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Renormalization approach to the self-organized critical behavior of sandpile models
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We introduce a renormalization scheme of a type that is able to describe the self-organized critical
state (SOC) of sandpile models. We have defined a characterization of the phase space that allows us to
study the evolution of the dynamics under change of scale. In addition, a stationarity condition provides
a feedback mechanism that drives the system to its critical state. We obtain an attractive fixed point in
the phase space of the parameters that clarifies the self-organized critical nature of these systems. The
universality class of several models is identified by studying the properties of the basin of attraction of
this fixed point. We compute analytically the avalanche exponent ~ and the dynamical exponent z for
sandpile models in d =2. The values obtained are in very good agreement with computer simulations.
The renormalization scheme can also be applied to study nonconservative sandpile models. The result is
that the introduction of a dissipation parameter destroys the critical properties as suggested from simu-
lations. The present theoretical framework seems particularly suitable for a11 SOC problems and can be
naturally extended to other systems showing a critical nonequilibrium stationary state.

PACS number(s): 64.60.Ak, 02.50.—r, 05.40.+j

I. INTRODUCTION

The concept of self-organized criticality (SOC) has
been invoked by Bak, Tang, and Wiesenfeld [1]as a possi-
ble unifying framework to describe a vast class of dynam-
ically driven systems which evolve spontaneously toward
a critical stationary state with no characteristic time or
length scale. The name self-organized criticality comes
from the fact that, unlike phase transitions in equilibrium
statistical physics, the critical state is reached without the
need to fine tune any control parameter; i.e., the critical
state is an attractor of the dynamics. To illustrate the
basic ideas of SOC, Bak, Tang, and Wiesenfeld used a cel-
lular automaton inspired by the flow of avalanches in a
pile of sand. In these models the sand is added grain by
grain on a d-dimensional lattice until unstable sand (too
large local slope of the pile) slides off. In this way the pile
reaches a stationary critical state, characterized by a crit-
ical slope, in which additional grains of sand will fall off
the pile via avalances that can be small or cover the en-
tire size of the system. The critical state is characterized
by a power law for the size and lifetime distribution of
avalanches which therefore do not have a characteristic
length scale. This class of automaton can be used to
model many avalanche phenomena, interpreting the sand
as energy, mechanical stress, heat memory, etc. One can
add more examples from other fields like economy, social
sciences and biology, as well [2].

Other examples of SOC behavior can be found in frac-
tal growth phenomena, such as diffusion limited aggrega-
tion (DLA) [3,4]. These models lead spontaneously to a
statistically stationary state where a self-similar pattern is
generated. Also in this case the critical state is an attrac-
tor for the dynamics, and it does not require any tuning
parameter.

The general conditions under which a physical system
shows SOC properties have recently been discussed [5,6].
For a sandpile these conditions are identified in a station-
ary state characterized by a diffusive dynamics that
satisfies a global conservation law and the existence of a
small scale rigidity, i.e., the critical threshold, for the mi-
croscopic dynamics [5]. From the perspective of usual
critical phenomena this new situation can be described as
a feedback mechanism of the order parameter into the
control parameter [6]. However, despite their simple
definitions, both SOC models and DLA are characterized
by a nonlinear dynamics that involves complex processes:
either an entire random walk or a whole avalanche. In
fact, in SOC phenomena one deals with open nonlinear
systems in which the temporal evolution cannot be elim-
inated in view of ergodicity and has to be considered ex-
plicitly. For these reasons, the application of usual
theoretical methods to describe the critical state and to
the calculation of the critical exponents turns out to be
very problematic. This leads various authors [7,8] to be-
lieve that both DLA and sandpile models pose a new type
of problem for which it would be desirable to define a
common theoretical framework.

For DLA-like problems we have introduced a theoreti-
cal approach named the fixed scale transformation (FST)
[9] that is based on two steps: one is the study of correla-
tion properties at a given scale generated asymptotically
by the dynamical evolution, and the second is the
identification of scale-invariant dynamics. This second
step corresponds essentially to a renormalization group
(RG) scheme for the dynamics [10],while the first step al-
lows us to relate the fixed-point properties of the dynam-
ics directly to the critical exponents. In this paper we fol-
low a similar reasoning to develop an alternative type of
renormalization group scheme for the dynamics of SOC
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models [11],and we show its application to the class of
the critical height sandpile automata. The first step of
the method is the identification of the parameters that
characterize the stationary and dynamical properties of
the critical state. This corresponds to the identification of
the proper phase space in which to study the evolution of
the dynamics under scale transformation. We then find
the renormalization equations that link the parameters at
a generic scale 2b with those at scale b, and we couple
them with the energy balance equation which gives the
stationarity condition of the system. By iterating this set
of equations we find a unique completely attractive non-
trivial fixed point, which reflects the self-criticality of the
stationary state and identifies one of the mechanisms for
the generation of SOC systems. In fact, the coupling be-
tween the dynamics (energy fiux) and the stationarity
condition provides a nonlinear feedback mechanism that
is responsible for the attractive nature of the RG flow.
Moreover, the method allows us to identify the universal-
ity class of various models from the basin of attraction of
the RG fixed point. In order to evaluate the critical ex-
ponents, we directly use the fixed-point stationary and
dynamical scale-invariant properties of the systems, in
the spirit of the FST method. This allows us to overcome
the problems given by the complete attractiveness of the
RG flow, i.e., absence of relevant control parameters.

Finally we apply our scheme to the nonconservative
sandpile models where a dissipation parameter is con-
sidered. The result is that the introduction of dissipation
turns the fixed point into a trivial one, and this means
that the system is no longer in a critical state. This is in
agreement with the simulation on dissipative sandpile
models [12],while other dissipative models [13]appear to
belong to di6'erent universality classes.

The outline of the paper is as follows. In Sec. II we de-
scribe the sandpile automata and introduce the scaling
laws characterizing the system. In Sec. III we define the
parameters that describe the stationary and dynamical
properties of the critical state at a generic scale of coarse
graining. In Sec. IV we find the renormalization transfor-
mation for these parameters and analyze their flow under
scale transformation. In Sec. V we evaluate the critical
exponents for the avalanche activity from the fixed-point
dynamics of the system. In Sec. VI we apply our RG
scheme to the class of dissipative sandpile models. In
Sec. VII we summarize the results and present con-
clusions.

