations were measured by ICP-MS (Agilent
Technologies, United States). Standard solutions ranging from 0
to 1 mg/l of As were prepared from a sodium arsenite (NaAsO2)
solution (Sigma Aldrich, United States). All measurements were
done in triplicate.

Comparative Sequence Analysis
The phylogenetic tree of ArxA, ArrA, and AioA was constructed
based on a multiple alignment of amino acid sequences, which
were selected by a BLASTp analysis of 76 Thioalkalivibrio
genomes (Ahn et al., 2017) and of reference protein sequences.
The selected sequences were aligned with MUSCLE (Edgar,
2004) and the tree was built with the software program
MEGA7 (version 7.0.26; Kumar et al., 2016) using the Maximum
Likelihood method with 1000 bootstrap replicates, the LG model
as substitution model and a discrete gamma distribution (+G) as
evolutionary rate differences amongst sites.

The phylogenetic tree of the two SoeA clusters was also built
with aligned amino acid sequences found in 76 Thioalkalivibrio
genomes and references, which were selected based on a previous
BLASTp analysis. The alignment and the tree construction were
calculated following the same protocol as described above.

RNA-Sequencing
The biomass was collected in 50 ml Greiner tubes and
immediately placed into a centrifuge that was precooled to 4◦C.
The cells were pelleted by centrifugation at 7,000 × g for 4 min
at 4◦C. The supernatant was removed until approximately 2 ml,
in which the cells were suspended and transferred to a 2 ml
Eppendorf tube. The sample was then centrifuged at 15,000 × g
for 1 min at 4◦C. The supernatant was completely removed, and
the cell pellet was immediately frozen in liquid nitrogen and
stored at−80◦C until further processing.
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The frozen cell pellets were homogenized with a mortar
and a pestle before being resuspended in QIAzol Lysis Reagent
(Qiagen, Germany). Total RNA was extracted and purified
with the RNeasy kit (Qiagen) following the manufacturer’s
instructions. The purification step comprised a DNase treatment
using the RNase-free DNase kit (Qiagen). The concentration
was quantified with the NanoDrop ND2000 (Thermo Fisher
Scientific, United States) and the integrity of the RNA was
checked on the 2200 TapeStation with Agilent RNA ScreenTapes
(Agilent Technologies, Netherlands). Ribosomal RNA (rRNA)
was removed by the Illumina Ribo-Zero rRNA Removal
Kit (Bacteria) (Illumina, United States). Bar-coded RNA
libraries were prepared using the Ion Total RNA-Seq kit
v2 and the Ion Xpress RNA-Seq barcoding kit according to
the supplier’s instructions (Thermo Fisher Scientific). Size
distribution and yield were measured on the 2200 TapeStation
using Agilent D1000 ScreenTapes (Agilent Technologies).
Sequencing templates were prepared on the Ion Chef System
with the Ion PI Hi-Q Chef kit (Thermo Fisher Scientific).
Samples were sequenced on the Ion Proton platform with
an Ion PI Chip v3 (Thermo Fisher Scientific) following the
supplier’s instructions.

RNA-Seq Analysis
The genomes of Tv. thiocyanoxidans ARh2T

(NZ_ARQK00000000.1) (Berben et al., 2015) and Tv. jannaschii
ALM2T (NZ_ARLZ00000000.1) were previously sequenced
and annotated. The reference gene and genome sequences of
both strains were obtained from the NCBI RefSeq FTP server.
The software program kallisto (Bray et al., 2016) (v0.44.0) was
used to create index files for the quantification from those
references. The quality of the reads was assessed by FastQC
(version 0.11.7) and estimated to be sufficient. Therefore,
no trimming or filtering was performed. Pseudo-alignments
were generated in kallisto by mapping the reads from the
fastq RNA-Seq files against the indexed reference and reads
were quantified using 100 bootstrap samples. Subsequently,
differential expression analysis was performed with the software
program sleuth (Pimentel et al., 2017) (0.30.0) using the Wald
test. The complete differential expression values are presented in
Supplementary Table 1 and consists of the NCBI locus-tag, the
b-value (beta-value), the P-value, the q-value, the raw counts and
the annotation by NCBI for each gene. The b-value is a biased
estimator of the log fold change and is on a natural-log scale
(Pimentel et al., 2017).

The sequences were also analyzed with the RNA-Seq analysis
module in the software program CLC Genomics Workbench
11.0.1 (QIAGEN). Proton Torrent fastq files were imported
and trimmed using the following default settings: (i) removal
of low-quality sequences with a limit of 0.05, (ii) removal
of ambiguous nucleotides: maximum 2 nucleotides allowed,
and (iii) discard reads below a length of 30 nucleotides.
Subsequently, the trimmed reads were mapped to the reference
genomes. Differential expression data includes the NCBI locus-
tag, the max group mean, the log2 (fold change), the fold
change, the P-value, the FDR P-value, and the Bonferroni value
(Supplementary Table 2).

