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Force fluctuation in a driven elastic chain
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We study the dynamics of an elastic chain driven on a disordered substrate and analyze numerically the
statistics of force fluctuations at the depinning transition. The probability distribution function of the amplitude
of the slip events for small velocities is a power law with an exporredépending on the driving velocity.
This result is in qualitative agreement with experimental measurements performed on sliding elastic surfaces
with macroscopic asperities. We explore the properties of the depinning transition as a function of the driving
mode(i.e., constant force or constant velogignd compute the force-velocity diagram using finite-size scaling
methods. The scaling exponents are in excellent agreement with the values expected in interface models and,
contrary to previous studies, we found no difference in the exponents for periodic and disordered chains.
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I. INTRODUCTION to reproduce the experiments: periodic or disordered arrange-
ments of bead$,on a rigid"® or elasti¢® substrate and the
The dissipative motion of an elastic line in a random po-chain can be pulled in its own directibnor perpendicular to
tential is an interesting example of a nonequilibrium interactit.?® Simulations of a one-dimensional, periodic or disor-
ing system and is relevant for several phenomena in cordered, chain pulled in its own direction over a rigid disor-
densed matter physics. Examples are numerous and inclugiered potential have been performed by Cule and Fiiae
the motion of magnetic interfaces in ferromagneticmeasurement of the velocity and the roughness exponents
materialst? solid friction3® wetting®’ charge-density indicate that periodic and disordered chains are described by
waves® fluids in porous medid,vortex dynamics in high- two different universality classes. These and other simula-
temperature superconductdfs?®  cracks?®  and tions are performed considering a constant applied force,
dislocations:* These systems are characterized by a dynamithile experiments are performed driving the system at con-
phase transition ruled by the interplay between quenched distant velocity.
order and elastic interactiof®. Here, considering explicitly both constant veloc(isee
Due to the effect of the disorder, an elastic chain at zerd-ig. (@] and constant force drivingee Fig. 1b)], we study
temperature is pinned when the applied force is below a critithe force-velocity diagram and measure the force fluctuations
cal valueF . : after a sufficiently long time, independently of as a function of the applied velocity. The distribution of the
the initial conditions, the chain reaches a configuration wherélips events is power-law distributed, and characterized by an
no movement is possible. F&>F, the chain can escape exponentr, which appears to decrease with the applied ve-
from any pinning configuration and moves with constant avlocity, in agreement with the experiments. In our simula-
erage velocity. Whetk is close toF., the motion is domi-
nated by collective effects and the depinning of a single bead
produces a large reorganization of the chain. In other words, a) \4
for F=F., the system igritical and the motion of the beads —_—
is highly correlated.
An elastic chain moving in a disordered potential is a "k
useful model to understand some general features of sliding . . Sy ’ ’
friction,” in particular, of the experiment reported in Refs. G o G {} G {}
N N AVARRRVE

16-18, done using two artificial surfaces with controlled
roughness and elasticity. Beads of diameter 2 mm were ran- A4
domly put inside an elastic matrix, with a maximum rough-
ness of 0.5 mm. The two surfaces were then displaced b) F
against each other at constant velocity and the friction force
was measured, varying the elasticity of the matrix and the
driving velocity. The distribution of the amplitude of the slip

events is generally found to decay as a power law at small
velocities, suggesting the presence of an underlying critical N
point. The exponents characterizing the power-law distribu-
tion are found to decrease with the applied velocity, in anal-
ogy with other driven systems such as domain walls in  FIG. 1. Schematic motion of the elastic chain driven on a rough
ferromagnef‘. substrate at constant velocitg), attaching the beads to a moving

