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the available clinical and molecular cytogenetic data, we were able to discover that
similar neurodevelopmental disorders (NDDs) were shared by patient carriers of even
very differently sized duplications. Moreover, some facial features of the 9q34 DS were
more represented than those of KS. However, an accurate in silico analysis of the
genes mapped in all the duplications allowed us to support EHMT1 as being sufficient
to cause a NDD phenotype.

Wider patient cohorts are needed to ascertain whether the rearrangements have full
causative role or simply confer the susceptibility to NDDs and possibly to identify the
cognitive and behavioral profile associated with the increased dosage of EHMT1.
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Abstract  

Both copy number losses and gains occur within subtelomeric 9q34 region without common breakpoints. The 

microdeletions cause Kleefstra syndrome (KS), whose responsible gene is EHMT1. A 9q34 duplication syndrome (9q34 

DS) had been reported in literature, but it has never been characterized by a detailed molecular analysis of the gene 

content and endpoints.  

To the best of our knowledge, we report on the first patient carrying the smallest 9q34.3 duplication containing EHMT1 

as the only relevant gene.  

We compared him to 21 reported patients described here as carrying 9q34.3 duplications encompassing the entire gene 

and extending within ~3 Mb. By surveying the available clinical and molecular cytogenetic data, we were able to 

discover that similar neurodevelopmental disorders (NDDs) were shared by patient carriers of even very differently 

sized duplications. Moreover, some facial features of the 9q34 DS were more represented than those of KS. However, 

an accurate in silico analysis of the genes mapped in all the duplications allowed us to support EHMT1 as being 

sufficient to cause a NDD phenotype. 

Wider patient cohorts are needed to ascertain whether the rearrangements have full causative role or simply confer the 

susceptibility to NDDs and possibly to identify the cognitive and behavioral profile associated with the increased 

dosage of EHMT1. 
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Introduction 

Chromosome 9q34 subtelomeric region shows genomic instability, as both copy number losses and gains –

terminal or interstitial– have been reported to occur without common breakpoints [1].  

Deletions of distal 9q34 encompassing EHMT1 (euchromatic histone methyltransferase 1) gene 

(MIM*607001), as well as loss of function point mutations, are responsible for Kleefstra syndrome (KS, MIM 

#610253), characterized by facial characteristics, (childhood) hypotonia, developmental delay (DD), intellectual 

disability (ID), and other variable clinical features [2-4]. Based on multiple reports, 23–100% of subjects with KS have 

autism spectrum disorder (ASD) [5-7]. Moreover, a pathogenic variant has been recently identified in a patient with 

autism and normal intelligence [8]. 

EHMT1 is involved in chromatin remodeling during neurodevelopment and homeostatic plasticity through 

synaptic scaling [9]. 

A 9q34 duplication syndrome (9q34 DS) has been reported [10], involving both interstitial [11-14] and 

terminal [1, 10, 15-29] duplications, with different sizes. The associated manifestations include initial poor feeding and 

thriving, hypotonia, DD, mostly affecting speech and language, ID, craniofacial dysmorphisms and other 

musculoskeletal anomalies. Behavioral problems have been rarely described, and include hyperactivity, attention deficit 

hyperactivity disorder, and ASDs [27]. 

Starting from the identification of a small microduplication encompassing the dosage-sensitive EHMT1 gene in 

a boy diagnosed in the autism spectrum, our aim was to understand whether the gene over-dosage may cause a 

recognizable phenotype, and whether this overlaps and/or mirrors that of KS.  

 

Materials and methods 

Patients 

Informed consent was obtained from all individual participants included in the study or their legal guardians. 

Additional informed consent was obtained from all individual participants for whom identifying information is included 

in this article. The study was approved by the Ethical Clinical Research Committee of IRCCS Istituto Auxologico 

Italiano. 

Patient 1 (P1) belongs to a cohort of 325 Italian ASD patients that underwent chromosomal microarray 

analysis (CMA). After his clinical and molecular cytogenetic characterization we went on to retrieve detailed clinical 

and molecular data of comparable patients reported in public databases, i.e. SFARI (https://gene.sfari.org/) and 

DECIPHER (http://www.sanger.ac.uk/PostGenomics/decipher/). For this purpose, we used a uniform questionnaire. By 
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means of this investigation further clinical information has been made available for the two DECIPHER patients 

referred to as P2 and P4.  