RESULTS AND DISCUSSION

Genomic Features of Arsenic
Metabolism and Resistance in
Thioalkalivibrio
We searched in Thioalkalivibrio for genes that can be used to
grow on arsenic as an energy source. Therefore, a phylogenetic
tree was constructed with the putative protein sequences of ArxA,
AioA (arsenite oxidases), and ArrA (arsenate reductase) detected
in the 76 available genome sequences of different Thioalkalivibrio
strains (Figure 1A). In those, a putative ArxA was found in
14 Thioalkalivibrio strains and a putative ArrA in two. Genes
coding for AioA were not detected in any of the strains. Tv.
nitratireducens ALEN2T was the only strain that contained both
ArxA and ArrA. Previously, the presence of ArxA has only
been reported in 11 Thioalkalivibrio strains (Andres and Bertin,
2016; Oremland et al., 2017) while the presence of ArrA has
been never documented. For the strains used in the cultivation
experiment, Tv. jannaschii ALM2T possesses a putative ArxA
while Tv. thiocyanoxidans ARh2T lacks any of the known genes
to generate energy from inorganic arsenic.

The genomes of A. ehrlichii MLHE-1T (another member
of the Ectothiorhodospiraceae), Tv. jannaschii ALM2T and Tv.
thiocyanoxidans ARh2T encode different gene clusters for the
detoxification (ars genes) and for the oxidation (arx genes)
of arsenite (Figure 1B). A. ehrlichii MLHE-1T (Zargar et al.,
2010, 2012) and Tv. jannaschii ALM2T possess an identical arx
gene cluster for arsenite oxidation and a highly similar set of
ars genes for arsenic resistance. For the ars genes, A. ehrlichii
MLHE-1T possesses the most complete gene cluster including
arsADR, ACR3 and two detoxifying arsenate reductases arsC, one
glutaredoxin- (arsC1) and one thioredoxin-dependent (arsC2).
In Tv. jannaschii ALM2T, a more reduced set including an
arsR, a glutaredoxin-dependent arsC and an ACR3 was present.
Another annotated ACR3 efflux pump was found in ALM2T

outside the shown cluster (Locus-tag: F816_RS0108235) together
with three uncharacterized membrane proteins. Interestingly,
A. ehrlichii MLHE-1T and Tv. jannaschii ALM2T also encode
for a universal stress protein (uspA) in their ars gene cluster.
On the contrary, Tv. thiocyanoxidans ARh2T only possesses a
truncated ars gene cluster with an ACR3 and a glutaredoxin-
dependent arsC, also subdivided in two operons, and without
arsR. Outside of the operon, two putative ArsR for Tv.
thiocyanoxidans ARh2T were found by BLASTp, but with
low identity values, using the ArsR of A. ehrlichii MLHE-1T

(Locus-tag: Mlg_2713), and of Tv. jannaschii ALM2T (Locus-
tag: F816_RS0102085) (Supplementary Table 4) as subjects.
Neither the genome of Tv. thiocyanoxidans ARh2T nor of
Tv. jannaschii ALM2T contained the arsM gene necessary for
the detoxification of the intracellular As(III) by methylation
(Qin et al., 2006). Furthermore, the genomes of Tv. jannaschii
ALM2T and Tv. thiocyanoxidans ARh2T were screened for
the presence of arsHIJNOPTX via BLASTp. In Tv. jannaschii
ALM2T, an ArsI [Locus-tag: F816_RS0102080; query cover of
93% and an identity of 41% with ArsI of Bacillus sp. MD1
(AIA09488)] was found inside the ars gene operon as well
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Alkalilimnicola ehrlichii MLHE-1T

Tv. jannaschii ALM2T

Tv. thiocyanoxidans ARh2T

arsC
NQD

MP

Hp MPE
arsC1

MPNQD
arsC

arsR
arsC2

arsD
arsA

ACR3
HpuspA

arxS
arxR

arxX

ACR3
HE Hp1

Hp2
arsR

uspA

arxB2
arxD

arxE
arxC

arxB
arxA

arxX
arxR

arxS

ACR3

arxC
arxE

arxD
arxB2

arxB
arxA

B

ArxA

ArrA

AioA

0.50

= 90 - 100%
= 60 - 90%

A

Alc. faecalis NCIB 8687 (EJC61961)
Rhizobium sp. NT-26 (CCF22055)

Thioalkalivibrio sp. AKL17 (WP 018946174)
Thioalkalivibrio sp. ALR17-21 (WP 024329954)
Thioalkalivibrio sp. ALgr5 (WP 110619783)