H. SANDPILE MODELS

In order to visualize the SOC idea, Bak, Tang, and
Wiesenfeld proposed a class of simple dynamical systems
popularly known as sandpile models [1]. These models
are cellular automata defined on a d-dimensional lattice
where each site i is associated with a variable E(i ). This
variable is the "energy" stored on each node of the lat-
tice, and can represent several physical quantities such as
the height of the pile, mechanical stress, etc. Starting
from an arbitrary initial distribution of E(i ), one adds an
input energy 6E on a randomly chosen site every time
step, such that

E(i+e)~E(i+e)+ b,E(e),
where e denotes the unit vectors. If the energy of some
neighbors exceeds the threshold value, they become un-
stable on their turn, the dynamical process continues, and
an avalanche is generated. These models are then called
nondirected if, at least on average, they satisfy the condi-
tion

J=g EE(e)e=O, (3)

which means that dynamical rule is isotropic. Usually
open boundary conditions are used so that energy can
leave from the system, but other conventions are possible.
Independent of the initial conditions, the system organ-
izes itself in a critical state characterized by power law
distributions and therefore without any characteristic
length or time scale. The interesting point is that, unlike
ordinary critical phenomena, no fine tuning of any con-
trol parameters is necessary to reach this state. In other
words, the critical state is an attractor for the dynamics,
and the parameters of the system flow spontaneously to
the critical value.

The model originally introduced by Bak, Tang, and
Wiesenfeld [1] (BTW) is a discrete two-dimensional au-
tomaton in which E, =4 and DE=1. This model has
been generalized successively by Zhang and co-workers
[14,15], allowing that the energy takes a continuous value
and defining EE=E(i )I4. Another interesting model
belonging to this class is the two state model of Manna
[16]. Here the energy can take only two values (E, =2),
and when a relaxation event occurs the energy is distri-
buted to two randomly chosen nearest-neighbor sites.

In order to characterize the critical state of these sys-
tems, a set of critical exponents which refers to the
avalanche amplitudes has been defined. The distribution
of avalanches is described by a power law behavior

P(s)-s (4)

in which s is the number of sites involved in the relaxa-
tion process. Also, the relation that characterizes the dy-
namics of the problem by linking time and linear exten-
sion in a single avalanche follows the scaling law

When the energy of a site violates a certain stability cri-
terion, a set of rules are applied for determining how the
system rearranges itself. These rules are applied until no
relaxation occurs, i.e., all the sites are stable. The stabili-
ty criterion as well as the dynamics of the relaxation pro-
cesses depend upon the particular automaton. However,
it is possible to identify some common characteristics
that seem to define the universality classes of the various
models. The most studied class is that of nondirected
critical height models. In this case, the stability criterion
is given by a critical threshold E, . When the energy of a
site reaches this critical value, a relaxation event takes
place and the energy is distributed to neighbors in the fol-
lowing way:

E(i)~E(i)—g b,E(e),
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where z is the dynamical critical exponent. Several other
quantities which obey scaling laws can be defined for the
avalanche. For instance, the duration t and linear size r
have a power law distribution characterized by the ex-
ponents a and A, , respectively. Finally, scaling laws mu-
tually connect the quantities t, s, and r. All previous ex-
ponents depend upon the dimensionality of the system,
and scaling relations among them can be identified by us-
ing general arguments [17]. In d =2, where the
avalanches are compact, we have

A, = I+2(r—1), (6)

(7)

and it is possible to define ~ and z as the independent crit-
ical exponents.

In the past few years extensive numerical simulations
have been devoted to the study of discrete and continu-
ous sandpile models, and critical exponents have been
measured for various dimensionality in several models
[1,14,16-20]. The BTW, Zhang, and two state models are
supposed to belong to the same universality class, and the
exponents measured are very close, although some
discrepancies are observed, probably due to finite size
effects. Other classes of models have also been studied.
In the critical slope models (CSM) [18] and in the critical
Laplacian model (CLM) [18] a relaxation event takes
place when the local gradient or local Laplacian, respec-
tively, reaches a critical threshold. These models show
critical exponents that are very different with respect to
the critical height models, and therefore define different
universality classes. The same is obtained by introducing
a preferred direction in the avalanche dynamics as well as
in the directed sandpile models [19].

Two main theoretical approaches have been followed
in the past. The first refers to stochastic nonlinear equa-
tions [21,22]. The main difficulty of this kind of ap-
proach is that avalanches are not clearly defined and
some information about the system is lost. The second
type of theoretical approach involves the group theory
developed by Dhar [23], who studied a class of Abelian
sandpile models by introducing a general formalism to
characterize the critical state of these models. However,
until now only some simple models, such as the directed
model and the BTW on the Bethe lattice, have been
solved exactly following this approach. Finally, a field
theory approach for the SOC properties of a model relat-
ed to invasion percolation was recently proposed [24].

In what follows, we will show that a real space renor-
malization group approach recently developed [11] al-
lows us to calculate analytically the critical exponents w

and z and to clarify the SQC nature of the sandpile mod-
els.

mata defined on a lattice. A variable (energy) is assigned
to each site; energy is then added randomly to the system.
When the energy of a site reaches a critical value, its en-
ergy is released to the neighboring sites in various ways.
These may become unstable in their turn, and so on. The
system usually has open boundary conditions which al-
low the energy to dissipate outside. Given this picture of
the system we can, in full generality, characterize three
classes of sites (Fig. 1).

(i) Stable sites are those whose energy is far from the
threshold value. This implies that the addition of a
"quantum" of energy will not induce relaxation.

(ii) Critical sites are those whose energy is critical in
the sense that the addition of a quantum of energy will in-
duce relaxation.

(iii) Unstable sites are those that will relax at next time
step according to the specific rules assigned.

An example of this relaxation is shown in the lower
part of Fig. 1. In this case the relaxation of the central
site induces a redistribution of the energy over two of the
neighbors, as in the model of Manna [16], and these be-
come critical in their turn. The stationary critical state
of the system will be described by the probability p,
which defines the density of critical sites. This parameter
characterizes the equilibrium in the energy balance and
can be viewed as the control parameter of the model.
However, it is not a relevant control parameter, as for ex-
ample the temperature in the Ising model, and it au-
tomatically reaches its critical value during the dynami-
cal evolution of the system.