Array CGH analysis 

Array Comparative Genomic Hybridization (a-CGH) analysis was performed on genomic blood DNA of P1 

and his parents, using the SurePrint G3 Human CGH Microarray Kit 244K in accordance with the manufacturer’s 

instructions (Agilent Technologies, Palo Alto, CA).  

Detected Copy Number Variants (CNVs) were classified according to guidelines reported in Koolen et al. [30], 

Miller et al. [31] and Kearney [32]. The following public databases were consulted: University of California Santa Cruz 

(UCSC) (http://genome.ucsc.edu/, GRCh37/hg19), Online Mendelian Inheritance in Man (OMIM) 

(www.ncbi.nlm.nih.gov/OMIM), ClinVar (www.ncbi.nlm.nih.gov/clinvar/), SFARI, and Database of Genomic Variants 

(DGV) (http://projects.tcag.ca/variation/, released in March 2016). A CNV was classified as rare if unreported or 

reported at a very low frequency (≤0.05%) according to the DGV. 

Fluorescent In Situ Hybridization (FISH) analysis 

FISH analysis was performed on P1’s metaphases and interphase nuclei from peripheral blood lymphocytes as 

previously described [33, 34]. The BAC probes RP11-644H13 (Invitrogen Ltd., Carlsbard, CA), which maps at 9q34.3 

and covers EHMT1 from IVS1 to IVS25 (NM_024757), was nick-translation labelled with Cy3-dUTP (Amersham, 

Chalfont St. Giles, UK). At least 20 metaphases and 100 nuclei were screened. 

Gene expression analysis 

Total RNA of P1, his father and 10 healthy controls was collected and isolated using the Tempus Blood RNA 

tubes and Spin RNA Isolation kit (Thermo Fisher Scientific, Waltham, MA), and reverse-transcribed with the High-

Capacity cDNA Reverse Transcription kit (Thermo Fisher Scientific). The expression of EHMT1, CACNA1B, SYF2 and 

IL1RAPL2 was first verified on a control blood RNA as well as on commercial RNAs of human adult and fetal brain 

(Clontech Laboratories, Inc., Mountain View, CA) by using specific pairs of primers.  

RT-qPCR based on the TaqMan methodology was performed using an ABI PRISM 7900HT Sequence 

Detection System (Applied Biosystems, Foster City, CA). The amounts of EHMT1 and SYF2 mRNAs were calculated 

using the 2-∆∆Ct method, with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and TATA box binding protein 

(TBP) as the endogenous-normalizing genes. All assays were provided by Thermo Fisher Scientific (TaqMan Gene 

Expression Assays: ID# Hs00964325_m1 EHMT1 (ex 14-15, isoforms NM_024757 and NM_001145527); 

Hs01548694_m1 SYF2 (ex 6-7, isoform NM_015484.4); Hs99999905_m1 GAPDH; Hs00427620_m1 TBP). Real Time 

data were analysed using the RQ Manager 1.2 software (Thermo Fisher Scientific).  

http://www.ncbi.nlm.nih.gov/OMIM
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We established the proper range of gene expression in 10 healthy controls calculating the mean value ±2 

standard deviations (SD). If the expression level in the patient was out of the control range, a dysregulation of the index 

gene could be inferred.  

Gene annotation 

Genes included in the 9q34.3 microduplications were studied taking into account their: i) function and possible 

involvement in neurodevelopmental disorders (NDDs), according to Gene Cards (https://www.genecards.org), OMIM 

and SFARI; ii) brain expression; iii) prediction to be Intolerant to Loss of function variants according to a pLI score 

[35].  

As for ii), RNAseq expression data have been queried from two public repositories, namely the Genotype-

Tissue Expression (GTEx: https://gtexportal.org//home/datasets) and BrainSpan 

(http://www.brainspan.org/static/download.html). Specifically, on the GTEx database we averaged the expression of the 

human post-mortem adult brain tissues, whereas on the BrainSpan repository we only considered the prenatal 

expression, after grouping and averaging the data into four temporal categories (fetal, infancy, childhood, and 

adolescence/adulthood). We classified a gene as not brain expressed either when the average expression was <0.1, or 

when postnatally expressed only, whereas genes with unavailable prenatal data were considered as brain expressed.  

