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Force fluctuation in a driven elastic chain
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We study the dynamics of an elastic chain driven on a disordered substrate and analyze numerically the
statistics of force fluctuations at the depinning transition. The probability distribution function of the amplitude
of the slip events for small velocities is a power law with an exponentt depending on the driving velocity.
This result is in qualitative agreement with experimental measurements performed on sliding elastic surfaces
with macroscopic asperities. We explore the properties of the depinning transition as a function of the driving
mode~i.e., constant force or constant velocity! and compute the force-velocity diagram using finite-size scaling
methods. The scaling exponents are in excellent agreement with the values expected in interface models and,
contrary to previous studies, we found no difference in the exponents for periodic and disordered chains.
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I. INTRODUCTION

The dissipative motion of an elastic line in a random p
tential is an interesting example of a nonequilibrium intera
ing system and is relevant for several phenomena in c
densed matter physics. Examples are numerous and inc
the motion of magnetic interfaces in ferromagne
materials,1,2 solid friction,3–5 wetting,6,7 charge-density
waves,8 fluids in porous media,9 vortex dynamics in high-
temperature superconductors,10–12 cracks,13 and
dislocations.14 These systems are characterized by a dyna
phase transition ruled by the interplay between quenched
order and elastic interactions.15

Due to the effect of the disorder, an elastic chain at z
temperature is pinned when the applied force is below a c
cal valueFc : after a sufficiently long time, independently o
the initial conditions, the chain reaches a configuration wh
no movement is possible. ForF.Fc , the chain can escap
from any pinning configuration and moves with constant
erage velocity. WhenF is close toFc , the motion is domi-
nated by collective effects and the depinning of a single b
produces a large reorganization of the chain. In other wo
for F5Fc , the system iscritical and the motion of the bead
is highly correlated.

An elastic chain moving in a disordered potential is
useful model to understand some general features of sli
friction,5 in particular, of the experiment reported in Re
16–18, done using two artificial surfaces with controll
roughness and elasticity. Beads of diameter 2 mm were
domly put inside an elastic matrix, with a maximum roug
ness of 0.5 mm. The two surfaces were then displa
against each other at constant velocity and the friction fo
was measured, varying the elasticity of the matrix and
driving velocity. The distribution of the amplitude of the sl
events is generally found to decay as a power law at sm
velocities, suggesting the presence of an underlying crit
point. The exponents characterizing the power-law distri
tion are found to decrease with the applied velocity, in an
ogy with other driven systems such as domain walls
ferromagnet.1

Several variant of the chain model can be studied in or
0163-1829/2001/63~10!/104104~7!/$15.00 63 1041
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to reproduce the experiments: periodic or disordered arran
ments of beads,4 on a rigid4,5 or elastic19 substrate and the
chain can be pulled in its own direction4,5 or perpendicular to
it.20 Simulations of a one-dimensional, periodic or diso
dered, chain pulled in its own direction over a rigid diso
dered potential have been performed by Cule and Hwa.4 The
measurement of the velocity and the roughness expon
indicate that periodic and disordered chains are describe
two different universality classes. These and other simu
tions are performed considering a constant applied fo
while experiments are performed driving the system at c
stant velocity.

Here, considering explicitly both constant velocity@see
Fig. 1~a!# and constant force driving@see Fig. 1~b!#, we study
the force-velocity diagram and measure the force fluctuati
as a function of the applied velocity. The distribution of th
slips events is power-law distributed, and characterized by
exponentt, which appears to decrease with the applied
locity, in agreement with the experiments. In our simu

FIG. 1. Schematic motion of the elastic chain driven on a rou
substrate at constant velocity~a!, attaching the beads to a movin
plate via springs of stiffnessK, and at constant force~b!.
©2001 The American Physical Society04-1
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tions, a slip event is identified with the time interval in whic
the frictional force decreases, and the slip size is define
in Ref. 16 ~see Sec. IV A for more details!. In the limit of
low velocity, the exponentt can be related to the critica
exponent obtained tuning the applied force as discusse
Ref. 21 ~see also Refs. 1, 4, 22, and 23!. We measure the
fluctuations in the position of the beads in the constant fo
and constant velocity cases and obtain the same rough
exponentz. Next, we evaluate the force velocity diagram
using finite-size scaling to locate the critical force and co
pute the exponentb. The values of the exponents are co
sistent with scaling relation and in good numerical agr
ment with the exponents of interface depinning, but disag
with previous simulations for a periodic chain in a rando
potential.4 In order to confirm this conclusion, we simula
the motion of a disordered chain and see no evidence for
existence of two different universality classes for perio
and disordered chains, in disagreement with the conclus
of Ref. 4.