We can now extend the characterization of the station-
ary properties at a generic scale b, by considering coarse
grained variables (Fig. 2). Independent of the minimal
scale, a coarse grained cell of size b is stable if the addi-
tion of a quantum of energy 5E(b), corresponding to
scale b, does not induce relaxation into neighboring cells.
Of course internal relaxations can occur, but as long as
they do not affect other cells we consider the cell stable.
Conversely, a cell is critical if the addition of 5E(b ) in-
duces relaxation into some neighboring cell(s). From
these definitions it is then possible to introduce the pa-

stable

critical

unstable

o Qo o

III. DYNAMICAL AND STATIONARY PARAMETERS
IN SANDPILE MODELS

Our discussion will refer to the critical height models.
As was previously shown, these models are cellular auto-

FIG. 1. Upper part: classification of the three possible
classes of sites. Stable (white) sites do not relax if a quantum of
energy is added. Critical (black) sites would relax if energy were
added. Unstable (encircled) sites will relax at the next time step.
In the lower part we show an example of relaxation dynamics.
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FIG. 2. Characterization of the static properties of coarse

grained cells. A cell of generic scale b is stable (white) if 5E(b )

does not induce relaxation in the neighboring cells of the same
size. In the opposite case the cell is critical (black).

characterizes the phase space for the relaxation dynamics
at a generic scale of coarse graining. In this framework
we can define the vector that describes the small scale dy-
namics of the various models. For instance, the model of
Manna [16] distributes energy to only two sites, and
therefore the small scale dynamics is given by the vector
P' '=—(0, 1,0,0). The BTW model [1] distributes energy
to all four neighbors, and corresponds to P' '= (0,—0,0, 1).
We are going to see that, under scale transformation and
renormalization, these two vectors evolve to the same
fixed point, so that the two models belong to the same
universality class. By using this description we show that
both the stationary and dynamical properties of sandpile
models are then fully characterized by the distribution
(p(b);P(b )), which is therefore the natural candidate for
a renormalization procedure.

IV. RENORMAI. IZATION EQUATIONS

rameter p(b), that gives the density of critical cells at a
generic scale b of coarse graining.

We can now follow the same idea to characterize the
dynamical properties of the system at a generic scale b.
A cell of size b relaxes if subrelaxation processes span the
cell and transfer energy to some neighboring cell. In-
dependent of the minimal scale dynamics such a relaxa-
tion process, for a coarse grained cell of size b in a square
lattice, can lead to four possible situations as shown in
Fig. 3. Energy can be transferred to one, two, three, or
four neighbors with a probability distribution defined by
the vector

(P 1 &12&P3&P4 )

Here the probabilities p,- refer to the sum of all the pro-
cesses that a8'ect the corresponding number of neighbor-
ing cells, independent of their positions, and satisfy the
normalization condition Xp, =l. The vector P(b) then

We now proceed to define a renormalization procedure
for the relaxation dynamics. We will use a cell-to-site
transformation on the square lattice, in which each cell at
scale b is formed by four subcells at scale b/2. Every cell
at the larger scale is then characterized by the index a,
ranging from one to four (Fig. 4), that gives the number
of critical subcells. Therefore, in the stationary state the
weight of each configuration a is given by the probability
of having a corresponding number of critical subcells

W, (p)=n p (1—p)

where n is a normalization factor. Here we consider the
energy distribution of the stationary state as uncorrelated
[20]. In fact, correlations among sites are developed only
during the dynamical evolution of the avalanche, and
average out in the stationary state. Consequently, in our
scheme correlations are taken into account in the renor-
malization equations for the dynamics. In order to define
the renormalization transformation, we assume that one
of the critical subcells at scale bl2 relaxes, and study
how energy is distributed to the neighboring cells of size

0

0 ~
Q 0

0 ~
~ 0

W = 4p'(1 —p)' W= p'

Oo ~
~ 0

Qo ~
0 0

FIG. 3. No matter what the small scale dynamics, at a gener-
ic scale (b) relaxation can occur in the four possible ways
shown. These four possibilities characterize the phase space of
the dynamics of the system that will be used in the relaxation
scheme. The probabilities refer to the number of neighboring
cells influenced by the relaxation, independent of their position.

FIG. 4. A 2 X2 cell is characterized by the number a of criti-
cal sites. We show the four possible starting configurations,
with their relative weight, involved in the renormalization of
the dynamical parameters.
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+( I (k)+ I (k) )(( (k)+ ) (k)
)

+( 1 (k)+ i (k) )(3 (k)+ i (k)i (k) ) (10)

In a similar way one can also write the expression for
pz +",p& +", and p4" +". In addjtjon, these probabjlj-
ties are normalized for each configuration a.

In a general way, for each starting cell, we can define
the set co„ofprocess series at scale b /2 that renormalize
in a p„'"+"process at scale b and the respective statistical
weight f of this set, which is a function of parameters

~n

p„'. ' at scale b/2. As an example, with this definition we
have that f for the starting cell a=2 is given by the

term on the right-hand side of Eq. (10). For each starting

(a) (b) (c) (d)

0 0 0 0

~ Qo Qo= 0

b. Here we consider a transformation defined by the fol-
lowing rules.

(i) Each critical subcell relaxes if it receives energy
from one or more neighboring subcells. Conversely, re-
laxation processes cannot occur in a stable subcell.

(ii) Every series of relaxation processes p„'". ', where the
index (k) refers to the scale b/2, that span the starting
cell and transfer energy to n neighboring cells is renor-
malized in the correspondent process p„' +", where
(k+ 1) refers to the scale b.

(iii) We consider only those connected series of process-
es that span the cell from left to right or top to bottom.
This spanning rule implies that only processes extending
over the size of resulting length scale contribute to the re-
normalized dynamics. Moreover it ensures the connec-
tivity properties of the avalanche in the renormalization
procedure.

An example of such a process is shown in Fig. 5. In
this case n =2, and the process shown refers to the proba-
bility that the unstable subcell relaxes toward the other
critical subcell [Fig. 5(b)]. This occurs with probability
(1/4)p', "'. At this point we consider the probability that
the next relaxation event at scale b/2 involves two neigh-
boring sites of size b/2, one inside and one outside the
original cell of size b [Fig. 5(c)]. This occurs with proba-
bility (2/3)p~z"). This series of relaxation processes at
scale b/2 contributes to the probability p(i"+" that
characterizes the relaxation processes at scale b. By sum-
ming over all the processes that lead to p'&

+" one ob-
tains, for a=2,

(k+1) (1 (k)+ ] (k))(i (k)+2 (k)1 (k))

cell we can therefore write the renormalization equations
as
p„("+"(~)=g f (jp„'"'j), n, n'=1, . . . , 4, (11)

where the statistical weight is normalized so that

(12)
n co„

Finally we have to average this equation over all possible
starting configurations o, , obtaining the following com-
plete renormalization equations:

4
(k+1) ~ W ( (k)) (k+1)(~)
1l p p

(13)

Here the configuration a= 1 is not included in the renor-
malization of the dynamics, because it cannot lead to re-
laxation processes that span the whole cell of size b. The
explicit writing of the above equations is extremely com-
plex, and the detailed calculation is reported in the Ap-
pendix.