As for iii), we inferred as possible over-dosage sensitive genes those showing a pLI≥0.90. 

 

Results 

Clinical reports 

P1 

P1, who was referred for genetic assessments at 26 months because of psychomotor delay, was a 13-year-old boy at his 

last follow-up. In Fig. 1 (a-d) his mild dysmorphic facial features, i.e. wide forehead, cowlick, flat nasal bridge, 

anteverted nostrils, and folded helix are shown. With age, eyebrows became pronounced (Fig. 1d). He was the second 

born to healthy unrelated parents after 38 weeks of gestation and delivered with C-sec because of the umbilical cord 

around his neck. His birth weight was 2,620 g (9-25th centile), birth length 47 cm (2nd centile), and occipitofrontal 

circumference (OCF) 34 cm (25-50th centile). Apgar score was 8 and 9 at 1 and 5 min. At the time of his birth, his 

mother was 42 and his father 56 years old.  

He sat and stood alone at 11 and 21 months, respectively, and walked unassisted at 36 months. He was able to 

say his first words between 26 and 36 months. Then his expressive language improved further so that at 5 years and a 

half it was structured in sentences and rich in vocabulary, although not always consistent with the context. He was toilet 

https://www.genecards.org/
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trained at 44 months; however, anal and bladder sphincter accidents could still occur until the age of 7 and 13 years, 

respectively, when he was tense or not able to ask for the toilet. At the age of 4,9 years his development was measured 

by Griffiths scales to be equivalent to that of a 3,8-year-old boy; total IQ was equal to 78 with strengths in the areas of 

hearing and language and weakness in the performance area. The diagnosis was of pervasive developmental disorder, 

unspecified and motor dyspraxia. As shown in Supplementary Table 1, at the age of 6 years and 6 months he met the 

criteria for autism diagnosis at the Autism Diagnostic Observation Schedule (ADOS), module 3 (for 

children/adolescents with fluent speech) [36]. 

At the age of 10 years he showed a high arch club feet equinovarus deformity leading to impairment of 

balance; leg surgery was carried out when he was 11 years and 3 months old (Fig. 1e, f), but he still had walking 

difficulties. X-ray showed a moderate wide-ranging right-convex lumbar scoliosis with vertebrae rotation, whereas 

neurological examination as well as brain and spinal cord MRI showed no abnormalities. At the time of clinical 

evaluation at 13 years, his weight was 38,7 Kg (>25th centile), height 161 cm (>75th centile), and OFC 53,7 cm (9-25th 

centile). Cognitive as well as emotional and social skills continued to be more impaired than speech and language.  

Routine chromosomal analysis from amniotic liquid and postnatal blood showed a normal male karyotype; fragile X 

syndrome was ruled out.  

P2 

P2 was the second son of Caucasian non consanguineous parents. He was born at term (37 weeks) with spontaneous and 

uncomplicated delivery after a pregnancy complicated by threatened abortion; conception was spontaneous. His birth 

weight was 3,100 g (25th centile), birth length 48 cm (25th centile).  

Family history disclosed epilepsy in a maternal uncle and ID in two maternal cousins.  

He showed psychomotor delay, sitting at 9 months, walking independently at 15 months, and producing first 

words at 30 months. At the age of six years a severe ID was diagnosed. He had behavioral problems, with poor 

concentration, hyperactivity and distractibility.  

EEG, brain MRI, ECG, echocardiogram, hearing and ophthalmologic evaluation were normal. Puberty 

occurred at the expected age. FMR1 analysis excluded Fragile X syndrome. 

At 17 years, age of the last follow-up, clinical evaluation showed weight 75 kg (75-90th centile), length 181,5 

cm (75-90th centile) and OFC 58 cm (>97th centile). He had narrow and horizontal palpebral fissures and large ears 

(+2SD). 

P4 
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She was the second child born to Caucasian New Zealand non-consanguineous parents. She was born at 35 weeks after 

a pregnancy complicated by threatened miscarriage in the first trimester and the development of intrauterine growth 

restriction and oligohydramnios in later gestation. Her birth weight was 2,040 g (10-25th centile), crown heel length 42 

cm (10th centile) and OFC 31,5 cm (50th centile).  