The paper is organized as follows; in Sec. II we introdu
the model, and in Sec. III we define the critical expone
and discuss some scaling relations. In Sec. IV A we pres
the numerical results obtained at constant velocity, in S
IV B we discuss the constant force case studying the sca
behavior close to the depinning transition. In Sec. V we su
marize the main results of the paper.

II. MODEL

We consider the overdamped dynamics of a o
dimensional line of elastically coupled beads, driven on
disordered substrate. The disordered potential is a succe
of identical Gaussian potentials, randomly distributed
space. The beads can be driven directly, applying a cons
force, or indirectly coupling them to an intermediate spri
which is pulled at constant velocity. The equation of moti
is,

h
]r i~ t !

]t
5D~r i 1122r i1r i 21!1 f @r i~ t !#1F, ~1!

wherer i(t) is the position of the beadi at time t, h is the
coefficient of viscosity,D is the stiffness of the elastic line,F
is the driving force, andf (x) is a random force, due to th
contribution of the ensemble of pinning centers. We mo
the random force by the sum ofN derivatives of Gaussian
potentials located on the pinning site

f ~x!5C(
i 51

N

~x2xi
p!expF2

1

2

~x2xi
p!2

s2 G , ~2!

whereC represents the strength of the disorder,s quantifies
the width of the wells, andxi

p is the location of the pinning
site i, which we chose to be Poisson distributed. The eq
tion of motion is integrated numerically using a fourth-ord
Runge-Kutta method.

The interplay between disorder and elastic interaction
our model can be understood computing the Larkin len
l L .24 For distances smaller thanl L , the beads are interactin
10410
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strongly and the chain moves coherently, while for distan
larger thanl L , the random forces become dominant and
chain deforms considerably. The Larkin length can be e
mated considering both the effect of the rigidity of the lin
and the strength of the disorder, and for our model it is giv
by5

l L'FDas2

r1/2C
G 2/3

, ~3!

wherea is the distance between the beads andr is the den-
sity of pinning centers. In order to analyze the critical pro
erties of the system, we have to consider the limit where
Larkin length is larger than the mean distance between
beads and the dynamics is governed by the collective mo
of the beads. To this end, we carefully choose the parame
of the model so thatl L@a.

III. SCALING RELATIONS

Depending on the method used to drive the chain,
measured quantities change, but the corresponding cri
exponents can be related by scaling relations. Here we s
marize the scaling properties of the depinning transition
the case where the beads are driven by springs of stiffneK
pulled at constant velocityV and in the case where they a
submitted to a constant forceF.

A. Constant velocity driving

Friction experiments are generally performed under
constant velocity driving. In some cases, a traction mach
turning at constant velocity is coupled by a spring to t
sliding system. In other cases, an effective spring couplin
due to the elastic deformation of the material driven imp
ing a constant strain rate far from the sliding interface.
simulate constant velocity driving,25 we attach each bead to
spring of stiffnessK4, so that the force is given by

F5K@r i~0!1Vt2r i~ t !#, ~4!

where V is the applied velocity@see Fig. 1~a!#. When the
velocity V and the stiffnessK are small, the motion display
large fluctuations. In particular, in the limitV→0 and K
→0 the system reaches the depinning transition and
force fluctuates aroundFc . This feature is common to othe
nonequilibrium critical phenomena, such as absorbing s
phase transitions and self-organized criticality.26,27

The distribution of the friction force fluctuations is d
rectly related to the size distribution of slip eventsDx of the
chain, sinceDF5KDx. Herex[( i r i and the slip is defined
by a drop in the measured friction force~see Fig. 1!. Close to
the depinning transition, we expect that the distribution
Dx decays as

P~Dx!;Dx2th~Dx/Dx0!, ~5!

whereh(x) is a scaling function andDx0 the cutoff value.
The value of the cutoff depends on various parameters, s
as the system size employed in the simulation. Clearly
avalanche size cannot be greater than the total length o
4-2
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FORCE FLUCTUATION IN A DRIVEN ELASTIC CHAIN PHYSICAL REVIEW B63 104104
line. Furthermore, we expect that the stiffness of the spri
K and the driving velocityV will, in general, change the
value of the cutoff. In the low velocity limit and for larg
enough system sizes,K becomes the dominant parameter th
determines the value of the cutoff.2,4

The scaling of the cutoff withK can be used to evaluat
the roughness exponentz, using the relation

Dx0;K2z/2, ~6!

which results from the fact that the correlation length sca
with K as j0;K21/2 ~Ref. 4! and by definitionDx0;j0

z .
This result implies thatP(Dx,K) should satisfy the scaling
form

P~Dx,K !K2tz/25H~ t !, t[DxKz/2. ~7!