Tv. halophilus HL17T (WP 077243905)
Thioalkalivibrio sp. ALSr1 (WP 019643167)

Thioalkalivibrio sp. AKL19 (WP 024327966)

Thioalkalivibrio sp. ALMg11 (WP 018950173)
Thioalkalivibrio sp. ARh3 (WP 018864019)

Tv. denitrificans ALJDT  (WP 077279016)

Ectothiorhodospira sp. BSL-9 (ANB03234)
Tv. nitratireducens ALEN2T (WP 015257777)

A. ehrlichii MLHE-1T (ABI55987)

Tv. thiocyanodenitrificans ARhD1T (WP 018231946)
Thioalkalivibrio sp. ALJ17 (WP 026289649)
Tv. sulfidiphilus HL-Eb-Gr7T (WP 026289649)

Ectothiorhodospira sp. PHS-1 (EHQ52454)
Tv. jannaschii ALM2T (WP 019593327)

Tv. nitratireducens ALEN2T  (WP 015257805)
Tv. paradoxus ARh1T (WP 006746746)

Shewanella sp. ANA-3 (AAQ01672)
D. alkaliarsenatis SLSR-1T (AFN27615)

FIGURE 1 | Comparative sequence analysis of arsenic resistance genes in Thioalkalivibrio. Yellow, arsenite oxidase ArxA; green, arsenate reductase ArrA; blue,
arsenite oxidase AioA; orange, arsenite oxidase arx gene cluster; turquoise, arsenic resistance ars gene cluster. (A) Phylogenetic tree constructed from ArxA, ArrA,
and AioA protein sequences present in the genomes of Thioalkalivibrio strains and other bacteria. Accession number is provided for each sequence in the figure.
(B) Arsenic resistance genes in Alkalilimnicola ehrlichii MLHE-1T, Tv. jannaschii ALM2T, and Tv. thiocyanoxidans ARh2T. Hp, hypothetical protein; MPE,
metallophosphoesterase; HE, hemerythrin; MP, uncharacterized membrane protein; NQD, NADP(H):quinone dehydrogenase. The locus tags for the genes used in
(B) are listed in Supplementary Table 3.

as a second putative ArsI positioned directly besides the ars
gene operon [Locus-tag: F816_RS14315 (78% query cover and
29% identity to AIA09488)]. In addition, putative sequences

for ArsJ were detected in Tv. jannaschii ALM2T [Locus-tag:
F816_RS0106725; query cover of 95% and a similarity of 60.3%
with ArsJ of Pseudomonas aeruginosa (WP_003109849)] and in
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Tv. thiocyanoxidans ARh2T (Locus-tag: G372_RS0110690; query
cover of 94% and an identity of 59,1% with WP_003109849).
The putative ArsJ in Tv. jannaschii ALM2T is encoded together
with an annotated glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) in the same operon. The combination of these two
genes has been described to confer resistance to As(V) (Chen
et al., 2016). However, the GAPDH was not found in the
operon of the putative ArsJ in Tv. thiocyanoxidans ARh2T.
To prove the function of these putative ArsIJ, experimental
evidence must follow.

Physiological and Transcriptomic
Response to Arsenic Stress
Tv. jannaschii ALM2T and Tv. thiocyanoxidans ARh2T were
cultivated in the presence of different concentrations of As(III)
to determine their resistance. Tv. jannaschii ALM2T resists much
higher As(III) concentrations than Tv. thiocyanoxidans ARh2T

(Supplementary Figure 1). Tv. thiocyanoxidans ARh2T was only
able to grow until a concentration of 0.1 mM As(III), whereas
Tv. jannaschii ALM2T still grew up to 5 mM As(III). All cultures
grew aerobically with thiosulfate as an electron donor and they
could not grow with As(III) as their sole potential electron donor
(Supplementary Figure 2).

To gain deeper insight in their resistance mechanism against
arsenic, Tv. thiocyanoxidans ARh2T and Tv. jannaschii ALM2T

were both cultivated in absence of As(III) (reference) and
at 0.1 mM As(III). Furthermore, Tv. jannaschii ALM2T was
also grown at 5 mM As(III). Cultures were harvested in
their exponential growth phase to measure the arsenic species
composition in the culture fluid and to determine gene expression
in both Thioalkalivibrio species.

