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Mechanism of flow-induced biomolecular and colloidal aggregate breakup
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The drift-diffusion equation is first solved analytically for the dissociation rate and lifetime of a biomolecular
or colloidal dimer bonded by realistic intermolecular potentials, under shear flow. Then we show using rigidity
percolation concepts that the lifetime of a generic cluster formed under shear is controlled by the typical lifetime
of a single bond in its interior. The latter, however, is also affected by collective stress transmission from other
bonds in the aggregate, which we account for by introducing a semiempirical, analytical stress transmission
efficiency 0 � � � 1 calibrated on several simulation data sets. We show that aggregate breakup is a thermally
activated process in which the activation energy is controlled by the interplay between intermolecular forces and
the shear drift. The collective contribution to the overall shear drift term is dominant for large enough fractal
aggregates, while surface erosion prevails for small and compact aggregates. The crossover between the two
regimes occurs when �N � 2, where both the number of particles in the cluster N and the stress transmission
efficiency � depend on the aggregate structure through the fractal dimension df . The analytical framework for
the aggregate breakup rate is in quantitative agreement with experiments and can be used in future studies in the
population balance modeling of colloidal and protein aggregation.

DOI: 10.1103/PhysRevE.87.032310 PACS number(s): 82.70.Dd, 62.20.−x, 61.43.Hv

I. INTRODUCTION

Large molecules exhibiting Brownian motion in a liquid
solvent, like proteins, nanoparticles, and quantum dots, in-
variably interact via complex force fields due to dispersion
(London-van der Waals) forces, hydrophobic interactions, and
electrostatics [1]. The self-assembly of these colloidal particles
is therefore a result of the microscopic interplay between the
interactions and the diffusive transport. All these aggregation
states, however, are studied in static environments which are
macroscopically in equilibrium or close to equilibrium [2–5].
The phenomenology is completely different as soon as the
environment is macroscopically perturbed and driven out
of equilibrium such as under an externally imposed flow,
which is ubiquitous in natural and technological processes
[6–8]. The static picture becomes not just an idealization but
simply inapplicable. For example, equilibrium aggregation
pathways are forbidden under flow because we are always
away from detailed balance and only kinetic theory can be
used to rationalize the observations [9]. These difficulties are
currently hampering our understanding and control of protein
aggregation in cellular environments, where cytoplasmic flow
is likely to affect the aggregation mechanism [10]. The same
problems arise in biotechnology, where biomolecules are
processed in flow apparatuses [11]. In the emerging field
of microfluidics, due to the channel cross sections being
of orders of magnitude close to the macromolecular and
colloidal sizes, the effect of flow on the molecular and
colloidal dynamics cannot be neglected in many instances [12].
Finally, in the context of nanomaterials, external flow offers
the unprecedented opportunity of developing microscopically
controlled mechanical manipulation of nanoparticles to tune
and direct their self-assembly on large scales [13].

Here we present a theoretical analysis which constitutes
a key step forward toward the realization of this program.
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Analytical approaches in the past have focused on the
continuum description of the solid aggregates to calculate
the flow-induced rupture either in terms of material yielding
under the shear stresses [14] or, more recently, in terms of
fracture driven by crack propagation [15]. The limitation
intrinsic to continuum approaches is clear: by neglecting both
interparticle interactions and Brownian motion, they cannot
capture the microscopic interplay between diffusion, shear, and
intermolecular interactions, which controls the aggregate’s fate
in shear, i.e., whether the aggregate can grow further or breaks
apart under a given shear rate. Here we take an approach which
is completely different. We start from first principles, namely,
from the drift-diffusion equation governing the dynamics of
the individual Brownian particles in the aggregate with realistic
interactions, and then construct a framework which allows us
to account for the collective flow-induced stress transmission
into the aggregate, by using concepts from different fields
such as rigidity percolation and stochastic rate theory. In
this way, an analytical theory is developed which is able
to quantitatively describe and rationalize experimental and
numerical observations.