Several variant of the chain model can be studied in ordeplate via springs of stiffnes, and at constant forcgb).
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tions, a slip event is identified with the time interval in which strongly and the chain moves coherently, while for distances
the frictional force decreases, and the slip size is defined darger thanl , the random forces become dominant and the
in Ref. 16 (see Sec. IV A for more detajlsin the limit of  chain deforms considerably. The Larkin length can be esti-
low velocity, the exponent can be related to the critical mated considering both the effect of the rigidity of the line
exponent obtained tuning the applied force as discussed iand the strength of the disorder, and for our model it is given
Ref. 21 (see also Refs. 1, 4, 22, and)23Ve measure the by®
fluctuations in the position of the beads in the constant force
and constant velocity cases and obtain the same roughness Dao?
exponent{. Next, we evaluate the force velocity diagram, I~ 12
using finite-size scaling to locate the critical force and com- p
pute the exponeng. The values of the exponents are con-wherea is the distance between the beads and the den-
sistent with scaling relation and in good numerical agreesity of pinning centers. In order to analyze the critical prop-
ment with the exponents of interface depinning, but disagreerties of the system, we have to consider the limit where the
with previous simulations for a periodic chain in a randomLarkin length is larger than the mean distance between the
potential? In order to confirm this conclusion, we simulate beads and the dynamics is governed by the collective motion
the motion of a disordered chain and see no evidence for thef the beads. To this end, we carefully choose the parameters
existence of two different universality classes for periodicof the model so thalt, >a.
and disordered chains, in disagreement with the conclusions
of Ref. 4. Ill. SCALING RELATIONS

The paper is organized as follows; in Sec. Il we introduce
the model, and in Sec. Ill we define the critical exponents Depending on the method used to drive the chain, the
and discuss some scaling relations. In Sec. IV A we preserteasured quantities change, but the corresponding critical
the numerical results obtained at constant velocity, in SeceXxponents can be related by scaling relations. Here we sum-
IV B we discuss the constant force case studying the scalinglarize the scaling properties of the depinning transition in

behavior close to the depinning transition. In Sec. V we sumine case where the beads are driven by springs of stifidess
marize the main results of the paper. pulled at constant velocity and in the case where they are

submitted to a constant forde

2/3

: ()

Il. MODEL o

A. Constant velocity driving

We consider the overdamped dynamics of a one- - .

. . : : : Friction experiments are generally performed under a
dimensional line of elastically coupled beads, driven on a . o ; .

: . O -constant velocity driving. In some cases, a traction machine

disordered substrate. The disordered potential is a successign

of identical Gaussian potentials, randomly distributed in urning at constant velocity is coupled_ by a spring to th?
spdmg system. In other cases, an effective spring coupling is

space. The t_>eads can b.e driven dwectly, applymg a CO”.StaHue to the elastic deformation of the material driven impos-
force, or indirectly coupling them to an intermediate spring.

which is pulled at constant velocity. The equation of motion9 & constant strain rate far from the sliding interface. To
is P Y- q simulate constant velocity drivirg,we attach each bead to a

spring of stiffnesK*, so that the force is given by
T b 2r ) I, @) FEKIn@+Vimnv], @

whereV is the applied velocitysee Fig. 1a8)]. When the
wherer,(t) is the position of the beadat timet, » is the  velocity V and the stiffnes& are small, the motion displays
coefficient of viscosityD is the stiffness of the elastic linE, large fluctuations. In particular, in the lim¥—0 andK
is the driving force, and(x) is a random force, due to the —O0 the system reaches the depinning transition and the
contribution of the ensemble of pinning centers. We modeforce fluctuates arounB,. This feature is common to other
the random force by the sum &f derivatives of Gaussian nonequilibrium critical phenomena, such as absorbing state

potentials located on the pinning site phase transitions and self-organized criticatfty’
The distribution of the friction force fluctuations is di-
N 1 (x—xP)2 rectly related to the size distribution of slip evets of the
f(X)ZCiZl (x=xP)exg — 7 2 | (2)  chain, sinceAF=KAx. Herex=3r; and the slip is defined

by a drop in the measured friction for¢see Fig. 1 Close to

whereC represents the strength of the disorderguantifies the depinning transition, we expect that the distribution of
the width of the wells, ana? is the location of the pinning X decays as

site i, which we chose to be Poisson distributed. The equa- P(AX)~AX~"h(AX/AxX,) (5)
tion of motion is integrated numerically using a fourth-order o
Runge-Kutta method. whereh(x) is a scaling function andx, the cutoff value.