Equation~5! is used to computet and Eqs.~6! and ~7! are
used to compute the exponentz.

The exponentz can also be evaluated directly using t
scaling of the fluctuations of the displacements withK. De-
fining the relative displacements of the beads asui(t)
[r i(t)2@Vt1r i(0)#, the fluctuations can be quantified by

W25(
i 51

L

@ui~ t !2m~ t !#2/L, ~8!

where m(t)[( i 51
L ui(t)/L, and L is the number of beads

The roughnessW scales with the correlation lengthj0 as
W;j0

z , and sincej0;K21/2

W;K2z/2. ~9!

Equations~6! and~9! have the same origin and can indepe
dently be used to estimatez.

B. Constant force driving

When the system is driven at constant force@see Fig.
1~b!#, we expect a depinning transition as a function ofF.
For F.Fc , the chain moves with constant average veloc
v defining an exponentb

v;~F2Fc!
b. ~10!

FIG. 2. Friction force as a function of the displacement
different loading speeds.~a! V50.05, ~b! V55.
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Close to the depinning transition the motion is very irregul
and large regions of the chain move collectively. The cor
lation length diverges at the transition as

j;~F2Fc!
2n. ~11!

In order to estimate the critical exponentsb andn, we em-
ploy a particular finite-size scaling method,13 in analogy with
absorbing state phase transitions.28

We first compute the critical force analyzing the decay
the average velocity with time for different system sizes. F
finite systems, the average velocity reaches a quasi ste
state v(F,L). When F.Fc we expect that as the sizeL
→`, v(F,L) approaches a nonvanishing value given by E
~10!, while it decays to zero forF,Fc . At the depinning
transition we expect that

v~Fc ,L !;L2b/n. ~12!

Once Fc is known with good precision, we can measu
directly the exponentb from Eq. ~10!. As in the constant
velocity case, we can evaluate the roughness exponent,
suring the width atFc as a function ofL, which should scale
as

W~L !;Lz. ~13!

For a periodic chain, Ref. 4 reportedb.0.4 andz.1.5,
while for a disorderedb.0.25 andz.1.2. These last value
are consistent with interface depinning that ind51 yields
b.0.25 andz.1.25.29

IV. NUMERICAL RESULTS

A. Constant velocity

The primary interest of this study is to compute the exp
nentt which characterizes the collective motion of the pa
ticles atF.Fc , and in particular its dependence on the dr
ing velocity. We note that the avalanche exponent was fo
to decrease with the driving velocity in the Barkhausen
fect, due to the motion of domain walls in a ferromagne1

The same effect was observed in the friction experime
reported in Ref. 16.

FIG. 3. Log-log plot of the size distribution of slip events fo
different values ofV. In the inset we report the exponentt, ob-
tained fitting the distributions, as a function of the driving veloci
4-3
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LACOMBE, ZAPPERI, AND HERRMANN PHYSICAL REVIEW B63 104104
In order to reach the scaling regime, we progressiv
decreaseV and K and compute the friction force. Figure
shows two typical plot for the friction force as a function
the position of the line, in Fig. 2~a! the driving velocity is
V50.05 and in Fig. 2~b! V55. As the driving velocity in-
creases, the friction force becomes smoother, and in the
V@1 we obtain a viscous behavior (F;hV) with small
relative fluctuations. On the contrary, for small velocities t
dynamics is jerky: the force increases with time until t
beads are sufficiently stressed so that the chain depins
creasing the force.

