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Abstract

Copy number variation (CNV) is a major source of genomic structural variation. The aim of

this study was to detect genomic CNV regions (CNVR) in Valle del Belice dairy sheep popu-

lation and to identify those affecting milk production traits. The GO analysis identified possi-

ble candidate genes and pathways related to the selected traits. We identified CNVs in 416

individuals genotyped using the Illumina OvineSNP50 BeadChip array. The CNV associa-

tion using a correlation-trend test model was examined with the Golden Helix SVS 8.7.0

tool. Significant CNVs were detected when their adjusted p-value was <0.01 after false dis-

covery rate (FDR) correction. We identified 7,208 CNVs, which gave 365 CNVRs after

aggregating overlapping CNVs. Thirty-one CNVRs were significantly associated with one or

more traits included in the analysis. All CNVRs, except those on OAR19, overlapped with

quantitative trait loci (QTL), even if they were not directly related to the traits of interest. A

total of 222 genes were annotated within the significantly associated CNVRs, most of which

played important roles in biological processes related to milk production and health-related

traits. Identification of the genes in the CNVRs associated with the studied traits will provide

the basis for further investigation of their role in the metabolic pathways related to milk pro-

duction and health traits.

Introduction

The availability of several forms of DNA variants, such as single nucleotide polymorphisms

(SNPs) and copy number variants (CNVs), has played an important role in phenotypic varia-

tion studies. Most genetic and genome-wide association studies (GWAS) have investigated the

associations between SNPs as genetic variants and complex and economically important traits,

with the aim of identifying subsets of markers able to explain traits [1–5]. CNVs are polymor-

phic genomic regions, including deletions, duplications and insertions that involve DNA seg-

ment ranging from 1 kb to several Mb, that vary compared to a reference genome [6]. CNVs
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have been shown to be associated with complex traits in several species, including chimpanzees

[7], rats [8], and mice [9], and in livestock species such as cattle [10–14], goats [15], and pigs

[16, 17]. Like SNPs, these genomic structural variations are considered as important genetic

markers of phenotypic variation for complex traits. CNVs have recently been used as markers

of phenotypic variation, environmental adaptability, and for economically important traits or

disease susceptibility in livestock species [18–20]. However, few studies on CNVs have been

published for sheep. Some previous studies [21–23] analyzed CNVs based on comparative

genome hybridization arrays, while others [24–27] detected CNVs using SNP microarrays.

GWAS using CNVs and phenotypes have been developed in cattle breeds [19, 20, 28–31] and

in swine [32, 33]. However, to the best of our knowledge, no GWAS between CNVs detected

using the OvineSNP50K BeadChip array and economically important traits (milk, meat, etc)

in sheep breeds have been published.

In the current study, we carried out for the first time a GWAS between CNVs and milk-

production traits in sheep, with the aim of detecting genomic regions including CNVs affect-

ing these traits.

Methods

Ethics statement

Blood samples were collected from sheep by trained veterinarians. All the procedures were

approved by the Organismo Preposto al Benessere Animale of the University of Palermo, in

agreement with the recommendations of European Union Directive 2010/63/EU, to ensure

appropriate animal care.

Sampling and genotyping

A total of 468 of Valle del Belice sheep from four flocks in Agrigento province (Sicily) were

used in this study. About 10 mL of blood was collected from the jugular vein using vacutainer

tubes containing EDTA as anticoagulant. Genomic DNA was extracted from blood samples

using a salting-out method [34]. DNA amounts for each sample were quantified with Nano-

Drop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA), diluted

to a final concentration of 50 ng/μl (as required by the Illumina Infinium protocol), and stored

at 4˚C until use. Genotyping was performed using the Illumina OvineSNP50K BeadChip v2

array containing 54,241 SNPs. The positions of the SNPs on the chromosomes were deter-

mined from the ovine Oar_v3.1 genome assembly. All the 468 genotyped individuals passed

the quality control criteria of call rate > 98%.

Quality control of CNVs. CNVs were detected using Golden Helix SNP & Variation

Suite (SVS) 8.7.0 software (Golden Helix, Inc., Bozeman, MT, USA; www.goldenhelix.com).

We imported the Log R Ratio (LRR) values for each SNP from GenomeStudio 2.0 software

(Illumina Inc.) into SVS.

Unmapped SNPs and sex chromosomes were excluded from the analysis, leaving 52,413

markers for CNV mapping.

Quality assurance of the LRR data and filtering of outlier samples were performed using

SVS software, as described by Pinto et al. [35]. The derivate spread log ratio analysis was first

used to identify individuals with low-quality LRRs and samples showing genomic waves of

LRR signal intensity were subsequently discarded using the genomic wave detection and cor-

rection algorithm [36]. Principal component analysis (PCA) was applied to detect and correct

for the presence of batch effects and to correct the LRR values. Fifty-two samples were

excluded and the remaining 416 were used for CNV detection. All data from GenomeStudio

GWAS between CNVs and milk traits in sheep
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2.0 software (Illumina Inc.) related to Log R Ratio (LRR) and B allele frequency (BAF) for all

individuals are provided in the S1 Dataset.