II. DIMER BREAKUP RATE

Let us start by considering the case of a dimer, that
is, two particles or molecules bonded by intermolecular
forces, in a flow field. We consider the most general case of
intermolecular interactions between two spherical molecules
or colloidal particles composed of both attractive and repul-
sive components. The case of pure attraction can be easily
inferred by simply neglecting the electrostatic repulsion. In
our calculations we consider an attractive van der Waals
potential VVDW, a repulsive screened-electrostatic (electric
double-layer) potential Ve, and a steep hard-core repulsive
potential VHC. The expressions for VVDW and Ve can be found
in the textbooks [16], while for VHC we use an expression
from [17].
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The dynamics of two Brownian particles in the presence
of drift terms, that may comprise intermolecular interactions
as well as an external field (such as the flow imposed on
the suspension), is governed by the Smoluchowski diffusion
equation [18] for the probability density ρ of finding a center
to center separation of −→

r between both particles:

∂ρ

∂t
+ −→∇ · [−D

−→∇ ρ + −→
A ρ] = 0, (1)

where D = kBT /b is the particle diffusion coefficient which is
related to the Stokes friction coefficient b = 6πμa through the
Stokes-Einstein relation (μ is the solvent viscosity with a being
the particle radius).

−→
A is the overall drift term. By the defi-

nition of the stationary current
−→
J , we recover the continuity

equation ∂ρ/∂t + −→∇ · −→
J = 0. At steady state, the continuity

equation dictates that the stationary current of probability
density over a spherical surface is J = 4πr2(−D∂ρ/∂r +
Aρ), where A is the radial component of the drift field.

Now r̂ is the unit vector from the center of one particle
to the center of the other bound particle, i.e., along the radial
coordinate −→

r = (h + 2a)r̂ . Clearly, only the current along this
direction matters in the dissociation of the bond between two
particles. The drift term in the presence of both intermolecular
forces and an external flow reads as A = −b(∂V/∂r) + bvr .
Here vr ≡ −→v · r̂ is the radial component of the relative
velocity that the two particles acquire with respect to each
other due to the imposed flow. The radial current becomes in
this case equal to the following expression:

J = 4πr2[−D(∂ρ/∂r) − b(∂V/∂r)ρ + bvrρ]. (2)

In polar coordinates we integrate over all angles to find this
radial current across a spherical cross section. Only those
regions of the solid angle where the flow drives the particles
apart are considered in order to calculate the dissociation rate.
As we are going to see below, noncentral tangential forces
between particles are also present [19] and are essential for the
mechanical stability of the aggregate under flow [20], although
they do not directly contribute to the two-particle dissociation
rate as they do not have components along −→

r .
Without loss of generality, we consider axisymmetrical

extensional shear flow where the flow velocity v is given
in Cartesian coordinates by v(x,y,z) = γ̇ [−x/2,−y/2, z],
with γ̇ signifying the shear rate, since this is a prototype
of more complex flows such as cytoplasmic flows in the
cells and the laminar (sub-Kolmogorov) flows inside turbulent
eddies [21,22]. Results for simple shear [v(x,y,z) = γ̇ [y,0,0]]
differ only by a numerical prefactor of order unity, as we are
going to show below. Under the assumption of weak coupling
between the flow field and the density field, ρ(r) and vr

are relatively uncorrelated over the solid angle (one should
recall that vr also depends on the polar angle of the vector r̂).
Hence, 〈ρvr〉 ≈ 〈ρ〉〈vr〉, where 〈〉 indicates the angular aver-
age restricted to the regions of the solid angle where the relative
velocity imparted by the flow acts to separate the particles. In
general, we have

〈vr〉 = 1

4π

∫
�

γ̇ r[1 − A(r)]f (θ,φ) sin θdθdφ

= λγ̇ r[1 − A(r)], (3)

with γ̇ being the shear rate and A being the two-body
hydrodynamic screening function which can be found in closed
form for both extensional and simple shear flows [23]. f (θ,φ)
contains the dependence of the radial velocity on the polar and
azimuthal angles and differs depending on the flow geometry.
For instance, in the case of extensional flow we have f (θ,φ) =
3 cos2 θ − 1, which depends only on the polar angle. The
integral is taken over the restricted set � of regions in the solid
angle where the relative radial flow velocity (and the associated
force) is positive, pushing the two particles away from each
other. λ ≡ 1

4π

∫
�

f (θ,φ) sin θdθdφ is a geometric prefactor
resulting from the restricted angular integral which thus
depends uniquely on the flow geometry, i.e., λ = 1/(3