We measure the friction force dropsDF, or the slip sizes
DX5DF/K and analyze their distribution. These quantiti
are numerically calculated as follows: when the friction for
starts to decrease, we record its valueFmax and wait until the
friction force increases again, defining a valueFmin . The
friction force drop is simply given byDF5Fmax2Fmin .
The distributions are averaged over 20 realizations of
disorder forV50.05 and 100 realizations forV510; in all
cases the system was composed ofL51000 beads, and th
disorder was produced byN520 000 pinning sites, Poisso
nian distributed. The value of the exponentt is obtained by
a direct fit of the linear part of the distribution plotted in
log-log graph. The results are shown in Fig. 3, the m
graph presents the log-log plot of the probability distributi
function of the jumps for variousV and in the inset we repor
the value oft as function of the velocity. We see a slo
decrease of the exponent when the velocity increases.
result is in good qualitative agreement with the experime
reported in Ref. 16. The value oft for V→0 ~see Table I!
agrees well with the exponent obtained for elastic line dep
ning under quasistatic conditions,23,30 considering, however
the motion perpendicular to the line direction.

TABLE I. Critical exponents measured in simulations.

t 1.0760.05
z 1.2660.03
b 0.2260.02
n 1.360.1

FIG. 4. Cutoff of the slip size distribution as a function ofV.
For sufficiently low velocities (V,V* ), the cutoff is independen
of V.
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Figure 3 shows that the cutoffDX0 clearly depends onV
whenK is hold fixed. We can quantify this variation and th
result is reported in Fig. 4. For small velocities (V,V* ) the
cutoff is a constant~i.e., it does not depend onV) which in
principle depends onK, while for high velocities the cutoff
decreases withV, roughly as a power law. Next, we stud
the behavior of the cutoff whenV,V* asK is varied. In Fig.
5 we show the distribution of slip sizes for variousK for very
small driving velocity. We see that the cut off increases aK
is decreased. Figure 6 shows the collapse of the curves
the rescaling withK, in accordance with Eq.~7!.

We also measure the roughness exponent of the sys
following Eq. ~9! and the result is reported in Fig. 7. W
obtain with both methodsz51.26, which is consistent with
the numerical value found in interface depinning,29 for a dis-
ordered chain4 and with a recent two loop renormalizatio
group calculation.31 This value, nevertheless, disagrees w
previous results on a periodic chain.4

The simulations of Ref. 4 for periodic and disorder
chain, suggest the presence of two different universa
classes. In order to test this result we study the force fluc
tions of a disordered chain. The equilibrium length of t
springs connecting the beads is chosen randomly~Poisson!.
The chain is then driven at constant velocity and the dis
bution of the slip sizes is calculated. The result is shown
Fig. 8 where we also report the distribution obtained with
periodic chain using similar parameters. The two distrib

FIG. 5. Distribution of the slips events as a function ofK show-
ing that the cutoff increases whenK decreases. The velocityV is
kept constant.

FIG. 6. Data collapse of Fig. 5.
4-4
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FORCE FLUCTUATION IN A DRIVEN ELASTIC CHAIN PHYSICAL REVIEW B63 104104
tions are clearly indistinguishable, casting some doubt on
relevance of disorder in the spring lengths.

The only difference between the simulations presente
Ref. 4 and ours lies in the way disorder is implemented
Ref. 4 the pinning points are arranged in a periodic struct
and have random strength, while we use constant stre
and random positions. In the case of a periodic chain, C
and Hwa4 measurez.1.5, which is expected below the La
kin length, although the parameter employed do not seem
be consistent with that regime. To check whether the diff
ence in the pinning field is relevant or not for the critic
behavior, we measure the fluctuations of the chain posi
as a function ofK for a periodic chain sliding on a substra
in which pinning centers are arranged periodically and h
random strength. The result reported in Fig. 9 clearly sho
that the roughness exponentz51.2660.05 does not chang
with respect to case studied earlier. From this study, we c
clude that the two models are in the same universality cl

B. Constant force

For constant force driving, we employ system sizes va
ing from L520 to L5540 and the density of pinning site

FIG. 7. Width of the beads displacements as a function ofK.
The power-law fit of the curve and the scaling relations imply t
z51.2660.03.

FIG. 8. Probability distribution of slip sizes for a periodic and
disordered chain. We see no evidence for the existence of two
ferent classes, since the distributions are indistinguishable.
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was chosen equal to unity (L5N). In order to determine the
exponentb, we need an accurate estimate of the critic
force, since an error inFc can strongly bias the fit.