She was admitted to the neonatal intensive care unit for supportive care. She required nasogastric feeding for 

two weeks until oral feeding was fully established. She was noted to be hypotonic in infancy and had plagiocephaly. A 

brain MRI scan showed no structural abnormalities. She had feeding difficulties when solids were introduced, which 

resolved around the age of 2 years. She had mild-moderate global developmental delay: she sat with support at 12 

months and walked at 26 months; she did not have any recognizable words until 27 months. She had mild learning 

difficulties.  

She developed signs of puberty when she was between 8 and 9 years old. There was mild but proportional 

deceleration of all her growth parameters during adolescence.  

She was diagnosed with mild non-progressive myopia when she was 10 years old. When she was 16 years old she was 

noticed to have a mild pigmentary retinopathy. A diagnosis of Cohen syndrome was considered, but a proper diagnosis 

was provided by microarray analysis when the patient was 17 years old.  

At last follow up she was 24 years old and was completing tertiary level study with additional assistance. 

Clinical data of P1, P2 and P4 are summarized in Supplementary Table 2a. It is noteworthy that patients’ developmental 

milestones, especially inherent speech and language, are overlapping.  

P3, P5P7, P8, P9P14, P15P22 

Clinical data of these patients are reported in Supplementary Table 2a.  

Genetic findings 

P1 

a-CGH analysis revealed a de novo heterozygous 527 kb microduplication at 9q34.3 (chr9:140498690-141025921) 

encompassing the ARRDC1, EHMT1, and CACNA1B genes (Fig. 1g), which was classified as pathogenic.  

BAC-FISH analysis identified two signals specific for EHMT1 at 9q34.3 on both metaphases (Fig. 1h) and 

nuclei (Fig. 1i), one of which was enlarged in size, indicating that EHMT1 duplication was in tandem.  

Quantitative gene expression assays on blood evidenced an increase of the EHMT1 transcripts in P1 compared 

to controls (Fig. 1l), whereas CACNA1B expression on blood could not be tested as the gene was found to be 

specifically expressed in the central nervous system (data not shown). 
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Two additional inherited heterozygous gains, of 400 kb~, paternal, at 1p36.11 (chr1:25320307-25719620), 

involving the entire SYF2 (MIM *607090) and other four genes (C1orf63, RHD, TMEM50A and RHCE) not eligible 

candidates according to their function, and of 24 kb~, maternal, at Xq22.3 (chrX:104155507-104179536), involving 

part of the IVS2 of IL1RAPL2 (MIM *607090), were identified (Supplementary Fig. 1). These CNVs are, respectively, 

rare and unreported according to the DGV. Expression assays of the paternal CNV gene SYF2 showed an increase of 

the corresponding transcripts in the patient’s and father’s blood compared to controls (Supplementary Fig. 1), whereas 

expression of the maternal CNV gene IL1RAPL2 (MIM *607090) could not be tested as the gene was not found 

expressed in blood but only in the central nervous system (data not shown). We therefore classified as likely benign the 

1p36.11 CNV, and of uncertain significance the Xq22.3 CNV. 

The identified CNVs were submitted to ClinVar database (http://www.ncbi.nlm.nih.gov/clinvar/, March 2019, 

date last accessed; accession numbers SCV000893133, SCV000893134 and SCV000893135). 

P2, P3, P4, P5P7, P8, P9P14, P15P22 

Molecular cytogenetics data of these patients are provided in Supplementary Table 2b.  

Genotype-phenotype correlation and SRO identification 

In order to facilitate genotype/phenotype correlations, the NDDs exhibited by all 22 patients are shown in Fig. 

2a on the left side of the bars indicating the microduplications. Clinical data from all patients of the literature and the 

above mentioned databases are reported in Supplementary Table 2a.  