The renormalization of the relaxation processes alone
would lead to trivial fixed points because the system sim-

ply decays. In order to describe the dynamics of the sta-
tionary critical state it is necessary to couple the dynam-
ics to a stationarity condition similar to the one used in
Ref. [15] to define the average energy of the critical state.
The stationary state is characterized by the balance be-
tween the energy that goes in and the energy that goes
out of the system. This means that, given a cell of size b,
on average, the energy that goes into the cell has to be
equal to the energy that goes out. If we inject a quantum
of energy 5E(b ), the probability that the cell relaxes is
p' +" and, once this happens, it can occur with the four
possible situations described previously (Fig. 3). This
leads to the equilibrium condition

$E(b ) = ( + )[$E(b )p( + ) +2$E(b )p( +

+35E(b )p'"+"+45E(b )p'"+" ] . (14)

that then provides the renormalized density of critical
sites at scale b, independently of the definition of 5E(b ).
Note that we have considered transferred energy propor-
tional to the number of neighboring sites involved in the
relaxation process. This has to be on average for isotro-
pic relaxation, i.e., the energy is proportional to the
avalanche front, and can be tested self-consistently with
our method.

The complete structure of our renormalization group is
therefore the following:

b
I I

0 0
4p(k+1)+W(p(k))g f (jp(k)j)

I ~n Ia

Microscopic relaxation processes Coarse grained
relaxation

(k+i) ( (k+1)+2 (k+1)+3 (k+i)+4 (k+1)
)
—1

P2 P3 P4

FIG. 5. Example of the renormalization scheme for the re-
laxation dynamics. For details, see the text.

In this scheme the equilibrium condition couples the
dynamical properties to the stationary ones, and provides
a feedback mechanism that is an essential element for the
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TABLE I. Renormalization transformation for the stationary
{p) and dynamical {p„)properties for two sandpile models. The
index k refers to a change of scale. The limit k~ ~ identifies
the attractive fixed point (p*,P ) that is the same for both mod-
els.

0.1

0.612
0.575
0.542
0.518
0.468

p&

Manna
0
0.436
0.405
0.362
0.324
0.240

two-state model
1

0.495
0.463
0.456
0.434
0.442

0
0.068
0.118
0.158
0.188
0.261

0
0.001
0.013
0.024
0.033
0.057

0.9
0.252
0.308
0.353
0.388
0.468

BTW four-state model
0 0
0 0
0 0.012
0.030 0.261
0.090 0.357
0.240 0.442

0
0.033
0.726
0.553
0.437
0.261

1

0.967
0.262
0.152
0.116
0.057

process of self-organization [6] and for the definition of
the nonlocal properties of the dynamics. The approxirna-
tions involved in our approach are those usually present
in real space renormalization group (RSRG) methods
[25,26] due to the specific implementation of the span-
ning condition and to closure of the renormalization
equations. In fact, proliferation effects due to multiple
relaxations and sites becoming critical during the dynam-
ical process are not considered in our scheme. However,
these effects are less and less important on greater scale
[20], and can be considered asymptotically irrelevant.

Given this scheme, the How diagram and the relative
fixed points in the phase space of the parameters (p, P)
can be studied. In order to do this, we start from a small
scale state characterized by (p' ';P' ') and study how it
will evolve under scale transformation. If we start with
the small scale dynamics of the two state model [16] we
have P' '=(0, 1,0,0). No rnatter what the value of the
density of critical sites, the system (p' '%0) fiows in the
same nontrivial fixed point. The same happens if we start
from the small scale dynamics of the BTW model
[P' '=(0,0,0, 1)]. In Table I we show the evolution un-
der scale transformation for both models starting from
different values of the density of critical sites. Both mod-
els lead to the same asymptotic (k —+ m ) fixed-point dy-
namics (p*;P*), so they belong to the same universality
class. In addition, we have checked that all models
whose stationary and dynamical properties can be
parametrized in such a way also belong to this universali-
ty class. In fact, the fixed point is attractive in the whole
phase space, so that the parameters (p;P) evolve spon-
taneously toward their critical value. Therefore, in this
perspective we are able to understand the self-organized
nature of the critical stationary state of sandpile models.

It is worth remarking that the nonlinear coupling be-
tween the parameter p and the system's dynamics P gen-
erates a feedback mechanism among the stationary and

dynamical properties of the models. This mechanism is
fundamental in order to have a nontrivial fixed point.
Recently various authors [6,8] pointed out that a similar
mechanism could be a general way to produce self-
organized criticality in extended open systems. This con-
cept relies on the idea of a feedback of the order parame-
ter onto the control parameter. For instance, let us con-
sider the continuous model for sandpiles [27]. In this
case the order parameter is the Aux J of sand grains that
How out of the system, and the control parameter is the
sandpile's slope 0. As usual the behavior of the order pa-
rameter is J—(0—8, )~ for 8) O„and J=O per 0(8„
where 0, is the critical slope. However, an initial slope
larger than the critical value generates large ava1anches
which bring the slope back to its critical value. The con-
trary wi11 happen if the slope is lower than the critical
value. This picture is a clear example of the nonlinear
feedback of the order parameter on the control parameter
in order to obtain the attractiveness of the critical slope.
In our scheme, it is easy to note that P and p correspond
to the Aux J and the contro1 parameter 6, respectively, so
that we can show in a mathematical way the relevance of
the feedback mechanism.

V. CALCULATION OF THE CRITICAL EXPONENTS

P(r)dr-P(s)ds —r' 'dr . (16)

By using the discrete length scales b'"'=2' 'bo of our RG
scheme, we define the parameter K as the relative proba-
bility that an active relaxation process is limited between
the scales 6' ' and b' +" and does not extend further.

From the previous discussion we have shown that the
fixed-point parameters (p*;P *

) provide a complete
description of the critical state. However, the complete
attractiveness of the fixed point corresponds to a lack of
relevant control parameters in the model, and the critical
exponents cannot be found using the usual method. In
fact, in usual critical phenomena, the exponents are de-
rived from the derivative of the RG transformation with
respect to the critical parameter. In SOC models this is
impossible because the fixed point is attractive, and the
exponents that are related to the distance from the criti-
cal point do not exist. For this reason we use a method
analogous to the FST approach to fractal growth [9]
which is related directly to the fixed point parameters.