CNV and CNVR detection. The optimal segmenting (CNAM) module of SVS 8.7.0 was

used to identify CNVs using the univariate approach that segments each sample independently

[20]. The following options in CNAM were used: univariate outlier removal; maximum num-

ber of 100 segments per 10,000 markers; minimum markers per segment 3; 2,000 permutations

per pair with a p-value cutoff of 0.005. Individuals with a waviness factor (WF) −-

0.05>WF>0.05 were also excluded, as suggested by Diskin et al. [36]. CNVRs were deter-

mined by aggregating overlapping CNVs identified in two or more samples as reported by

Redon et al. [37].

Phenotypic data. A total of 5,586 lactation records were collected for 481 Valle del Belice

sheep from four different flocks between 2009 and 2015. The following phenotypic data were

recorded according to a monthly Test Day (TD) scheme: daily milk yield (MY), milk fat per-

centage (FP), fat yield (FY), protein percentage (PP), protein yield (PY), and milk somatic cell

count (SCC). SCC was log-transformed to give the somatic cell score (SCS), using the formula

of Ali and Shook [38]. Data were edited using S.A.S. version 9.2 [39] and individuals with

fewer than three test-day records or with missing information for any trait were excluded from

the dataset. After editing, the observations were reduced to 5,446 phenotypic measures for

each trait for each of the 468 individuals (S2 Dataset).

Breeding values for milk production traits. A single trait repeatability test-day animal

model was used to estimate breeding values (EBVs) for the five milk production traits: MY,

FY, FP, PY, and PP, and for SCS using the REMLF90 program [40]. Briefly, the model

included fixed (i.e. parity, litter size, season of lambing) and random effects (additive genetic,

permanent environmental, and herd by test-day interaction effects). Several models were

tested to explore how to fit days in milk and to optimize the analysis. Comparisons between

the residuals obtained from the different models showed no significant differences (data not

shown). Days in milk were then included as a linear covariate in the model to account for lac-

tation stage as reported by Leitner et al. [41]. The available pedigree information included

5,175 animals including 180 rams and 2,549 dams. Estimated breeding values for all traits were

deregressed (DEBVs) according to Garrick et al. [42] as follows:

DEBV ¼
EBV
r2

where EBV is the estimated breeding value of each individual considering each milk produc-

tion trait and r2 is the reliability of that EBV. The DEBVs were considered as more accurate

estimates of expected phenotypes and were used as response variables in the GWAS analysis.

The descriptive statistics for the DEBVs of each trait are summarized in Table 1.

Genome-wide association study. A total of 416 individuals with both CNVs and DEBVs

were applied to the GWAS. Association tests were carried out using the Correlation-trend test’

plugin in SVS 8.7.0 software with PCA correction. Significant CNVs were detected when their

adjusted p-value was<0.01 after FDR correction. Only CNVRs from significantly associated

CNVs with at least one trait were considered for the annotation step.

Validation of association test. A simulation study to identify/confirm those CNV calls

resulted significantly associated with phenotypes of interest was performed by R software 3.5.1

[43]. In order to test the association for each investigated trait, the 70% of observations was

randomly sampled from the whole dataset to build a reference dataset. The remaining 30% of

observations are used as independent validation dataset useful to identify/confirm the associa-

tions or at least the direction of effects. Moreover, for each replicate only those CNVs resulted

associated in the reference dataset were used. This splitting procedure was replicated one

GWAS between CNVs and milk traits in sheep
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hundred times and the association was validated if the CNV was associated both in the refer-

ence and the validation dataset at least one time.

Gene contents and functional annotation. The gene content of the CNVRs was assessed

using Ovis aries v3.1 in the Genome Data Viewer genome browser (https://www.ncbi.nlm.nih.

gov/genome/gdv/browser/?context=gene&acc=101104604).

Moreover, we performed an enrichment analysis using the Sheep Quantitative Trait Locus

(QTL) Database (https://www.animalgenome.org/cgi-bin/QTLdb/OA/index) to identify

CNVRs that overlapped QTL regions (QTLRs). We removed the QTLRs that were>5 Mb,

and only considered those overlapping at least 50% of each CNVR.

We investigated gene function using the DAVID Bioinformatics Resources 6.8 (https://

david.ncifcrf.gov/summary.jsp) for Gene Ontology (GO) analysis and the Kyoto Encyclopedia

of Genes and Genomes (KEGG) database (http://www.genome.jp/kegg/pathway.html) for

pathway analysis.

Results and discussion

This study investigated a GWAS between CNVs and milk-production traits in sheep. Although

this is the first time that a similar study was performed on sheep, several genomic regions

including CNVs affecting these traits have been identified. However, considering the relative

low number of individuals affecting the power of the association analysis, our results constitute

a preliminary report on the association between these markers and quantitative traits in sheep.

Therefore, further analysi on a wider sample could provide more robust results and could be

of value for future studies.