It is worth noting that patients carrying duplicated regions of very different sizes exhibit the same NDD 

phenotype, such as in the case of P1 compared to P10P15. Moreover, the NDD phenotype of P4, presenting isolated 

learning disability, is even less severe than those exhibited by the patients carrying the smallest duplications, i.e. P1, 

showing DD, speech and language delay (SD), ID and ASD, and P2, who had isolated SD. Interestingly, the less severe 

NDD phenotype is exhibited by P4, whose opposite rearrangement causes KS in a nephew of her brother [23] 

(Supplementary Table 2a). Instead, only half of the series of patients P16P23, who carry the largest duplications, 

exhibited DD/ID (Fig. 2a, Supplementary Table 2a). The distribution of NDD traits in the entire patient cohort is 

depicted in Fig. 2b. 

As shown in Fig. 2a, breakpoints (bkps) involving the 9q subtelomeric region are highly variable, leading to differently 

sized microduplications; however, proximal and distal bkps underlying P6P9, P10P15, and P1623 are recurrent. 

Furthermore, with the exception of P4, which is the result of an unbalanced reciprocal translocation [23], all the gains 

are interstitial (Supplementary Table 2a). 
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Within the largest 9q34.3 duplications of ~3.3 Mb, we annotated the 89 RefSeq included genes (Supplementary 

Tables 2b and 3). Among the 73 brain-expressed genes, eight are classified as OMIM-morbid genes for NDDs, namely 

EHMT1, CACNA1B, GRIN1, KCNT1, INPP5E, MAN1B1, MRPS2, and PMPCA. Out of them, only GRIN1, CACNA1B 

and EHMT1 may be inferred as dosage-sensitive according to a pLI of 0.97, 0.98 and 1, respectively. However, EHMT1 

maps entirely within the SRO, whereas CACNA1B is only partially embedded.  

9q34.3 microduplications cohort versus 9q34 DS and KS 

As shown in Fig. 2c, in a subset of 4 patients, dysmorphisms described in 9q DS appeared more represented 

than those reported in KS, and some, namely ear dysmorphims and scoliosis, are shared by the two conditions. 

However, some of the features reported as distinctive of 9q DS, i.e. dolichocephaly, ptosis, microstomia and 

arachnodactyly, have not been found in the cohort. The same applies to brachy(micro)cephaly, synophrys, 

hypertelorism, upslanting palpepral fissures, flat face/midface hypoplasia, cupid bowed upper lip, everted lower lip, and 

macroglossia, that are characteristic of KS. It is noteworthy that no patient in the sample exhibited either heart or kidney 

malformations, that have been reported in both 9q34 DS and KS.  

 

Discussion 

We report on the patient (P1) who carries the smallest 9q34.3 duplication encompassing EHMT1 reported to 

date and compare his clinical and molecular cytogenetic data to a sample of 21 further patients from a review of 

literature and databases (Fig. 2a). We selected the patients carrying a pure 9q34.3 microduplication ≤ 3.3 Mb in size 

encompassing the entire EHMT1 according to the evidence that patients with an EHMT1 pathogenic variant and those 

with a 9q34.3 deletion ≤ 3 Mb in size have highly comparable clinical findings [3, 40]. Complex 9q34.3 rearrangements 

[12; patients 47 in 1] were excluded from our survey.  

In the selected cohort, the 9q34.3 microduplications were inherited in 6 out of the 12 characterized trios 

(Supplementary Table 2a). However, in two among the apparently de novo gains, FISH analysis carried out on parents 

with 9q34.3 locus specific probes unveiled that the pure 9q34.3 microduplication was the result of the inheritance of a 

derivative chromosome as in P3 [23] or P4 [13] (Supplementary Table 2a). We would therefore recommend, in order to 

properly address genetic counseling, conducting FISH analysis in parents of patients carrying an apparently de novo 

9q34.3 microduplication. Indeed, the presence of the two cousins of P3, both affected by ID, suggests a further balanced 

rearrangement segregating in the family.  