The avalanche exponent ~ can be obtained as follows.
The nontrivial fixed point with respect to the scale trans-
forrnation corresponds to diverging characteristic lengths
for the system [26]. Because these lengths set the natural
scale for the system, their divergence at the critical points
signals the loss of scale, and this guarantees that the
properties of the system will be described by homogene-
ous functions of the physical parameters. Therefore we
can assume a power law avalanche distribution and relate
the exponent ~ to the fixed-point properties (p";P*)
shown in Table I. The first step is to transform the
avalanche distribution into a distribution for the size r of
the clusters. In d =2, it has been shown analytically [28]
and from simulations [20] that the avalanche clusters are
compact, and using the relation s —r we obtain
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This can be expressed as
b(k+i)

P(r )dr
y, (k)

1 22(1 —~)

J,„,P(r )dr
b(k)

(17)

This equation gives the probability that a generic relaxa-
tion process affects only stable sites and therefore does
not propagate on length scales larger than the scale of the
starting cell. Note that this expression is different from
the quantity (1—p'"+") that includes the situation in
which no relaxation events occur even at scale O' '. By
inserting into the previous equation the values of the
fixed-point parameters and using Eq. (17), the exponent s
is given by

1 log(l —K)
2 log(2)

This value of ~ is in good agreement with large computer
simulations on the BTW and two state model which give
r= 1.22 [18]and 1.28 [16],respectively.

The other independent critical exponent is the dynami-
cal exponent z. In this case the calculation results are
rather laborious because we also need the knowledge of
the whole form of the renormalized dynamics. From the
scaling laws at the fixed point we have that the average
time of a dynamical process scales with the length size as

(b (k) )Z (20)

Using the discretized length of our scheme, the time scale
of a relaxation event at scale b'"+" and one at scale b' '

are related, in the asymptotic limit (k~ oe ), by the rela-
tion

tk+i =(2)' . (21)

The time scale tk+ &
can be obtained as a function of the

time scale tk from the RG equations. In fact, the renor-
malized dynamical process is given by the weighted aver-
age of the series of subprocesses at scale b'"', whose time
scale is tk. Therefore we have

tk+1 (t ~tk

The parameter K is defined by the conditions that a relax-
ation event occurs on a scale b' +" with the dynamics
defined by p„'"+" (n =1,4), and that this process stops
and does not affect the neighboring cells. Asymptotically
(k~ao ), we can therefore express IC in terms of our
fixed-point parameters in the following way:

p'»( 1 p»)+p»( 1 p»)2+@»( 1 p»)3+p»( 1 p»)4

(18)

(23)

having considered that t is the number of noncontem-~n

porary relaxation events in each series of subprocesses
e„. By inserting the fixed-point parameters into the cal-
culation of ( t ), from Eq. (21) we obtain the following re-
sult for the dynamical exponent

z= =1.168 .log(t )
(24)

log2

This value can be readily compared to existing estimates
of z, and our analytical prediction is in very good agree-
ment with the numerical results that give z = 1.20
[16,18]. The value of the dynamical exponent we report-
ed in Ref. [11]was obtained with a preliminary simplified
scheme of calculation, and is slightly different from that
obtained with the present complete calculation. We want
to emphasize that in this case we used not only the fixed-
point parameters, as in the calculation of ~, but also the
complete form of the scale invariant dynamical evolution
from scale b /2 to scale b. For this reason the calculation
of the dynamical exponent can be improved by using
greater cells to obtain the renormalization transforma-
tion.

The other critical exponents of the system can be de-
rived from the scaling relations (6) and (7) using the
values obtained for ~ and z. In Table II the values of the
critical exponents calculated with our RG scheme are
compared with the best estimates from numerical simula-
tions of the BTW model, and it can be noted that the
agreement is very good. These results are obtained using
the simplest renormalization scheme, and it is also possi-
ble to consider more complicated calculation schemes
(larger cells, spanning condition, etc.) in order to improve
the numerical values.

With our RG scheme we therefore provide a complete
characterization of the critical state, and obtain ana1yti-
cally the full set of the exponents defining the critical
behavior of sandpile models. Furthermore, this approach
contains some novelties that make it substantially
difFerent from usual RSRG calculations and particularly
suitable in all SOC problems. In fact, our discussion re-
ferred to the two-dimensional case; however, it is concep-
tually straightforward to extend the method to the case
d &2 and to variations of the original model. Also the
universality of sandpile models with respect to different
Bravais lattices can be addressed with our model. The lo-
cal characteristics of the lattice, such as the number of
nearest neighbors, determine the form of the dynamical

TABLE II. In this table the values of the critical exponents
calculated with our RG scheme are summarized. For compar-
ison we also list the values obtained from large scale simulations
on the BTW model (d =2) [18].

where ( t ) is the average number of subprocesses at scale
b' ' needed to have a relaxation process at scale b'
and it represents the time scaling factor. By using our
RG scheme, the above average can be written as

RG scheme
BTW simulations

1.253
1.22

1.432
1.38

1.506
1.44

1.168
1.21
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vector and the critical fixed-point value of the parame-
ters, but the critical exponents should be universal and
determined only by the large scale properties of the sys-
tem. Thus, by using our method for sandpile models
defined on triangular lattice, we expect to find a com-
pletely different fixed-point dynamics (actually even the
phase space of the dynamics is different), but critical ex-
ponents very close to those obtained for the square lat-
tice. Preliminary calculation using this approach on the
triangular lattice gives an exponent ~ that is in very good
agreement with those obtained here, although the critical
parameters are very different [29].

VI. RENORMAI. IZATION SCHEME
FOR THE NONCONSERVATIVK CASK

Nonconservative sandpile automata have been intro-
duced to consider a relaxation dynamics where part of
the involved energy is dissipated. Denoting by AE and
AE,„„respectively, the energy lost by the relaxing site
and the energy really transferred to the nearest neigh-
bors, we can identify the fraction of energy that disap-
pears from the system as

AE,„,
(25)

The dissipation parameter y quantifies the level of non-
conservation of the system. We can have y&0 for every
relaxation event (local dissipation) but (y) =0 (global
conservation) averaging over many processes. If the dis-
sipation is global ((y )WO) the SOC behavior is
destroyed and a characteristic length is introduced, as
was shown by computer simulations [12]. This means
that the avalanche distribution follows an exponential
behavior and that- the characteristic length for the
avalanche size I, diverges, as y ~0, such that

I —) I- (26)

n 9 n 1 y e ~ ~ y 4 (27)

in complete analogy with the usual critical phenomena.
In order to apply our renormalization scheme in prac-

tice, we use the following definition of a nonconservative
sandpile with global dissipation. The nonconservation is
introduced by the probability y that a relaxation process
dissipates its entire energy. Instead, with probability
(1—y ), the relaxation event transfers the energy follow-
ing the usual dynamical rules. This model is therefore a
particular case of the global dissipative class introduced
in [12],where the probability y is the dissipation parame-
ter. Trivially, for y=0 the mode1 becomes conservative,
while in the limit y ~ 1 it is completely dissipative (no re-
laxation occurs).