√
3) for

extensional shear flow and λ = 1/(3π ) for simple shear flow.
With a purely algebraic manipulation, we can rewrite Eq. (2)

as [24,25]

J = −4πr2De−Vp/kBT d

dr
[eVp/kBT ρ], (4)

where Vp ≡ ∫ r

0 Ads is the primitive integral of the generalized
drift A introduced above. Following the Kramers procedure,
we integrate Eq. (4) between r∗, a generic point near the
potential minimum, and C. Here C is some point far away
on the radial axis. Since the probability density becomes
negligible at r = C, because the effective potential has a
large negative value there due to the drift term and the
negative (volume-entropy) logarithmic term, we can express
the constant current as

J = eVp(r∗)/kBT ρ(r∗)

a−2
∫ C

r∗
eVeff (r)/kB T

4πD
dr

, (5)

where the effective potential is given by

Veff ≡ V − b

∫ r

0
〈vr〉ds − 2kBT ln(r/a). (6)

This effective potential, as is going to be made clear below,
maps our three-dimensional (3D) problem onto an effectively
one-dimensional (1D) problem but leaves the physics unal-
tered. The logarithmic term is necessary to recover the metric
factor r−2 in the integral of Eq. (5), such that one can recover
Eq. (2) upon going backward in the transformation. The
integral in Eq. (5) is indefinite, because it is the primitive
integral (or antiderivative), and the integration constant is
chosen equal to zero such that we recover the case with no
flow when vr = 0. Veff for realistic intermolecular interactions
is plotted in Fig. 1. It is important to realize that the maximum
(i.e., the effective energy barrier) is still present even when
electrostatic repulsion is absent and actually even in the
absence of shear. In the latter case the maximum is due to
the entropy of dilution, because of the degrees of freedom
gained by the particles upon breaking up the bond [25].
This contribution is qualitatively crucial for purely attractive
interactions, but it is quantitatively small compared to the other
contributions in our case.

The steady-state probability density inside the attractive
well is given by the stationary Boltzmann distribution by
means of the quasi-steady-state approximation in the well,
ρ(r) = ρ(r∗)e−[Vp(r)−Vp(r∗)]/kBT .

Thus the probability of finding the particle in the 3D well
is given by integrating the density over a spherical shell of this
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FIG. 1. (Color online) Plot of dimensionless βVeff ≡ Veff/kBT

(solid) and βṼeff ≡ Ṽeff/kBT (dashed) as functions of the interparticle
separation while varying the shear rate. From top to bottom, γ̇ =
0/103/4 × 103/7 × 103/104. The calculations are shown for a =
45 nm, df = 2.9, Rg = 450 nm, σHC = 2.08 × 10−10 m (hard-core
radius in the Born hard-core short-range repulsion [17]), ψ0 =
0.05 V (surface potential), T = 298.15 K, ε = 7.09 × 10−10 F/m
(water permittivity), b = 8.48 × 10−10 Pa m s, n = 67 mol m−3 (salt
concentration), and A = 1.33 × 10−20 J (Hamaker constant).

well:

ρeq = ρ(r∗)eVp(r∗)/kBT a2
∫ B

A

e−Veff (r)/kBT 4πdr, (7)

where A is a point to the left of the minimum and B is
a point to the right. Upon taking C = ∞, the mean first-
passage time is given by Kramers theory as τ = ρeq/J . When
both the minimum and the maximum are sharp, using the
standard saddle-point method [26] to approximate the integrals
analytically to quadratic order both near the well bottom and
near the barrier top in the integrals appearing in ρeq and J ,
respectively, we obtain the lifetime of the bond in shear as

τ = 2πb exp[βVeff(rmax) − βVeff(rmin)]√−V ′′
eff(rmax)V ′′

eff(rmin)
, (8)

where rmin and rmax represent the coordinates of the potential
minimum and maximum and β = 1/(kBT ). The flow-induced
breakup rate is given by the inverse of the bond lifetime, κ =
1/τ .