Figure 10 shows the value of the average velocity of
interface as a function ofL. For F smaller thanFc in the
limit of a large systemv tends to zero, and forF greater than
Fc and for the same limit (L@1) v should tend a nonvan
ishing value. In this way we can locate the critical forc
which results to beFc52.19560.005. This result appear
clearly from Fig. 10, from the log-log plot ofv as a function
of L. We see thatF52.195 is compatible with a power-law
behavior, whereas forF52.200 in the largeL limit the mean
velocity tends to a nonzero constant. ForF52.190 the ve-
locity tends to zero faster than a power law in the limit
large system sizes. The numerical results are averaged o
number of disorder configurations which varies from 40
for L520 to 200 forL5200. The curve plotted in Fig. 10
allows also to estimateb/n50.1660.02 @see Eq.~12!#.

Next, we calculate the exponentb directly, plottingv vs
(F2Fc). The fit in Fig. 11 yieldsb50.2260.02. We re-

t

if-

FIG. 9. Width of the beads displacements as a function ofK for
a periodic chain sliding on a substrate where pinning centers
arranged periodically and have random strength~Ref. 4!. The
power-law fit of the curve and the scaling relations imply thatz
51.2660.05.

FIG. 10. The variation of the mean velocityv of the chain as a
function of the number of beadsL and for various forcesF. The
inset shows the data forF far from the critical forceFc , and the
main plot shows the data forF near the critical force,Fc'2.195.
4-5
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LACOMBE, ZAPPERI, AND HERRMANN PHYSICAL REVIEW B63 104104
strict the fit to the six smaller values since a crossover
linear behavior is expected at high forces~i.e., v5F/h) and
this can bias the numerical estimate of the exponent.
simulations are made with a system ofL5540 particles, and
the results are averaged over 100 configurations of the
order. In this way, we can obtainb andn as summarized in
Table I.

To further test the consistency of our results, we calcu
the exponentz measuring the scaling ofW with L at F
5Fc @see Eq.~13!#. The results shown in Fig. 12 givez
51.2860.03 in agreement with the result obtained in S
IV A.

V. CONCLUSION

In conclusion, we have investigated the dynamics of
elastic chain sliding on a disordered substrate. We have
lyzed numerically the scaling close to the depinning tran
tion focusing on the effect of different driving modes. Us
ally, models are analyzed under constant force driving, w
friction experiments are often performed controlling the v
locity. The two cases are closely related as discussed in R
2, 4, 21, 23, and 27. We have computed the critical ex
nents characterizing the transition and analyze the effec
the driving velocity and the loading spring stiffness. O
results are in qualitative agreement with friction experime
performed with macroscopic asperities coupled by an ela
matrix.16 The experiments reported in Ref. 16 showed
variation of the value oft with the type of material used fo
the matrix. The values computed in our simulations seem

FIG. 11. Average velocityv as a function of the forceF. The
inset shows thev-F diagram. The solid curve represents the res
without pinning centers and the dotted line is the result for
disordered substrate. The main graph represents the log-log pl
v as a function ofF2Fc . The exponentb is calculated using the
six first points of the curve and the exponent isb50.2260.02.
v.
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agree quantitatively for a wide range of velocities with t
case of a soft-rigid interface, which should correspond to
elastic chain sliding on a rigid rough substrate. In our mod
we do not consider inertial effects and vertical displaceme
which in principle are present in experiments. In addition
is important to remark that our model will not apply to g
neric friction experiments3 since in many instances the La
kin length is extremely large.32

The exponents we measure agree well with the val
expected for the depinning of elastic interfaces in quenc
disordered media29 and with there normalization group ca
culation of Ref. 31, despite the fact that in our case the lin
driven parallel to its direction, while in Refs. 29, 30, and 3
the motion is perpendicular to the line direction. Parallel m
tion generates memory effects that could change the uni
sality class, but our simulations show that this is not the ca
Using the method discussed in Ref. 12, we can show that
continuum limit of the model we study is described by

]h~x,t !

]t
1v

]h

]x
5D¹h1F1 f p~x,h!, ~14!

whereh(x,t) is a coarse grained version ofui(t), v is the
average velocity of the beads andf p is a coarse grained
random pinning force. Notice that Eq.~14! contains a con-
vective term that is not present in interface depinni
models.22,23,29,31 The present simulations indicate that th
term is not relevant for the critical behavior.
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FIG. 12. Width of the beads displacementsW as a function ofL.
The scaling relation between the two quantities givesz. We recover
a value in good agreement with our previous results.
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