Arsenic species were measured in the culture medium at
the beginning and at the end of the experiment to investigate
the potential of both strains to oxidize As(III) to As(V) under
aerobic conditions (Figure 2). Additional sterile samples were
analyzed to determine the possibility of chemical oxidation of
As(III) in the culture medium. Samples inoculated with Tv.
jannaschii ALM2T and Tv. thiocyanoxidans ARh2T showed a
decrease in As(III) and an increase in As(V) over time. During
the same incubation time, As(III) and As(V) concentrations
did not change significantly in the sterile samples indicating
that As(III) oxidation was biologically induced. Tv. jannaschii
ALM2T had a much stronger As(III) oxidizing capacity as
compared to Tv. thiocyanoxidans ARh2T. When grown in the
presence of 0.1 mM As(III), Tv. jannaschii ALM2T oxidized 57%
of the present As(III) in 1 day, whereas Tv. thiocyanoxidans
ARh2T only oxidized 26% after 2 days. Most importantly,
when grown in the presence of 5 mM As(III), Tv. jannaschii
ALM2T was able to oxidize 79% of As(III) within 5 days.
These findings resemble previous incubation experiments of
Mono Lake surface waters that showed a clear link between
aerobic As(III) oxidation capacity and added sulfide or thiosulfate
(Fisher et al., 2008). In their research, sulfide-amended lake
brines showed the formation of thioarsenates compounds from
As(III), which were fairly stable in sterile, oxic surface waters,
but which were further oxidized to As(V) in samples containing

sulfur-oxidizing bacteria. Molecular analysis of the enrichments
identified bacteria closely related to Tv. jannaschii, Tv. versutus
and Tv. nitratis. Furthermore, Edwardson et al. (2014) showed
that pure cultures of Tv. jannaschii ALM2T were able to oxidize
monothioarsenate aerobically, but also that they did not show
growth with monothioarsenate as their sole electron donor.
In our research, we have now demonstrated growth of Tv.
jannaschii ALM2T and Tv. thiocyanoxidans ARh2T with As(III)
in combination with thiosulfate. Whether Thioalkalivibrio can
gain energy from As(III) or thioarsenate oxidation, or that this
oxidation is only used for detoxification purposes, remains an
open question. However, it can be excluded that these compounds
support growth as a sole electron donor.

Transcriptomic analysis enabled screening for key genes in
the metabolism of and in the resistance against arsenic, and
it shows differences in gene expression between Tv. jannaschii
ALM2T and Tv. thiocyanoxidans ARh2T. General information
on the individual RNA-seq samples analyzed by kallisto and
sleuth are presented in Supplementary Table 5 and the complete
expression data can be found in Supplementary Table 1. In
total, 57.4 million sequence reads were produced by the Ion
Proton platform ranging from 2.3 million to 4.9 million sequence
reads per sample. From those reads, between 57.9% and 72.5%
could be assigned to an open reading frame (ORF) depending
on the sample analyzed with kallisto. In Tv. jannaschii ALM2T,
2833 ORFs were detected, and 2716 ORFs in Tv. thiocyanoxidans
ARh2T. For the analysis performed with sleuth, an ORF is
considered differentially expressed if the b-value is greater than
0.7-fold and its P-value is lower than 0.1. The RNA-Seq data
analyzed by sleuth gave 101 up- and 84 downregulated genes
for Tv. thiocyanoxidans ARh2T at 0.1 mM As(III) [0.1 mM vs.
0 mM As(III)] (Supplementary Table 6), only two up- and
one downregulated genes for Tv. jannaschii ALM2T at 0.1 mM
As(III) [0.1 mM vs. 0 mM As(III)] (Supplementary Table 7), and
26 up- and 16 downregulated genes for Tv. jannaschii ALM2T

at 5 mM As(III) [5 mM vs. 0 mM As(III)] (Supplementary
Table 8). As certain pathways could not be completely revealed
based on the sleuth results only, we decided to also analyze the
RNA-Seq data with CLC Genomics Workbench (Supplementary
Table 2). With CLC, between 77.74 and 82.2% of the reads could
been allocated to an ORF. Here, an ORF was considered to be
differentially expressed if the log2 fold change was higher than
1-fold and its P-value lower than 0.1. With this threshold, CLC
found 99 up- and 91 downregulated genes for Tv. thiocyanoxidans
ARh2T at 0.1 mM As(III) [0.1 mM vs. 0 mM As(III)], four
up-, and five downregulated genes for Tv. jannaschii ALM2T at
0.1 mM As(III) [0.1 mM vs. 0 mM As(III)], and 40 up- and 20
downregulated genes for Tv. jannaschii ALM2T at 5 mM As(III)
[5 mM vs. 0 mM As(III)].