We can follow the scheme used in the previous sections
considering that the parameter y should also be renor-
malized. Though the renormalization of the dynamics
can be performed in the same way as in the conservative
case, we have to consider explicitly the eftect of the dissi-
pation parameter. This modifies Eq. (13) into

(k+1) y $y ( (k)) y f ( jp(k) j y(k))
cx I 67 I

4
(k+1) (k+1)gE ~ {k+1)

nS'n
n=1

(28)

where the first term represents the average energy
transferred to neighbors, while the second refers to the
average dissipated energy. It then follows, by summing
the two terms of the above equation, that the stationarity
condition is the same as in the conservative case.

Next we study the renormalization of the dissipation
parameter. In order to do this we can consider the renor-
malized dissipation y' +" as the ratio between the ener-

gy dissipated and the total energy involved in the relaxa-
tions at scale b

gE(k+1)
(k+1) (i1SS

/E(k+1) +/E(k+1)
out C1ISS

(29)

Here hE&";„+"and AE,'„t+" represent the energy dissipat-
ed and the energy transferred, respectively, by the coarse
grained cell, conditionally to the occurrence of a relaxa-
tion process. By analyzing the various subprocesses in-

Qo ~
~ 0

r & &QO o Q
Q

FIG-. 6. Renormalization example in the dissipative case. (a)
Starting cell. (bj The unstable site relaxes with a process
affecting four neighbors. The two critical subcells become un-
stable. (c) Only one of the two subcells relaxes, transferring en-

ergy to one neighbor site. The second subcell dissipates its ener-
gy. The weight of these processes is f=y(1 —y)2p4p&.

where y'k' denotes the dissipation parameter at scale b' '.
The scheme used to evaluate explicitly the weight f is

n

modified slightly because we must take into account the
possibility that one or more relaxation processes dissipate
their energy. Thus, as previously, only the critical sites
can induce a relaxation process, and the spanning condi-
tion is the same as for conservative sandpiles. However,
there are two possible cases for every relaxation process.
With probability (1 —y) the relaxation process transfers
its energy to the neighboring sites. Conversely, with
probability y the process dissipates its energy and does
not a6'ect other sites. Thus the weight of every series of
subprocesses will have an additional factor y~(1 —y)',
where q and s are the number of subprocesses dissipating
and transferring energy, respectively. In Fig. 6 is shown
a renormalization example in which some subprocesses
are dissipative.

It is clear that a site has to be considered critical in-
dependently if it dissipates or transfers energy during the
relaxation event. Therefore, the stationarity condition
given by the energy balance now reads as

4
(1 (k+1)) (k+))g~ ~ (k+1)~ npn
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side the cell, the explicit renormalization equation can be
written expressing the quantities of the right term as a
function of the parameters at scale b ' ':

gE(k+1) —y Pr (p(k)) y y ( [p(k) ) y(k))E (~ )
a, n (co„)

(3O)

limit y —+0. From this it follows that the positive eigen-
value of the linearized RG transformation is

(k+1)

gy(k)
(33)

and the exponent governing the scaling of the charac-
teristic length is

v= =0.67 .log2
logA,

(34)

+G( [p(k) ] y(k)) (31)

In the above equations we denote E,„,(co„) and Ed;„(co„}
as the average number of quantums of energy at scale b ' '

transferred and dissipated, respectively, during the pro-
cess co„. In this calculation, 5E(b("))+4,np„(") is the
average energy that each subprocess can dissipate, name-
ly the average energy it can transfer to the neighboring
sites during the usual relaxation. It should be noted that
the last term of Eq. (31) takes into account all the pro-
cesses that dissipate energy without affecting the neigh-
boring cells, so that they are not included in the series
co„. Furthermore by Eq. (29} it is also clear that the re-
normalization of the dissipation parameter is independent
by the definition of 5E(b' '). In Fig. 6 is shown a process
that contributes to the renormalization of p2 with
E,„,(co)=35E(b'"') and Ed;„(co)=5E(b'"')g„)np„'"'.
The last sum takes into account the average energy that
the subcells can dissipate.

The calculation is rather laborious but straightforward,
and we can finally iterate the obtained renormalization
equations. Trivially, starting from the conservative case
y=O we obtain the results derived in the previous sec-
tions. Conversely, if we start with yAO the fiow diagram
suffers a dramatic change. The attractive fixed point be-
comes the trivial one y*= l. This implies that at large
scale the entire energy added to the system is dissipated,
and that the system has a trivial behavior in which no re-
laxation events occur. Therefore, the presence of a dissi-
pation parameter in the model introduces an upper
characteristic length for the avalanches. In this case
y=O is an unstable (repulsive) fixed point and we can
look at the system in the usual perspective of critical phe-
nomena by considering the dissipation parameter as the
relevant control parameter of the model with a critical
value y, =O. Since this fixed point is repulsive, we can
evaluate the exponent linking the dissipation to the
avalanche characteristic length [Eq. (26)] with the usual
linearization around the unstable fixed point of the RG
transformation. By simple general consideration it is
possible to see that

(k+1) (k+1)
( )

@=0
=0. (32)

In fact, the renormalization equation for the dissipation
parameter [Eq. (29)] is a power series of y itself. This is
because AE~d;,+,)" contains only terms with at least one
dissipation event and then with weighting factors that are
powers of y. Each derivative of Eq. (29) with respect to a
parameter other than y is therefore equal to zero in the

This value can be compared with those obtained from
simulations v=0. 5 [12]. This calculation is a vivid illus-
tration of the difference in the calculus of the critical ex-
ponent in the SOC case and in the ordinary critical case.
The main result is that dissipation introduces a length
scale into the system and destroys the SOC properties.
This is in agreement with the simulations on systems of
the type described here [12]. However, this is not a gen-
eral result, and a different definition of the nonconserva-
tive mechanism can belong to a different universality
class. This appears to be the case for the models de-
scribed in Ref. [13]. The above analysis also shows that
our scheme can easily be extended to treat variations of
the original sandpile models.