The interplay between disorder and elastic interactions imhe value of the cutoff depends on various parameters, such
our model can be understood computing the Larkin lengthas the system size employed in the simulation. Clearly the
|, .%* For distances smaller thdp, the beads are interacting avalanche size cannot be greater than the total length of the
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_FIG. 2. Friction force as a function of the displacement for  FIG. 3. Log-log plot of the size distribution of slip events for
different loading speedsa) V=0.05, (b) V=5. different values ofV. In the inset we report the exponent ob-

tained fitting the distributions, as a function of the driving velocity.
line. Furthermore, we expect that the stiffness of the springs
K and the driving velocityV will, in general, change the Close to the depinning transition the motion is very irregular,
value of the cutoff. In the low velocity limit and for large and large regions of the chain move collectively. The corre-
enough system sizel,becomes the dominant parameter thatlation length diverges at the transition as
determines the value of the cutdft.
The scaling of the cutoff with can be used to evaluate E~(F—=F¢) ™" (12)

the roughness exponefit using the relation In order to estimate the critical exponersand v, we em-

Axa K~ 412 ©6) ploy a particular finite-size scaling meth&tin analogy with
0 ’ absorbing state phase transitidfis.
which results from the fact that the correlation length scales We first compute the critical force analyzing the decay of

with K as &~K ™2 (Ref. 4 and by definitionAx,~¢5.  the average velocity with time for different system sizes. For
This result implies thaP(Ax,K) should satisfy the scaling finite systems, the average velocity reaches a quasi steady
form statev(F,L). When F>F. we expect that as the side
—o, v(F,L) approaches a nonvanishing value given by Eq.
P(AX,K)K ™ "2=H(t), t=AxK2 (7)  (10), while it decays to zero foF<F.. At the depinning

. . transition we expect that
Equation(5) is used to compute and Egs.(6) and (7) are

used to compute the exponent v(Fg,L)~L A", (12)
The exponent can also be evaluated directly using the ] . o

scaling of the fluctuations of the displacements withDe- ~ Once F¢ is known with good precision, we can measure

fining the relative displacements of the beads &)  directly the exponeng from Eg. (10). As in the constant

=r,(t)—[Vt+r,(0)], the fluctuations can be quantified by Velocity case, we can evaluate the roughness exponent, mea-
suring the width aF. as a function ot., which should scale

L as
W2= 2 [ui(t) - m(t)]7/L, ®)
=1 W(L)~LE, (13
wherem(t)=3{_,u;(t)/L, andL is the number of beads. For a periodic chain, Ref. 4 reportg@~0.4 and{=1.5,
The roughnesdV scales with the correlation leng#y, as  while for a disordere@d=0.25 and/=1.2. These last values
W~§g, and sincegy~K 1?2 are consistent with interface depinning thatds1 yields

B=0.25 and{=1.25%°
W~K %2, 9)

Equationg6) and(9) have the same origin and can indepen- IV. NUMERICAL RESULTS
dently be used to estimate A. Constant velocity

The primary interest of this study is to compute the expo-
nent 7 which characterizes the collective motion of the par-

When the system is driven at constant fofsee Fig. ticles atF=F, and in particular its dependence on the driv-
1(b)], we expect a depinning transition as a functionFof ing velocity. We note that the avalanche exponent was found
For F>F_, the chain moves with constant average velocityto decrease with the driving velocity in the Barkhausen ef-

B. Constant force driving

v defining an exponens fect, due to the motion of domain walls in a ferromaghet.
The same effect was observed in the friction experiments
v~(F—F¢)P~. (100  reported in Ref. 16.
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TABLE I. Critical exponents measured in simulations. bn
ngga
Oe
T 1.07+0.05 0 | %agggg
¢ 1.26+0.03 288
9.8
B 0.22+0.02 5 OK=8 Pao %O
1.3+0.1 okt o
v o | o
S ", o
5 <
In order to reach the scaling regime, we progressively m=0 © OO
decrease/ andK and compute the friction force. Figure 2 o
shows two typical plot for the friction force as a function of 10° 4 - L
the position of the line, in Fig. (&) the driving velocity is 10° XX 10
V=0.05 and in Fig. ) V=5. As the driving velocity in-

creases, the friction force becomes smoother, and in the limit £ 5. pistribution of the slips events as a functionkoghow-
V>1 we obtain a viscous behavioF {-»V) with small  jng that the cutoff increases whé decreases. The velocily is
relative fluctuations. On the contrary, for small velocities thekept constant.
dynamics is jerky: the force increases with time until the
beads are sufficiently stressed so that the chain depins de- Figure 3 shows that the cutoffX, clearly depends oW
creasing the force. whenK is hold fixed. We can quantify this variation and the
We measure the friction force drops=, or the slip sizes result is reported in Fig. 4. For small velocitieg< V*) the
AX=AF/K and analyze their distribution. These quantitiescutoff is a constanti.e., it does not depend ov) which in
are numerically calculated as follows: when the friction forceprinciple depends oi, while for high velocities the cutoff
starts to decrease, we record its vallyg,, and wait until the  decreases witlv, roughly as a power law. Next, we study
friction force increases again, defining a valbg;,. The the behavior of the cutoff whevi<V* asK is varied. In Fig.