Among the genes located within the 3.3 Mb 9q34.3 region that are brain-expressed and predicted to be dosage 

sensitive, only three turned out to be plausible candidates for the phenotype observed in our cohort (Supplementary 

Table 3). They include GRIN1, mapping outside the SRO, CACNA1B and EHMT1, respectively partially and entirely 
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located within the SRO. GRIN1 (MIM *138249), encoding a subunit of the NMDA receptors, has a key role in the 

plasticity of synapses. Individuals carrying GRIN1 loss of function mutations may exhibit a NDD with or without 

hyperkinetic movements and seizures (MIM #614254, #617820) (Supplementary Table 3). However, the presence of a 

comparable neurodevelopmental phenotype in P9P14 and P1, carrying and not carrying, respectively, a duplication 

involving GRIN1, is evidence against its relevant contribution to the phenotype. As regards CACNA1B (MIM *601012), 

coding for a subunit of an N-type voltage-dependent calcium channel and involved in calcium-dependent 

neurotransmission, its partial duplication is present in P5P8. Based on the orientation of the duplicated region, the 

rearrangement might have resulted in either the preservation of the reading frame or in a gene break, thus leading to a 

silent effect on gene transcription or haploinsufficiency primed by gene disruption, respectively. Unfortunately, these 

occurrences could not be evaluated in blood, as the gene has a brain-specific expression. However, Yatsenko et al. [4] 

reported on healthy family member carriers of a heterozygous CACNA1B deletion. In addition, the gene has so far been 

associated in humans with dystonia (MIM #614860) through dominant gain of function mutations (Supplementary 

Table 3) and the null-mutant mice showed no gross abnormalities and normal motor coordination [41]. The overall 

evidence so far does not permit attributing CACNA1B with a role in the phenotype associated with the 9q34.3 

microduplications. Conversely, EHMT1, encoding a chromatin remodeling protein, can be appointed as the gene 

responsible for the comparable NDD phenotypes exhibited by patients carrying 9q subtelomeric microduplications. This 

view is supported by the demonstration, for the first time in P1, of an effective EHMT1 overexpression in blood. 

Evidence of a NDD phenotype effected by microduplication leading to overexpression of only EHMT1 underlines the 

dosage sensitivity of this chromatin remodeling gene, consistent with the sharp developmental alterations observed in 

Drosophila models overexpressing EHMT1 [42]. 

In P1 a strength of language skills compared to other cognitive skills, a feature witnessed in KS patients [6], 

was evident. As data retrieved on the patients at comparison were scarce, we cannot confirm the existence of such a 

cognitive profile in the overall cohort. In addition, it is likely that penetrance of DD (73%), ASD (36%), that had rarely 

been reported in association with 9q34.3 DS, and SD (14%) (Fig. 2b) is underestimated in the sample. For instance, we 

do not have information about development for P8 and ASD was recorded as absent in P5P7, despite the possibility 

of exhibiting ASD [37] (Supplementary Table 2a). Similarly, we know that facial features, as well as skeletal defects, 

were among the indications for genetic testing in 3 patients of the series P15P22 (Supplementary Table 2a). However, 

as the signs were not detailed, they could not be accounted for, so dysmorphic features shown in Fig. 2c are 

underestimated too. 

Interestingly, the same developmental profile observed in P1 was found in the patient reported by Gijsbers et 

al. [12], whose cognitive level was lower. Indeed, this patient, who carries a ~2.9 Mb duplication at 9q34.3 
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encompassing EHMT1, was not included in our sample because of the complexity of the rearrangement, showing a 

triplication in the middle of two flanking duplicated regions. The hypothesis of a neurocognitive and behavioral profile 

may be supported by findings in models with haplo-insufficiency for the gene. For instance, mutant Drosophilas 

showed normal learning, but severe impairment in short- and long-term memory in a courtship conditioning paradigm 

[43]. Of relevance, P1 and the patient reported by Gijsbers et al. [12] developed feet deformities with walking 

difficulties, a feature witnessed (probably as congenital) in several KS patients [44]. It is noteworthy that a follow-up is 

crucial in order to observe all the possible skeletal anomalies, which might become evident with age, as demonstrated 

by examination of the feet at 13 years in P1 and at 16 years in that reported by Gijsbers et al. [12].  

We hypothesize the existence of a 9q34.3 microduplication syndrome encompassing EHMT1 characterized by 

a variable clinical spectrum ranging from non-syndromic to syndromic NDDs with certain facial and skeletal features 

mainly resembling either 9q34.3 DS or KS, or both, but very likely without a gestalt. As regards neurodevelopment, the 

core features may be speech delay and learning disabilities. 