III. AGGREGATE BREAKUP

A. Rigidity-transition analysis of flow-induced
colloidal aggregates

After having laid down an analytical tool to calculate the
breakup rate of a colloidal dimer under flow, let us now
consider the breakup of an aggregate of many particles or
molecules. In the most general case, the aggregate is defined
by the number of constituent particles or molecules N which
is related to its radius of gyration Rg via the mass-scaling
relation N = (Rg/a)df , where df is the so-called fractal or
mass-scaling exponent of the cluster [27]. In flow-induced
aggregation, typical values of df are in the range of 2.4 to 2.8
[7]. These values are significantly larger than the values found
in diffusion-limited colloidal aggregation without flow (df �
1.7−2) [16,28], the reason being the need for the aggregate
to restructure (becoming denser) while growing in order to be
able to withstand the flow stresses [29]. In the absence of a
theory for df , this is the only phenomenological parameter in

our analysis. It is worth recalling that in any case with df < 3
the density of particles within the aggregate decays from the
center of mass of the aggregate toward the outer shells as a
power law of the size φ ∼ (Rg/a)−df , where φ is the average
packing fraction of molecules/particles [28]. This fact implies
that the average packing fraction of larger aggregates is lower
than the average packing fraction of smaller aggregates with
the same df .

Computer-generated colloidal aggregates formed in flow
conditions can be analyzed to obtain a relation between
the average number of bonds per particle z, the radius of
gyration Rg , and the structural parameter df . Analyzing
Stokesian simulation data of flow-induced colloidal aggregates
with both central-force and tangential interactions between
colloids recently presented in the literature [30], we applied
standard nonlinear least squares fitting procedures to obtain the
following phenomenological relationship (with a confidence
level of 95% and R2 = 0.988) expressing z as a function of
Rg and df :

z = 0.532 + 0.776df + 0.000192d
6.462df

f (Rg/a)5.654−3.665df .

(9)

In the definition of z we took care in excluding dangling
particles on the outermost shell of the cluster as they do not
contribute to the internal rigidity. According to this relation,
which is valid only in the regime of typical 2.4 < df < 2.8,
well-developed (102 < N < 104) flow-induced aggregates,
we have 2.4 < z < 2.8, and z increases with df . The decrease
of z upon increasing Rg becomes less pronounced upon
increasing df , reflecting the increasing structural homogeneity
of the cluster as df → 3.

Interestingly, the limit z = 2.4 coincides with the rigidity
transition of disordered assemblies where particles are bonded
via both bond-bending (tangential) and central-force interac-
tions [31]. For z values below this threshold, any particle
assembly has zero shear rigidity. The rigidity transition is
marked by the fraction f of floppy modes becoming nonzero
at the transition point. We recall that a floppy mode is a
global deformation mode of a particle assembly (i.e., a set of
interparticle displacements from the original or equilibrium
positions) which can be excited with a vanishing applied
stress [32]. An aggregate which possesses a finite fraction
of floppy modes is unstable with respect to a macroscopic
volume-preserving deformation, such as shear, in the sense
that it can be deformed by applying a vanishing stress.
Equivalently, one can say that the shear modulus G of an
aggregate possessing floppy modes is zero and that a rigidity
vanishing transition with G = 0 sets in under conditions in
which the aggregate develops a finite fraction of floppy modes.

The fraction of floppy modes in the presence of central
and bond-bending interparticle forces, f = Nf /3N , is given
by f = 1 − 1

3 [ 1
2z + (2z − 3)] [32]. Hence, f = 0 at zc = 2.4.

Clearly, Eq. (9) suggests that the fractal aggregates developed
in shear flow are marginally stable to shear stress with values
of z just above 2.4. Hence the scission of a small number
of bonds in the cluster interior leads to the development of
floppy modes and to the cluster becoming deformable even
with a vanishing applied stress. Since the stress acting on the
aggregate is nonzero under the applied flow, it is to be expected
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that the floppy aggregate undergoes large deformations. Such
large deformations lead, in turn, to the aggregate breakup.
Based on this argument and on the above analysis, we conclude
that the lifetime of shear-generated aggregates with z � 2.4 is
in good approximation controlled by the lifetime of a bond in
the aggregate interior.