friction force drop is simply given bYAF=F .= Fmin- 5 we show the distribution of slip sizes for variokigor very
The distributions are averaged over 20 realizations of themall driving velocity. We see that the cut off increase&as
disorder forvV=0.05 and 100 realizations faf=10; in all  is decreased. Figure 6 shows the collapse of the curves after

cases the system was composed.ef1000 beads, and the the rescaling withK, in accordance with Eq7).

disorder was produced by=20000 pinning sites, Poisso- We also measure the roughness exponent of the system
nian distributed. The value of the exponenis obtained by following Eg. (9) and the result is reported in Fig. 7. We
a direct fit of the linear part of the distribution plotted in a obtain with both methodg=1.26, which is consistent with
log-log graph. The results are shown in Fig. 3, the mairthe numerical value found in interface depinnfiidor a dis-
graph presents the log-log plot of the probability distributionordered chaihand with a recent two loop renormalization
function of the jumps for variou¥ and in the inset we report group calculatiorf* This value, nevertheless, disagrees with
the value ofr as function of the velocity. We see a slow previous results on a periodic chéin.

decrease of the exponent when the velocity increases. This The simulations of Ref. 4 for periodic and disordered
result is in good qualitative agreement with the experimentghain, suggest the presence of two different universality
reported in Ref. 16. The value effor V—O0 (see Table)l  classes. In order to test this result we study the force fluctua-
agrees well with the exponent obtained for elastic line depintions of a disordered chain. The equilibrium length of the
ning under quasistatic conditioA$° considering, however, springs connecting the beads is chosen randd@Pbjsson.

the motion perpendicular to the line direction. The chain is then driven at constant velocity and the distri-
bution of the slip sizes is calculated. The result is shown in
10" - ‘ Fig. 8 where we also report the distribution obtained with a

periodic chain using similar parameters. The two distribu-
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FIG. 4. Cutoff of the slip size distribution as a function \6f AXK~
For sufficiently low velocities Y<V*), the cutoff is independent
of V. FIG. 6. Data collapse of Fig. 5.

104104-4



FORCE FLUCTUATION IN A DRIVEN ELASTIC CHAIN PHYSICAL REVIEW B63 104104

10° ‘ - 10°

-0.63

10 =

10" 10° 10 10 10

K K

The power-law fit of the curve and the scaling relations imply that@ Periodic chain sliding on a substrate where pinning centers are
£=1.26+0.03. arranged periodically and have random streng®ef. 4. The

power-law fit of the curve and the scaling relations imply tfiat

tions are clearly indistinguishable, casting some doubt on thé 1.26+0.05.
relevance of disorder in the spring lengths. . )

The only difference between the simulations presented ivas chosen equal to unity &N). In order to determine the
Ref. 4 and ours lies in the way disorder is implemented: inexponent3, we need an accurate estimate of the critical
Ref. 4 the pinning points are arranged in a periodic structuréorce, since an error iff; can strongly bias the fit.
and have random strength, while we use constant strength Figure 10 shows the value of the average velocity of the
and random positions. In the case of a periodic chain, Culéterface as a function of. For F smaller thanF in the
and Hw4 measure/= 1.5, which is expected below the Lar- limit of a large systenv tends to zero, and fdf greater than
kin length, although the parameter employed do not seem tbc and for the same limitl(>1) v should tend a nonvan-
be consistent with that regime. To check whether the differishing value. In this way we can locate the critical force,
ence in the pinning field is relevant or not for the critical Which results to beF.=2.195-0.005. This result appears
behavior, we measure the fluctuations of the chain positioglearly from Fig. 10, from the log-log plot of as a function
as a function oK for a periodic chain sliding on a substrate of L. We see thaF =2.195 is compatible with a power-law
in which pinning centers are arranged periodically and havéehavior, whereas fdf =2.200 in the large: limit the mean
random strength. The result reported in Fig. 9 clearly showyelocity tends to a nonzero constant. For2.190 the ve-
that the roughness exponefi 1.26+-0.05 does not change locity tends to zero faster than a power law in the limit of
with respect to case studied earlier. From this study, we corlarge system sizes. The numerical results are averaged over a
clude that the two models are in the same universality classiumber of disorder configurations which varies from 4000
for L=20 to 200 forL=200. The curve plotted in Fig. 10
allows also to estimat@/v=0.16+0.02[see Eq(12)].