The quality of the RNA-Seq data analyzed by kallisto and
sleuth was evaluated by principal component analysis and plotted
in a graph with the first two principal components as axes
(Supplementary Figure 3). On the first principal component,
the samples of each condition cluster together and were well
separated from the other conditions. Remarkably, the Tv.
jannaschii ALM2T samples grown at 0, 0.1, and 5 mM As(III) are
not ordered based on the increasing As(III) concentration on the
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FIGURE 2 | Arsenic species analysis of culture fluid from sterile samples (Abiotic) and samples inoculated with Tv. thiocyanoxidans ARh2T and Tv. jannaschii ALM2T

(Biotic) at the inoculation (T0) and sampling time (T1). (A) ARh2T culture incubated with 0.1 mM As(III) for 2 days. (B) ALM2T culture incubated with 0.1 mM As(III) for
1 day. (C) ALM2T culture incubated with 5 mM As(III) for 5 days.

first principle component, but in the order of 0.1, 0, and 5 mM
As(III). This phenomenon might be explained by a hormesis
reaction, in which an agent, here As(III), at lower level exposes
an beneficial effect on the organism and becomes only toxic at
higher concentrations (Mattson, 2008).

We summarized the results of the gene expression under
As(III) stress in a conceptual model (Figure 3), in which the
groups correspond to the subgroups of the discussion: (1) Arsenic
influx into the cell, (2) Arsenic metabolism and detoxification, (3)
Response to oxidative damage by arsenite, (4) Sulfur metabolism,
and (5) Recombination and energy generation.

(1) Arsenic Influx Into the Cell
The arsenic species As(III) and As(V) are able to enter the
cell by transporters of molecules whose properties they mimic.
In E.coli, As(III) can enter the cell by the aquaglyceroporin
channel GlpF (Sanders et al., 1997; Meng et al., 2004). These
channels normally transport small uncharged molecules such as
glycerol (Heller et al., 1980; Borgnia and Agre, 2001), but also
As(III) as non-charged As(OH)3 under neutral pH (Ramírez-
Solís et al., 2012). However, in environments with a pH higher

than its pKa of 9.2, As(III) will be mostly present in its ionic
form (Smedley and Kinniburgh, 2002). This is the case for
soda lakes whose pH ranges from 9.5 to 11 and, from which
most Thioalkalivibrio strains were isolated (Sorokin et al., 2014).
Furthermore, thioarsenates are formed in oxic alkaline brines
containing sulfide (Stauder et al., 2005; Planer-Friedrich et al.,
2007, 2009; Fisher et al., 2008; Härtig and Planer-Friedrich, 2012),
conditions present as well in Mono Lake (Hollibaugh et al., 2005).
Until now, it is unknown how As(III) or thioarsenates enter the
cells under these conditions. A possible porin involved in their
influx could be F816_RS0109535 (Supplementary Table 2) in Tv.
jannaschii ALM2T as it is highly downregulated at 0.1 and 5 mM
As(III). However, no similar protein could be detected in the
genome of Tv. thiocyanoxidans ARh2T. The downregulation of a
porin responsible for As(III) or thioarsenate influx would keep
the intracellular arsenic concentration lower in Tv. jannaschii
ALM2T, thus conferring a higher As(III) resistance to the strain.

As(V) possesses a similar chemical structure and properties
as phosphate (Wolfe-Simon et al., 2009), and can therefore
be taken up by the phosphate uptake systems Pit (inorganic
phosphate transporter) and Pst (specific phosphate transporter)
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FIGURE 3 | Continued
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FIGURE 3 | Conceptual model of cellular processes within Tv. jannaschii ALM2T and Tv. thiocyanoxidans ARh2T under As(III) stress. The section numbers
correspond to the subgroups in the Results and Discussion section: (1) Arsenic influx into the cell, (2) Arsenic metabolism and detoxification, (3) Response to
oxidative damage by arsenite, (4) Sulfur metabolism, and (5) Recombination and energy generation. Upregulated genes are colored in orange and downregulated
genes in turquoise. Cyt bc1, cytochrome bc1; cyt c, cytochrome c; cyt c ox, cytochrome c oxidase; As(S), thioarsenate; Hp, hypothetical protein. Locus tags and
differential expression values are listed in Supplementary Table 9.

(Rosenberg et al., 1977; Willsky and Malamy, 1980a), of which
Pst is more specific for phosphate and transports As(V) less
efficiently (Willsky and Malamy, 1980b; Elias et al., 2012). The
gene for the Pit transporter system did not significantly change
in expression in any of the samples. However, when grown
with 0.1 mM As(III), Tv. jannaschii ALM2T upregulates the
pstA contemporary with the formation of 0.056 mM As(V)
(Figure 2). In the presence of 5 mM As(III), the pstABCS and
the regulator phoU were upregulated with the simultaneous
occurrence of 4.01 mM As(V) in the culture medium (Figure 2).
These genes did not change in expression in Tv. thiocyanoxidans
ARh2T cultures, which could be explained by the low As(V)
concentration of 0.032 mM at the sampling time (Figure 2).
Since the Pst transporter is more specific for phosphate than
for As(V), many bacteria increase the expression and the
production of Pst to increase phosphate uptake (Andres and
Bertin, 2016). This would give another advantage for growth in
combination with As(III) oxidation for Tv. jannaschii ALM2T.
However, as both strains were able to tolerate 30 mM As(V)
(data not shown), it is possible that Tv. thiocyanoxidans
ARh2T also possesses a similar mechanism, which was not
upregulated with the low As(V) concentration deriving from the
oxidation process.