VII. CONCLUSIONS

In this paper we have presented an alternative renor-
malization approach suited to a study the SOC state of
sandpile models. The method shown in this paper is
based on two steps. The first is a renormalization scheme
to identify the scale-invariant dynamics of the models. In
order to do this we define the proper phase space of pa-
rameters in which the RG transformation is constructed,
and then introduce the coupling of the renormalization
equations to the stationarity condition of the system.
This coupling provides the feedback mechanism responsi-
ble for the attractiveness of the fixed point. Second, we
evaluate the critical exponents of the systems directly
from the scale-invariant dynamics instead of the deriva-
tive of the RG equations with respect to the relevant crit-
ical parameter, that in SOC systems does not exist.
These two steps cast the relevant physical elements of the
SOC problems in the proper mathematical framework
that allows us to clarify the self-critical nature of the SOC
problems and to draw a picture of the various universali-

ty classes of sandpile models. Moreover, it is important
to note that the present general discussion is not affected
by the approximations involved in our scheme, even
though a more refined treatment of the calculation
schemes (larger cells, spanning condition, etc.) can lead to
an improvement of the values obtained for the critical ex-
ponents.

%'e have shown in detail the calculation of the renor-
malization equations in the case of the critical height
sandpile models in d =2. Vfe analyzed the Qow diagram
in the phase space of the parameters, and the attractive
fixed point was identified. By using fixed-point parame-
ters we are able to calculate analytically the independent
critical exponents, namely the avalanche and the dynami-
cal exponent. The values obtained for the critical ex-
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ponents are in very good agreement with the previous es-
timates from numerical simulations (see Table II).

We also apply our scheme to the case of dissipative
sandpile models, finding that the introduction of the dis-
sipation parameter turns the fixed point into a trivial one
by introducing a length scale into the systems. This is in
agreement with simulations on these models [12], but
does not close the issue with respect to other dissipative
models such as those of Ref. [13],which probably belong
to different universality classes.

The method we have shown can be naturally extended
to higher dimensionality (d )2) and to other problems
with nonequilibrium stationary states, as for example the
Forest Fire model [30].
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APPENDIX

The renormalization equations (13) can be obtained ex-
plicitly, but the calculation is rather long. In practice we
have to enumerate all the processes that span a given cell.
Then we assign to each process a statistical weight in
terms of p and p„. To perform this program in the most
efficient way we develop a diagrammatic graphical
method that allows us to write the renormalization equa-
tion directly.

We can associate a diagram with each process that
contributes to the renormalization equation. The basic
structure of these diagrams is reported in Fig. 7. The
four intersections represent the sites of a cell. The energy
transfer is indicated by an arrow pointing in the direction
of the Bow. In terms of diagrams a site relaxes if some
arrow points out of the corresponding intersection. At
this point, to enumerate the processes we simply have to
analyze all the possible diagrams. Since the dynamics is
completely isotropic the analysis can be reduced to pro-
cesses starting from the upper left side of the cell.

First we have to eliminate diagrams that do not corre-
spond to dynamical processes considered in the renormal-
ization scheme. In practice we discard three classes of di-
agrams (Fig. 8).

(1) Diagrams where it is not possible to identify a con-
nected path starting from the upper left site [Fig. 8(a)].

b)

FIG. 8. Three diagrams that do not contribute to the renor-
malization equation because of connection (a), spanning (b), and
absence of energy transfer outside the cell (c).

(2) Diagrams that do not satisfy the spanning condition
(i.e., with less than two relaxation processes) [Fig. 8(b)].

(3) Diagrams that do not lead to an energy transfer out
of the cell [Fig. 8(c)].

We then assign a statistical weight to the effective dia-
grams by obeying the following rules.

(i) Each site relaxes if there is at least one arrow point-
ing out from it.

(ii) The number of outgoing arrows gives the statistical
weight of each process:

1 arrow —+ ~p&,

2 arrows 6pp

3 arrows~ 4p3

4 arrows~p4 .

The statistical weight of the entire diagram is given by
the product of the statistical weight of each subprocess.

(iii) Each diagram contributes to the renormalization
of a process at a larger scale of type n given by the
correspondent number of different sides of the diagram
having an outgoing arrow.

(iv) Each diagram has an additional statistical weight
W' (p) [Eq. (9)], where a is the number of critical sites.

Using these rules we can write the renormalization
equation in the following form:

0 ~

0

FIG. 7. The structure of the diagram associated with each
cell we use in the calculation of the weight of the renormalized
processes.

FIG. 9. A process (a)—(c) that contributes to the renormal-
ization of the dynamics and the correspondent diagram (d).
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TABLE III. Values of the nonzero polynomial term coefBcients of the renormalization transformation (see text). Each value
represents the weight of all the subprocesses that contribute to the renormalization equation for a given starting cell with the same
polynomial form in the dynamical parameters. The coeScients are ordered with respect to the starting configuration a.

X4

6.250 000 0X 10
0.291 666 7
0.222 222 3
0.437 500 0
0.458 333 4
0.125 000 0
0.500 000 0
0.375 000 0
0.833 333 6
0.708 333 2
0.222 222 3
1.000000
0.500 000 0
0.166 666 7
1.000 000
1.250 000
0.312 500 0
0.666 666 9
0.250 000 0
2.777 778 OX10-'
0.250 000 0
6.2500000X 10-'

5.555 556 0 X 10
2.Q83 333 4 Q 1Q

0.129 629 6
7.407 405 2 X 10-'
4.629 629 9 X 10
0.208 333 3
5.208 332 8 X 10
0.444 444 5

0.256 944 5

0.171 296 4
0.166 666 7
0.177083 3
0.145 833 4
2.083 3334X 10
8.333 333 6 X 10
6.250000 0 X 10-'
7.291 666 4)& 10
0.222 222 3
0.416 666 8
0.305 555 6
0.340 277 5
0.222 222 2
0.287 037 0
0.393 518 2
0.111 111 1

0.500 000 0
0.458 333 4
0.500 000 1

0.406 250 2
0.222 222 2

2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4

4
4
4
4
4
4
4

1

1

1

2
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

1

1

1

1

1

1

1

2
2
0
0
0
0
0
0
0
0
0
0
1

1

1

1

1

2

1

1

2
0
0
1

0
0
0
0
0
1

1

1

1

1

2
2
2
3
0
0
0
0
0
1

1

2
0
0
0
0
0
0
1

1

1

2
2
3
0
0
0
1

1

0

0
1

0
0
1

0
1

1

2
2
3
0
0
1

1

2
0
0
1

0
0
0
1

1

2
0
1

0
0
1

0
1

2
3
0
1

2
0
1

0
0
1

2
0
1

0

1

0
0
1

0
0
1

2
0
1

0
1

2
0
1

0
0
1

0
0
1

2
0
1

0
1

0
0
1

0
3
2
1

0
2
1

0
1

0
0
2
1

0
1

0
1

0.777 778 1

0.708 331 7
0.203 703 9
0.437 500 1

0.229 166 6
6.944446 3 X 10-'
0.333 333 3
0.500 000 0
0.208 333 3
0.791 666 4
0.270 833 3
0.333 333 4
0.888 889 3
0.250 000 0
0.749 997
0.652 776 4
3.703 7041X 10-'
0.722 222 6
0.398 147 9
5.555 555 2X 10
0.166 666 7
1.166 667
8.333 333 6 X 10-'
1.625 001
0.427 083 6
1.000 000
0.368 055 2
4.1666664 X 10-'
0.250 000 0
5.20332 8 X 10
1.000 000
2.000 000
1.187 500
0.197 9166
1 ~ 166 667
1.222 222
0.250 000 1