Therefore, the aggregate may break apart stochastically
when a bond or, at most, a few bonds break up due to the
drift-diffusion mechanism, leading to floppy modes, global
loss of rigidity, and large deformations. This picture, however,
is complicated by the fact that, upon growing, the total stress
impacting on the aggregate increases due to the presence of
more particles exposed to the flow which all transmit stress
into the aggregate. Hence, the breakup rate of the aggregate
must depend on the aggregate size as well.

Our next exercise is then to calculate the breakup rate of a
bond inside the aggregate by accounting for this effect and for
the structure-mediated stress transmission in the aggregate.

B. Collective stress transmission

In a fractal aggregate every bond between two particles
is exposed to the flow and experiences an averaged radial
force b〈vr〉 which tends to stretch it. Since every bond is
connected with other bonds, the flow-induced force acting
on a bond can be transmitted to other bonds by means of
force chains. Virtually every bond, then, receives flow-induced
forces from every other bond in the aggregate by means of
the force chain ensemble. Of course, due to dissipation at the
interparticle contacts and other irreversible phenomena which
occur in reality, only a fraction of these forces are effectively
transmitted to a given particle in the aggregate. The total force
transmitted to any particle in the aggregate core by force
chains treated as harmonic springs (the bonds), considering
that springs connected in series with the same spring constant
undergo the same displacement, is given by z(N/2)b〈vr〉.
Since the particle has on average z bonds, the force that ideally
would act on an individual bond in the absence of dissipation
and other effects is (N/2)b〈vr〉.

The stress transmission crucially depends on the aggregate
structure and its hydrodynamic permeability. For diffusion-
limited fractal aggregates (df ≈ 1.7), the stress transmission
is effectively 1D along the fractal strands of the aggregate [33].
If the aggregate is compact, on the other hand, the number of
bonds per particle z is significantly higher, and this is true even
in the outer shells. Since realistically the force transmission
efficiency through an interparticle bond is never equal to 1
because of dissipation due to friction and other irreversible
processes at the interparticle contacts, it is then clear that
in compact nonfractal aggregates the stress communicated
by the flow is likely to be dissipated nearby on the outer
shells without reaching the core. This fact has been argued
by Edwards and Ball [34] long ago, and it has been confirmed
by computer simulations of colloidal aggregates in shear [35].
As a result, the total force communicated to the aggregate
structure is transmitted to the interior with a transmission
efficiency 0 � � � 1, which we expect to be a function of
df . Furthermore, since it is not realistic to assume that the
flow field has the same intensity in the core as on the surface
(it is lower in the core due to hydrodynamic screening [36]),

the total force transmitted will also be lower due to this fact.
Hence, � takes into account both dissipation and many-body
hydrodynamic screening, in a phenomenological way.

To calculate the drift contribution due to collectively
transmitted flow stress in the aggregate, we consider the overall
force transmitted. This contributes an additional term to the
drift A in the drift-diffusion equation. The total drift acting
along the radial coordinate between two bonded particles in the
aggregate interior then becomes A = −(∂V/∂r) + b〈vr〉 +
�(N/2)b〈vr〉. The effective potential associated with the drift
due to the collective stress reads as

Ṽeff = Veff − �b(N/2)
∫ r

0
〈vr〉ds

= V − b(1 + �N/2)
∫ r

0
〈vr〉ds − 2kBT ln(r/a), (10)

where the tilde is used to disambiguate this potential, which
contains collective many-body effects related to the aggregate
structure, from the potential in Eq. (4) which refers to two
particles not belonging to any aggregate.

C. Aggregate lifetime and breakup rate

The mean lifetime of the aggregate in closed form then
follows as

τagg = 2πb exp[βṼeff(rmax) − βṼeff(rmin)]√
−Ṽ ′′

eff(rmax)Ṽ ′′
eff(rmin)

. (11)