(2) Arsenic Metabolism and
Detoxification
Transcriptomic analysis of Tv. jannaschii ALM2T grown at
5 mM As(III) showed an upregulation of the arsenite oxidase
arxB2 gene, but not of the structural component genes arxABC
(Supplementary Tables 1, 2). The Arx protein is only known
to work under anaerobic condition coupled to denitrification
or anaerobic photosynthesis (Hoeft et al., 2007; Kulp et al.,
2008; Zargar et al., 2010; Hernandez-Maldonado et al., 2017).
Moreover, as already discussed before, no growth was observed
in the tested strains under aerobic condition with As(III) as sole
electron donor (Supplementary Figure 2). Previously, Arx has
been shown in vitro to function as a bidirectional enzyme able
to oxidize As(III) and to reduce As(V) (Richey et al., 2009).
Due to the presence of Arx in Tv. jannaschii ALM2T and the
incapacity of this strain to perform denitrification, it could be
hypothesized that this strain uses Arx to reduce As(V) to As(III)
in combination with the oxidation of reduced sulfur compounds
under microoxic/anoxic conditions.

Most organisms perform an active extrusion of As(III) as
their main arsenic resistance mechanism. This is performed
in prokaryotes by the arsenic resistance ars operon, where
As(III) produced by the arsenate reductase ArsC is pumped
out of the cell by ArsB/ACR3 (Ben Fekih et al., 2018). The ars
genes were not differentially expressed in Tv. thiocyanoxidans
ARh2T at 0.1 mM As(III) (Supplementary Table 1). For Tv.

jannaschii ALM2T at 0.1 mM As(III), only the uspA gene was
upregulated. In contrast, the ars gene cluster was highly expressed
in Tv. jannaschii ALM2T at 5mM As(III) including the ACR3
efflux pump, two hypothetical proteins and the uspA gene. An
exception was the arsC, which explains the high concentration of
As(V) observed in the medium at the time of sampling (Figure 2
and Supplementary Tables 1, 2). The uspA gene encodes a uspA
that is known to be induced under different stress situations
(Kvint et al., 2003), by which it increases the endurance of the
cell (Nyström and Neidhardt, 1994). Upregulation of this gene
has been shown in bacteria under As(III) stress (Weiss et al.,
2009; Cleiss-Arnold et al., 2010; Sacheti et al., 2013). Finally, an
operon, which is located next to the arx and ars cluster in Tv.
jannaschii ALM2T and which includes a putatively annotated
glycosyl transferase involved in the cell wall biosynthesis and
a rhodanese-related sulfurtransferase were highly upregulated
at 5mM As(III) in ALM2T. However, in Tv. thiocyanoxidans
ARh2T, this operon is neither upregulated nor found next to the
ars gene cluster.

(3) Response to Oxidative Damage by
Arsenite
Arsenic has been shown to induce formation of reactive oxygen
species (ROS) and nitric oxide (NO) inside the cell (Andres and
Bertin, 2016; Zhang et al., 2016). These radicals can cause damage
to nucleic acids, proteins, and lipids (Flora, 2011; Birben et al.,
2012; Ray et al., 2012; Espinosa-Diez et al., 2015). To reduce
the oxidative damage by arsenic, bacterial cells have developed
various responses including the upregulation of Fe- and Mn-
superoxide dismutases, thiol peroxidases, thioredoxin reductases,
thioredoxins, glutaredoxins, glutathione, organic hydroperoxide
resistance proteins, and vitamin B6 (Andres and Bertin, 2016).
In our experiments, however, we did not detect changes in
expression for the two Thioalkalivibrio strains for any of the
genes involved in known antioxidation pathways. However, the
As(III) concentrations of 0.1 mM As(III) for Tv. thiocyanoxidans
ARh2T and 5 mM As(III) for Tv. jannaschii ALM2T triggered
upregulation of the complete vitamin B12 (cobalamin) synthesis
pathway (Supplementary Tables 1, 2). Vitamin B12 has been
shown to protect eukaryotic cells from oxidative damage by its
antioxidant activity (Birch et al., 2009; Suarez-Moreira et al.,
2009; Moreira et al., 2011; Alzoubi et al., 2012; Bito et al., 2017)
as well as when it is generated by arsenic in hepatic rat cells
(Chattopadhyay et al., 2012; Majumdar et al., 2012). In bacterial
cells, vitamin B12 has also been shown to be an antioxidant able
to protect the cell from oxidative stress in the acidophilic iron-
oxidizing bacterium Leptospirillum group II CF-1 (Ferrer et al.,
2016). Recently, Qin et al. (2018) discovered that the archaea
Nitrosopumilus maritimus SCM1 produces vitamin B12 under
Cu2+ stress. Moreover, cobSTU was shown to be expressed by
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bacteria in an arsenic-rich acid mine drainage, but was only
related to the activation of iron oxidation (Bertin et al., 2011).
Here, we propose that vitamin B12 is the main antioxidant
produced under As(III) stress in Thioalkalivibrio.