Next, we calculate the exponegtdirectly, plottingv vs

For constant force driving, we employ system sizes vary(F—F ). The fit in Fig. 11 yieldsB=0.22+0.02. We re-
ing from L=20 to L=540 and the density of pinning sites

107 ](‘)0
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B. Constant force
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FIG. 10. The variation of the mean velocityof the chain as a
FIG. 8. Probability distribution of slip sizes for a periodic and a function of the number of beads and for various force§. The
disordered chain. We see no evidence for the existence of two difinset shows the data fd¥ far from the critical forceF., and the
ferent classes, since the distributions are indistinguishable. main plot shows the data fdf near the critical forcelr.~2.195.
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FIG. 12. Width of the beads displacemeW{sas a function otf..

FIG. 11. Average velocity as a function of the forc&. The . . . -
. . . The scaling relation between the two quantities gigeg/e recover
inset shows the-F diagram. The solid curve represents the result . . .
a value in good agreement with our previous results.

without pinning centers and the dotted line is the result for the
disordered substrate. The main graph represents the log-log plot efgree quantitatively for a wide range of velocities with the
v as a function ofF —F.. The exponeng is calculated using the case of a soft-rigid interface, which should correspond to an
six first points of the curve and the exponenigis 0.22+0.02. elastic chain sliding on a rigid rough substrate. In our model,
we do not consider inertial effects and vertical displacements
strict the fit to the six smaller values since a crossover tquhich in principle are present in experiments. In addition, it
linear behavior is expected at high fordée.,v=F/7) and s important to remark that our model will not apply to ge-
this can bias the numerical estimate of the exponent. Th@eric friction experimenfssince in many instances the Lar-
simulations are made with a systemlof 540 particles, and  kin length is extremely larg&
the results are averaged over 100 configurations of the dis- The exponents we measure agree well with the values
order. In this way, we can obtajf and v as summarized in  expected for the depinning of elastic interfaces in quenched
Table I. disordered medfd and with there normalization group cal-
To further test the consistency of our results, we calculateulation of Ref. 31, despite the fact that in our case the line is
the exponent/ measuring the scaling ofV with L at F driven parallel to its direction, while in Refs. 29, 30, and 31,
=F. [see EQ.(13)]. The results shown in Fig. 12 givé  the motion is perpendicular to the line direction. Parallel mo-
=1.28+0.03 in agreement with the result obtained in Section generates memory effects that could change the univer-
IV A. sality class, but our simulations show that this is not the case.
Using the method discussed in Ref. 12, we can show that the
V. CONCLUSION continuum limit of the model we study is described by

In conclusion, we have investigated the dynamics of an ah(x,t) dh
elastic chain sliding on a disordered substrate. We have ana- ot tv X DVh+F+f,(x,h), (14)
lyzed numerically the scaling close to the depinning transi- . . . .
tion focusing on the effect of different driving modes. Usu- whereh(x,1) IS a coarse grained version af(t), v is the
ally, models are analyzed under constant force driving, whil¢Verage velocity of the beads arg is a coarse grained
friction experiments are often performed controlling the Ve_rand_om pinning forge. Notice that E_(114) contains a con-
locity. The two cases are closely related as discussed in Ref¢ective_term that is not present in interface depinning
2,4, 21, 23, and 27. We have computed the critical expom°de_|§ ~7""The present :_s!mulauons.mdlcate that this
nents characterizing the transition and analyze the effect ¢Er™ IS not relevant for the critical behavior.
the driving velocity and the loading spring stiffness. Our ACKNOWLEDGMENTS
results are in qualitative agreement with friction experiments
performed with macroscopic asperities coupled by an elastic We thank J. Vannimenus, P. Chauve, and K. Wiese for
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