The breakup rate of the aggregate is given by kagg = 1/τagg.
Using these expressions, by imposing the vanishing of the
overall activation energy barrier in the exponential, one can
calculate the critical size R∗

g , under a given γ̇ , beyond which
breakup becomes a fast process due to the vanishing of
the activation energy barrier for breakup. Hence, aggregates
with Rg � R∗

g may not break up on the time scale of
observation due to the energy barrier, whereas aggregates
with Rg � R∗

g are unstable and break up instantaneously. In
typical experiments or simulations of shear-induced colloidal
aggregation, one measures the size distribution of aggregates.
At steady state in the aggregation process, defined as the
kinetic equilibrium where the average aggregate size becomes
constant with time (because the aggregation and breakup rates
become equal), no aggregates with Rg > R∗

g can be found in
the system as their lifetime is negligible. On the other hand,
aggregation phenomena tend to generate larger aggregates with
the consequence that the size distribution is controlled by the
largest metastable aggregates and the measured average size
is therefore close to R∗

g .
It follows that the above theory can be used to fit existing ex-

perimental and simulation data of the average steady-state size
which can be approximately identified as R∗

g . The empirical
stress-transmission efficiency � can be used as a df -dependent
fitting function to reproduce the dependence of the maximum
stable size, R∗

g , versus γ̇ found in different investigations for a
broad range of df [7,15,30,37]. From the fitting we obtained
the following semiempirical stress-transmission function:

� = (Rg/a)α,
(12)

α = −2.06491df − 0.0180344/(3 − df ) + 4.98585.
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This expression has been found for flow-induced aggregates
with 2.4 � df � 3 and thus applies in this regime only. As one
could expect, � decreases upon increasing df and ultimately
vanishes at df = 3. In terms of stress-transmission efficiency,
this implies that the stress transmission to the aggregate interior
becomes less efficient upon increasing df , i.e., upon increasing
the aggregate density for a fixed size. This effect is due, in
turn, to the increased dissipation in the outer shells of compact
aggregates with respect to more fractal ones, where stress
can be carried along quasi-one-dimensional fractal arms down
to the core with much reduced dissipation. Also, many-body
hydrodynamic screening limits the total force impacted onto
the structure in denser assemblies. This formula, although
phenomenological, fills a long-standing gap in the literature
because no analytical approaches were hitherto available to
assess the stress transmission in molecular and colloidal
aggregates.

The effective potential Ṽeff calculated in this way is plotted
for typical conditions in Fig. 1 (dashed lines).

IV. DISCUSSION AND COMPARISON WITH
EXPERIMENTAL DATA

A. Aggregate breakup rate

Let us now discuss the predictions of Eq. (11) with � defined
by Eq. (12). In Fig. 2 we plot the breakup rate of aggregates as a
function of the shear rate for realistic colloidal potentials. Two
well-separated regimes are visible. For shear rates sufficiently
low that the stress term b(1 + �N/2)

∫〈vr〉 dr is negligible
with respect to the intermolecular bonding energy, the breakup
rate is practically independent of γ̇ . When the stress term
becomes comparable to V , the argument of the exponential
attains a small value and the exponential can be linearized. In
this intermediate regime, the aggregate breakup rate depends
on the shear rate according to the following law:

κagg ∼ γ̇

1 + β{�V − b(1 + �N/2)λγ̇
∫ �r

0 r[1 − A(r)]dr}
,

(13)
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10 33
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FIG. 2. (Color online) Plot of the breakup rate of an aggregate of
radius of gyration Rg = 9 μm, colloid radius a = 45 nm, and fractal
dimension df = 2.7. The bottom three curves correspond to initial
potential barriers of 87, 67, and 47 kBT , where we employ a purely
attractive interparticle potential in the first case. The top three curves
highlight the same systems while neglecting two-body hydrodynamic
interactions, i.e., setting A(r) = 0.

where �V = V (rmax) − V (rmin) and �r = rmax − rmin > 0
refer to the intermolecular potential. Upon further increasing
the flow intensity, the stress term in the exponential becomes
comparable to the intermolecular interaction term and the
exponential is no longer linearizable. Here the kinetics enters
a new exponential regime where the breakup rate speeds up by
several orders of magnitude upon further increasing γ̇ :

κagg ∼ exp

{
−β�V − βb(1 + �N/2)λγ̇

∫ �r

0
r[1−A(r)]dr

}
.

(14)

It is important to recall that many empirical models have
been proposed in the past for the breakup rate of colloidal
aggregates. Interestingly, some of these models assumed a
power-law dependence for the breakup rate as a function of
the shear rate, whereas other models, especially in the context
of turbulent flows, assumed an exponential dependence [38].
The theory presented here resolves this long-standing conflict
in the literature and shows that the power-law scaling applies
to the regime where intermolecular forces dominate over
the collective flow-induced drift, which tends to dissociate
the bonds. It also shows that the exponential dependence
on the shear rate applies only to the regime where the
flow-induced drift is comparable to the intermolecular forces.