In addition, Tv. thiocyanoxidans ARh2T significantly
upregulates the expression of the chaperones dnaK and
Hsp20, and slightly of groEL, grpE and dnaJ. In contrast, Tv.
jannaschii ALM2T does not change the expression of those
genes. Chaperones from the Hsp70 (DnaK, DnaJ and GrpE)
and Hsp60 (GroEL and GroES) systems have been shown to
be commonly induced as an arsenic stress response in bacteria
(Andres and Bertin, 2016). These chaperones are essential for the
cell viability and the survival under diverse stressful conditions as
they facilitate the proper folding of newly translated proteins or
maintain it for already translated ones (Houry, 2001; Hayer-Hartl
et al., 2016; Hartl, 2017).

(4) Sulfur Metabolism
Thioalkalivibrio strains are sulfur-oxidizing bacteria that
possess a high inter-genus diversity of different genes and
pathways involved in sulfur oxidation (Berben et al., 2019). Tv.
thiocyanoxidans ARh2T and Tv. jannaschii ALM2T differentiate
from each other by the fact that Tv. thiocyanoxidans ARh2T

possesses the TcDH pathway for thiocyanate oxidation, the
Apr-Sat pathway for sulfite oxidation as well as a second
homologous copy of Soe for sulfite oxidation, whereas Tv.
jannaschii ALM2T does not (Berben et al., 2019). Interestingly,
the sequences of the two SoeA in Tv. thiocyanoxidans ARh2T

form two distinct clusters, i.e., one cluster grouping around SoeA
of Allochromatium vinosum (cluster 1) (Dahl et al., 2013) and
a second cluster forming a separate group (cluster 2), hereafter
called “Soe-like” gene. Both copies are present together in 41
Thioalkalivibrio strains (Supplementary Figure 4). Various
genes in the sulfur oxidation pathway are upregulated in Tv.
thiocyanoxidans ARh2T under As(III) stress [soxYZXXAB,
aprA and soeABC (cluster 2)], whereas others were not
differentially expressed, such as soeABC (cluster 1), sat and
sorAB. In Tv. jannaschii ALM2T, only the soeABC (cluster 2)
was highly upregulated together with genes necessary for the
molybdenum cofactor production of SoeA, the moaA (GTP
3′,8-cyclase) (Mendel and Leimkühler, 2015) and the molybdate
ABC transporter.

As(III) was also oxidized in Tv. thiocyanoxidans ARh2T

cultures, although this strain does not possess an arsenite oxidase
in its genome (Figure 1). Therefore, another as yet unknown
enzyme must exist besides the two known arsenite oxidases AioA
and ArxA involved in As(III) oxidation under aerobic conditions.
Comparing our results with the work of Fisher et al. (2008), we
can hypothesize that thioarsenate species have also formed in
our cultures, opening new possibilities for enzymatic pathways of
As(III) oxidation in the presence of thiosulfate or sulfide. Some
enzymes have already been hypothesized to be involved in the
oxidation pathway of thioarsenate compounds. Edwardson et al.
(2014) proposed the Sox pathway as a potential facilitator of
thioarsenate oxidation based on the structural similarity between
monothioarsenate and thiosulfate. In this system, Sox enzymes
would be able to cleave the thiol group from monothioarsenate.

This hypothesis could be supported by the upregulation of the
sox cluster in Tv. thiocyanoxidans ARh2T, but is contradicted
by the stable or even slight downregulation of these genes in
Tv. jannaschii ALM2T where the strongest As(III) oxidation
occurred. Furthermore, a sulfide:quinone oxidoreductase and
its operon were found upregulated in the presence of sulfide
or As(III) in Synechocystis sp. strain PCC6803 (Nagy et al.,
2014). As these genes are closely related to genes in Tv.
thiocyanodenitrificans ARhD1T, although not found in a single
operon in this strain, they proposed that these genes could be
involved in thioarsenate oxidation in Thioalkalivibrio. However,
no upregulation of these genes was detected in the dataset
obtained with Tv. jannaschii ALM2T and Tv. thiocyanoxidans
ARh2T growing with As(III). Couture et al. (2012) proposed
in a review the involvement of the proteins SelD and SelU
coupled to ArxC in thioarsenate production alongside to their
normal activity of making selenophosphate and modifying
RNA. However, we could not find any homologs to these
proteins in the genomes of Tv. jannaschii ALM2T and Tv.
thiocyanoxidans ARh2T.