In conclusion, by the clinical and molecular description of a patient carrying a small duplication involving 

entirely the EHMT1 gene compared to a reference cohort with duplications of increasing size, we have provided 

evidence that EHMT1 is crucial for pathogenicity of the 9q34.3 microduplications. We propose to add further signs 

supporting the existence of a 9q subtelomeric microduplication syndrome. For this purpose, a deep cognitive-behavioral 

and clinical phenotyping is advisable for both the patients and the transmitting parents, taking into account that the 

rearrangement has been inherited in a high proportion of patients. We believe this approach will be useful to better 

characterize the hypothesized cognitive profile associated with EHMT1 dosage variation, where language is slow to 

develop, but then becomes stronger than other cognitive skills, as well as to unveil NDDs also in apparently healthy 

carriers, as has been demonstrated for 16p11.2 recurrent deletion [45]. Moreover, differently from what occurs in 

Williams-Beuren syndrome and Williams-Beuren region duplication syndrome [46], both EHMT1 dosage imbalances 

seem to express the same NDDs. This phenomenon is known for NDDs related recurrent CNVs, where gains usually 

show a reduced penetrance compared to their reciprocal losses [47]. 
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Legend to Figures 

Fig. 1 Photographs of patient 1 and molecular characterization of his 9q34.3 microduplication. P1 at the age of 26 

months (a), 6 years and 6 months (b, left profile; c, frontal view), and 13 years (d). (e, f) Feet after surgery. (g) Array-

CGH analysis identifies a de novo 527 kb duplication at 9q34.3 (chr9:140498690-141025921, hg19). (h, i) FISH 

analysis performed by using probe RP11-644H13 on proband’s metaphases (h) and interphase nuclei (i) shows 

increased/double fluorescent signals on chromosome dup(9q34.3) (arrowed) as compared to those observed on normal 

chromosome 9. (l) Scatter plots, obtained using TaqMan probes, show increased EHMT1 expression in P1 (circular dot) 

compared to 10 normal individuals (circular dots). The horizontal dotted bars in the control expression indicate the 

range between mean ±2 standard deviation values. CTRL, controls 

Fig. 2 Chromosome 9q34.3 microduplications encompassing EHMT1 and penetrance of developmental and clinical 

features exhibited by the carrier patients. (a) UCSC Genome Browser Genome viewer (hg19) comparing the extension 

of the novel duplication (P1, speckled bar) with those reported in literature and databases (black bars). The patient (P) 

or patient series PP number is indicated on the right side of each duplication bar. On the left side of each 

microduplication’s bar the associated neurodevelopmental disorders are shown: ASD, autism spectrum disorder; DD, 

developmental delay; H, hyperactivity; ID, intellectual disability; LD, learning disability; SD, speech delay. The light 

blue shaded rectangle represents the SRO, Smallest Region of Overlap across the duplications. RefSeq UCSC genes 

associated to a neurological phenotype are shown in green. (b) Penetrance of each developmental disorder exhibited by 

the 22 patients carrying a pure 9q34.3 duplication. (c) Penetrance of dysmorphisms exhibited by the 4 patients (P1P4) 

for whom detailed information was available; asterisks, features typically exhibited by patients with 9q34 duplication 

syndrome (9q DS); small circles, features typically exhibited by patients with Kleefstra syndrome (KS): LAF, 

long/asymmetric face; PNB, prominent nasal bridge; NHPB, narrow/horizontal palpebral fissures; DE, deep-set eyes; 
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AN, anteverted nostrils; MRG, micrognatia/retrognatia; ED, ear dysmorphisms; HP, high palate; STF, slandered/tapered 

fingers; S, scoliosis ; TE, non-congenital talipes equinovarus  

Supplementary Fig. 1 Array-CGH analysis identifies two rare inherited CNVs: a paternal 399 kb duplication at 

1p36.11 (chr1:25320307-25719620, hg19) (upper panel), and a maternal 24 kb gain at Xq22.3 (chrX:104155507-

104179536, hg19) (lower panel) 

Supplementary Fig. 2 Scatter plots, obtained using TaqMan probes, show increased SYF2 expression in P1 (Pt) and 

his father (F) (circular dot) compared to 10 normal individuals (Ctrls, circular dots). The horizontal dotted bars in the 

control expression indicate the range between mean ±2 standard deviation values 
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