B. Analysis of maximum stable aggregate size

R∗
g is estimated by putting Ṽeff(rmax,Rg) − Ṽeff(rmin,Rg) =

0 and solving for Rg . This calculation has to be done
numerically for the realistic colloidal potentials we are dealing
with here. The result is a scaling relation between the stable
R∗

g value (beyond which the aggregate undergoes nonactivated,
fast breakup) and the shear rate γ̇ . Hence, we need to solve
β�V + βb(1 + �N/2)λγ̇

∫ �r

0 r[1 − A(r)]dr = 0 for Rg as
a function of γ̇ .

Figure 3 compares the results of this calculation with recent
well-controlled experimental data [30]. It is seen that the
limiting size R∗

g decays over a broad range of γ̇ as a power
law of the shear rate. In the comparison there are no free

103 104 105 106 107
1

5
10

50
100

500
1000

γ s 1

R
g
a

FIG. 3. (Color online) Log-log plot of R∗
g/a as a function

of γ̇ . From left to right, df = 2.5,2.6,and 2.7. The circles are
experimental data points [30] where df � 2.7 was estimated by small
angle light scattering. A purely attractive interparticle potential is
employed using parameters matching the experimental conditions
(polystyrene particles in water with screened electrostatic repulsion).
The crossover to surface erosion occurs at a shear rate of order 109 s−1,
hence outside the range of the plot.
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BREANNDÁN Ó CONCHÚIR AND ALESSIO ZACCONE PHYSICAL REVIEW E 87, 032310 (2013)

parameters because we estimate the interparticle interaction
using the parameters dictated by the experimental system
(polystyrene colloidal particles in water with fully screened
electrostatic interactions). Taking df = 2.7, which is fixed
by the experimentally measured fractal dimension [30], there
is an excellent agreement between our predictions and the
experimental data.

To obtain more insight into this scaling, let us consider
the regime controlled by the collective stress transmission,
�N/2 � 1. Imposing the vanishing of the activation barrier
we obtain

R∗
g ∼ γ̇

− 1
df +α(df ) ∼ γ̇ p, (15)

where α(df ) is given by Eq. (12). This result is important
from several points of view. It provides a first-principles,
microscopic theoretical explanation of the power-law scaling
between aggregate size and shear rate that has been reported
in many experimental and computational studies over the
last decades. The physical meaning of this result is that the
power law arises from the activation energy in Eq. (11),
in which the flow-induced stress transmitted collectively by
force chains into the aggregate, and mediated by the fractal
aggregate structure, competes with the bonding energy. As
the aggregate grows, the overall stress-induced drift that can
be transmitted to an inner bond, without dissipation, increases
with the aggregate size as R

df

g , but with intercontact dissipation

this increase is slower and goes as R
df +α(df )
g .

In the limit of nonfractal aggregates where the particle
density is substantial throughout the aggregate, the stress
transmission efficiency to the aggregate interior becomes very
small because the stress is dissipated at the many interparticle
contacts in the outer shells (which are as dense as the interior).
Clearly, this is different from loose fractal aggregates, where
the intercontact density is much lower in the outer shells,
and the stress can be transmitted with lower dissipation due
to the lower contact density. For this reason, in the limit of
nonfractal aggregates, the collective drift term is small with
respect to the local two-body shear drift term, �N/2 � 1. As
a consequence, bond breakup occurs locally, according to the
two-body mechanism of Sec. II, directly on the surface where
the shear stress is finite (in the df = 3 limit the flow stress
inside the aggregate is practically zero because the flow cannot
penetrate into the dense compact aggregate). Hence, our theory
predicts a crossover from a fragmentation mechanism, where
the breakup is triggered by the dissociation of an inner bond
under the action of stress transmitted through the structure,
for �N/2 � 1, into a surface erosion mechanism which is
active for nonfractal aggregates in the regime �N/2 � 1. This
crossover is found as a function both of df and of Rg , as the
controlling factor �N/2 depends on both Rg and df .