0.268 518 4
7.870 367 9 X 10
4.629 630 6 X 10
0.500 000 0
0.458 333 4
7.291 666 4 X 10-'
0.166666 7
2.777 777 8 X 10
2.083 333 4 X 10-'

5.555 556 0 X 10
6.944445 0 X 10



1722 VESPIGNANI, ZAPPERI, AND PIETRONERO 51

TABLE III. {Continued}.

0
0
1

1

1

1

1

1

2
2
2
2
2
2
3
3
3
4
0
0
0
0
0
0
0
0
0
0
0
0
0
1

1

1

1

1

1

1

1

1

1

1

1

1

2
2
2
2

2

2
3
3
3
0
0
0

3
4
1

1

1

2
2
3
0
0
0
1

1

2
0
0
1

0
0
1

1

1

2
2
2
2
2
3
3
3
4
0
0
0
0
1

1

1

1

1

2
2
2
3
0
0
0
0
1

1

2
0
0
1

0

0

1

0
0
1

2
0
1

0
0
1

2
0
1

0
0
1

0
0
4
1

2
3
0
0
1

1

2
0
0
1

0
1

2
2
3
0
0
1

1

2
0
0
1

0
0
1

1

2
0
0
1

0
0
1

0
2
2
3

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

0
0
1

0
1

0
0
1

0
0
0
0
1

0
0
1

0
1

0
0
1

0
0
1

0
1

0
0
1

0
0
1

0
0
0
2
1

2.777 777 2 X
2.314814 9 X
0.416 666 6
6.250 000 0 X
4.166666 8 X
0.111 111 1-

0.177 083 2
0.143 518 6
0.250 000 0
0.156250 0
5.468 750 0 X
0.229 166 7
0.317708 3
0.267 360 6
6.250 000 0 X
0.148 437 5

0.156 250 0
1.562 500 0 X
7.812 5000X
0.166 666 7
4.166 666 8 X
0.104 1666
0.222 222 2
8.333 334 3 X
9.722 223 9 X
0.166666 7
0.348 957 5
9.259 258 2 X
0.138 888 9
0.384 258 4
0.177 283 9
0.375 000 0
9.375 0000 X
0.125 000 0
0.187 5000
0.333 333 3
0.416 666 6
0.562 499 9
0.687 500 1

1.000003
0.347 222 4
0.680 555 0
1.309 034
0.400 462 1

0.500 000 0
0.375 000 0
0.593 750 0
0.609 375 0
0.208 333 4
0.937 500 6
1.192 708
0.362 846 4
0.343 750 0
0.257 812 5
7.291 6664X
0.125 000 0
0.250 000 0
0.500 000 0

10
10

10
10

10

10

10
10

10

10
10

10

10

10

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4

4
4
4
4

4
4

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2
2
2
2
2
2

2
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1

1

1

1

1

1

2
2
2
2
2
2
3
3
3
4
0
0
0
0
0
0
1

1

1

1

1

2
2
2
3
0
0
0
0
0
1

1

2
0
0
0
0
0
0
0
0
0
1

1

1

1

1

1

2
2
2

4
1

1

1

2
2
3
0
0
0
1

1

2
0
0
1

0
1

1

1

2
2
3
0
0
1

1

2
0
0
1

0
0
0
1

1

2
0
1

0
0
1

0
1

2
2
3
3
4
0
1

1

2
2
3
0
0
1

0
0
1

2
0
1

0
0
1

2
0
1

0
0
1

0
0
0
1

2
0
1

0
1

2
0
1

0
0
1

0
0
1

2
0
1

0
1

0
0
1

0
4
3
1

2
0
1

0
3
1

2

1

0
1

2
0

0.226 562 5
0.250 000 0
0.250 000 0
1.000 000
0.229 1667 '

2.229 165
1.067 710
5.555 5560X 10
0.277 777 8
0.944 444 8
0.375 000 1

2.902 769
1.597 237
0.101 851 8
1.046 295
0.854 164 1

0.128 086 4
0.125 0000
0.625 000 0
1.375 000
0.375 000 0
2.531 250
1.007 812
0.833 333 4
2.500 000
0.645 833 4
5.916649
2.562 505
0.125 000 0
2.694 436
1.618 071
0.222 222 0
0.375 000 0
1.625 000
0.156250 0
2.750 000
0.859 375 0
1.937 497
0.750 001 1

7.638 891 8 X 10-'
0.343 750 0
6.2500000 X 10
1.000 000
4.000000
0.187 500 0
5.437 500
0.125 000 0
2.937 500
0.515 625 0
3.833 335
0.416 666 6
9.416 665
0.281 250 0
6.781 219
1.359 372
0.222 222 2
3.638 883
0.152 777 8
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TABLE III. (Continued).

X4

4.555 559
1.119792
1.388 889 0X 10
0.856 480 7
0.317 1290
2.237 654 5 X 10
3.500000
0.250 000 0
7.750000
0.125 000 0
4.937 500
0.835 937 5
0.250 000 0
5.249 998

8.333 332 8X 10
5.666 653
1.104 168
1.291 664
0.333 332 6
1.620 370 5 X10-'
6.2500000X 10
1.562 500
1.460 250
0.195 312 5
0.468 749 8
6.250000 7 X 10
3.1250000X10 '

X~ (P ~ X PiPzP3P4
a &2 &3 &4

X A„(a,x&,x2, x3 x4),
(A 1)

where N is a normalization constant that takes into ac-
count all the e6'ective diagrams of each starting

configuration a, and then is a function of P in its turn.
Here A„(. . . ) is a matrix whose elements are the sum of
the weight of all the diagrams that, starting from a given
cell, renormalize in the same process at a larger scale
with the same polynomial form with respect to the vari-
ables p;. As an example the diagram in Fig. 9(d) contrib-
utes to the matrix element A„2(et=2, 0, 1, 1,0) with a
value of a =

—,', .
In Table III we report the nonzero elements of the ma-

trix A.
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