The only genes of the sulfur oxidation pathway that were
induced in both strains at their highest respective As(III)
concentration were the quinone-dependent sulfite oxidase
soeABC (cluster 2). SoeABC is a molybdopterin oxidoreductase
of the same family as the arsenic oxidoreductases Aio, Arr,
and Arx (Krafft and Macy, 1998; Ellis et al., 2001; McEwan
et al., 2002; Zargar et al., 2010; Dahl et al., 2013). Similar to
those proteins, SoeA and SoeB form a heterodimer, which is
anchored to the cytoplasmic membrane by SoeC. The difference
between the SoeA and the arsenic oxidoreductase is that SoeA
does not contain a TAT-signal peptide, and therefore it stays in
the cytoplasm (Dahl et al., 2013). This TAT-signal peptide also
does not exist in the SoeABC-like protein of the cluster 2. Until
now, no activity and substrate specificity have been proven for
this second Soe-like cluster. Therefore, we propose that this Soe-
like protein as a possible candidate for co-oxidation of As(III)
and sulfite (SO3

2−), or oxidation of thioarsenate. Moreover, we
hypothesize that the observed oxidation has rather the aim of
detoxifying the cell as both strains were unable to grow on As(III)
as a sole electron donor (Supplementary Figure 2).

Multiple putative sulfurtransferases annotated as DsrE/F-like
genes were found up- or downregulated in the presence of As(III).
The sulfurtransferase DsrEFH binds to sulfur via a conserved
cysteine of the DsrE and transports it to the DsrC in the reverse
Dsr system of elemental sulfur oxidation to sulfite (Stockdreher
et al., 2012). The function of a cysteine in an active site is known
to be inactivated by the binding of As(III) to the sulfhydryl group
(Shen et al., 2013). One possibility for their change in expression
could therefore be either their induction to compensate for the
inactivation (upregulation) or their reduction to shut down the
pathway (downregulation).

(5) Recombination and Energy
Generation
Interestingly, genes for genetic recombination were
downregulated. These include different transposases and
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integrases. This is in contradiction with the findings of Gualco
et al. (2004) where a rise in the amount of recombinants in
conjugation and transduction, and transposition of the Tn9
was observed when As(III) at a sub-MIC (Minimal Inhibitory
Concentration) was added. This is in agreement with the general
understanding that stressful environmental conditions induce
genetic variation in bacteria via mutations and recombination
(Bjedov et al., 2003; Foster, 2005, 2007; Prudhomme et al., 2006;
Schuurmans et al., 2014).

In addition, genes are induced that are involved in the various
pathways for the electron transfer in oxidative phosphorylation
including the NADH:ubiquinone oxidoreductase in both strains,
a cytochrome c synthesis gene and a Na+/H+ antiporter
subunit in Tv. thiocyanoxidans ARh2T. The transcriptional
upregulation of these complexes are commonly observed in
bacteria in the presence of arsenic (Andres and Bertin, 2016). One
explanation could be that arsenic works as an uncoupler of the
membrane potential and as an alternative substrate of ATPase,
which could impair NADH and ATP production. To ensuring
adequate NADH and ATP production, Tv. thiocyanoxidans
ARh2T compensates this effect by the upregulation of the
NADH:ubiquinone oxidoreductase, the Na+/H+ antiporter and
by increased cytochrome c synthesis.

CONCLUSION

In this study, we identified the putative potential of arsenic
metabolism by the presence of Arx in 14 Thioalkalivibrio strains,
and of Arr in two. Furthermore, we investigated the main
mechanisms of arsenite resistance for Tv. jannaschii ALM2T

and Tv. thiocyanoxidans ARh2T. These strains do not share the
same resistance to As(III), which is reflected in their growth
response to different As(III) concentrations, in their repertoire of
arsenic resistance genes, in their As(III)-oxidizing potential and
in their transcriptome. From the gene expression, we discovered
an involvement of vitamin B12 as the major player in the
protection against arsenic-imposed oxidative stress, as well as
the differential expression of DsrE/F-like proteins whose roles
need to be elucidated in future research. Moreover, Tv. jannaschii
ALM2T induced the transcription of the ars gene operon
and the Pst system, and Tv. thiocanoxidans ARh2T increased
expression of the sox and apr genes as well as different heat
shock proteins. Comparing our results with the work of Fisher
et al. (2008), we can postulate the formation of thioarsenates in

the Thioalkalivibrio cultures, which were then microbiologically
further oxidized by an as yet unknown enzymatic pathway to
As(V). We hypothesize that a Soe-like protein is responsible for
this oxidation, but evidence must be obtained by future work.
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