In Fig. 4 we plotted the absolute value of the scaling law
exponent p, which governs the scaling between size and shear
rate, as a function of the fractal dimension [see Eq. (15)] in
comparison with several sets of experimental and simulation
data including Ref. [39,40]. Our model allows us to rationalize
the dependence of the R∗

g versus γ̇ scaling law on df , according
to the mechanism discussed above, in terms of the exponent
p, over a broad range of df . From the plot it is evident that
at sufficiently high df there is a crossover from the breakup

FIG. 4. (Color online) Plot of the absolute value of the power-law
exponent p, as a function of df . The green (solid) curve indicates the
prediction of this theory. Also included in this plot are measurements
from different experimental and computational studies.

mechanism controlled by collective stress transmission, where
the transmission efficiency is higher (reflected in small values
of |α| and small values of |p|), into a regime controlled by
surface erosion (large values of |p|), where stress transmission
is very low due to localized intercontact dissipation, and
breakup occurs on the surface due to the local effect of the
shear. The crossover from the collective stress transmission to
the erosive mechanism occurs when �N/2 � 1.

C. Parameters used in the comparison

If df and the colloidal suspension parameters are avail-
able from experimental characterization, there are no freely
adjustable parameters left to fit our analytical predictions
against the experimental data in Fig. 3. As we mentioned in
Sec. III, df is a phenomenological parameter which is fixed
by the experimental characterization of colloidal clusters in
the experimental study. Thus, it is already fixed for each set
of experimental data we wish to scrutinize our model against,
provided that experimental df values are available. � is a
semiempirical function whose form and coefficients, including
α, were calibrated on simulation data in the literature, and
thus it cannot be altered for comparison with experiments. λ,
as shown in Sec. II, is a geometric constant which is fixed
by the flow type and is not adjustable. Therefore, there are no
unconstrained model parameters with which comparisons with
the experimental markers shown in Figs. 3 and 4 can be made.
The values of the model parameters used in the comparison
are univocally fixed by the experimental measurement (df ,a,
interaction parameters), and by the flow type (λ), while �

and α are universally fixed by the calibration procedure with
simulation data and cannot be changed in the comparison with
experiments.

V. CONCLUSION

In summary, we have presented a first-principles, micro-
scopic analytical theory of macromolecular and colloidal
aggregate breakup in shear flows. We first solved the Kramers
escape rate problem for two arbitrarily bonded Brownian
particles (dimer) in shear to calculate the dissociation rate and
the mean lifetime of the dimer. Then we analyzed computer
simulation data from the literature to show that aggregates
formed in shear flow grow on the verge of marginal rigidity,
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which implies that they are close to the finite-floppy modes
threshold. Hence, the flow-induced breakup of a very few
bonds in the aggregate interior leads to the catastrophic
collapse under shear of the whole aggregate along with the
development of floppy modes. On this basis, we can therefore
approximate the lifetime of an aggregate in shear flow by the
lifetime of a bond in its interior. We account for the effect of
many-body stress transmission and hydrodynamic screening
from the aggregate structure through a semiempirical stress-
transmission function which crucially depends on the aggre-
gate size and fractal dimension. The final result is an analytical
activation law expression for the breakup rate and lifetime.
These are controlled by the competition, in the activation
energy barrier for bond breakup, of the intermolecular bonding
energy and the drift induced by the collectively transmitted
hydrodynamic stress which works to dissociate the bond. With
small aggregates, as well as in the limit of nonfractal, compact
aggregates, our theory predicts a crossover from this collapse
mechanism into surface erosion. In the latter regime, the flow
cannot penetrate into the aggregate, but it can induce the
removal of one particle at the time from the surface. Also,
the analytical breakup rate expression can be used in future

studies in the population balance modeling of colloidal and
protein aggregation processes.

This theoretical framework allows us to rationalize many
experimental observations in the literature. The mechanistic
insights and analytical expressions provided here can serve
as the basis to develop novel techniques for the controlled
micro- and nanomechanical manipulation of nanoparticles
in solution based on the calibrated use of shear flow. Also,
it provides a rigorous basis for understanding the protein
aggregation phenomena in physiological environments such
as the cell, where cytoplasmic flows [10] can affect the
growth of protein aggregates through the flow-induced breakup
mechanism elucidated here.
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