CNV and CNVR detection

CNAM univariate segmentation of the SVS 8.7.0 with PCA detected 7,208 CNVs (S1 Table)

with an average of 17.32 per sample and an average length and median size of 348.1 kb and

231.25 kb, respectively. After aggregating the overlapping CNVs, a total of 365 CNVRs were

identified (S2 Table) covering 118.36 Mb, corresponding to 4.8% of the genomic sequence of

the autosomes and 4.05% of the total genome length. The average number of CNVs involved

in CNVRs was 14.58 per individual, with an average length and median size of 324.27 kb and

172.58 kb, respectively. This is partially due to the fact that the BeadChip SNP50K assay was

originally developed for high-throughput SNP genotyping in association studies. Then, the

length of the identified CNVRs might be larger due to low density and non-uniform distribu-

tion of SNPs in Bead Chip SNP50K as reported by Hou et al. [14]. Forty-three CNVRs only

included gains (duplications) and 320 only included losses (deletions). As reported by Prinsen

et al. [44] and Liu et al. [24], it is expected that SVS tool detected more losses than gains. This

is due to the higher power in methodology to identify homozygous losses (where both copies

of a locus are lost) linearly correlated to exponential intensity signals. Similar results in terms

Table 1. Descriptive statistics for DEBVs of the productive and the health traits.

Trait Individuals Mean Standard Deviation Min Max

MY 468 100.66 273.40 -797.92 1412.61

FP 468 0.01 0.04 -0.16 0.16

FY 468 7.90 17.88 -5163 90.38

PP 468 0.02 0.04 -0.14 0.18

PY 468 7.29 15.48 -79.54 77.98

SCS 468 0.001 418.20 -44.29 0.01

https://doi.org/10.1371/journal.pone.0215204.t001
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of coverage (141.6 Mb and 5.8% of genomic sequence of autosomes) were obtained by Yan

et al. [27] using the Illumina OvineSNP50K BeadChip with SVS software. Moreover, the same

authors [27] demonstrated the characteristics of the CNVRs depended on the algorithm used

(SVS, PennCNV, and cnvPartition) in terms of the number of detected CNVRs, total length,

and percentage of coverage of the autosomal genome. Differences in the array density and soft-

ware/algorithm used may thus mean that our results were not totally comparable with other

studies on sheep [23–26] and cattle [11–14].

CNV association analyses

Association analysis for each trait was performed for 416 individuals with both CNV and

DEBV information. After the CNVs merge, the results showed 31 significant CNVRs associ-

ated with the studied phenotypic traits (FDR corrected p-value<0.01) (Table 2). The results of

the CNV-association analyses for milk production and the SCS traits are shown as Manhattan

plots in Figs 1 and 2. In the Manhattan plots, the 0.01 FDR significance thresholds were shown

with red colored line. Regarding the production traits, 13, 11, 10, and two CNVRs were signifi-

cantly associated with MY, FP, FY, and PP, respectively. No CNVR was significantly associated

with PY and SCS, and there is therefore no threshold line in the PY and SCS plots. Of the 31

associated CNVRs, only CNVR_1 identified on chromosome 6 was simultaneously associated

with three production traits (MY, FY, PP), three CNVRs on chromosomes 13, 14, and 19 were

associated with two traits, while the remaining CNVRs (27) were each associated with only

one trait (Table 2).

Association test validation

As expected, PY and SCS traits didn’t show any CNVs associated neither in the original whole

dataset nor in the simulated ones.

With regards to MY, all CNVRs associated in the original dataset showed a probability

greater than 67% of being associated in the reference dataset and only 6 CNVRs out of 13, i.e.,

CNVR_1, CNVR_6, CNVR_7 and CNVR_12, CNVR_19; CNVR_26 confirmed the associa-

tion in the validation dataset at least one time.

For FY, FP, and PP traits, the CNVRs associated in the original dataset showed a probability

greater than 74%, 49%, and 57%, respectively, of being associated in the reference one. More-

over, for these traits, 6 CNVRs out of 10 for FY (i.e. CNVR_1, CNVR_7, CNVR_13,

CNVR_16, CNVR_25, CNVR_26), 4 CNVRs out of 11 for FP (i.e. CNVR_20, CNVR_22,

CNVR_29, CNVR_31), and one out of two for PP (i.e. CNVR_5) confirmed the association in

the validation dataset. Nevertheless, the results of the simulation are partially satisfying but the

results of those CNVs associated in both reference and validation datasets probably highlight

CNV calls useful for further studies.

Gene content and functional annotations

We investigated the content of the 31 CNVRs showing significant associations with the studies

traits in sheep QTL by interrogating the Animal QTL database. All CNVRs, except those on

OAR19, overlapped with QTLs, though not directly related to the traits of interest.

A total of 222 genes were annotated within the CNVRs significantly associated with the ana-

lyzed traits. However, not all CNVRs contained annotated genes, and two CNVRs did not

overlap with any annotated gene. Similar results were reported in previous studies on cattle

[30, 31]. This may be due to the genome assembly version, especially in non-human species

[31]. Several studies have highlighted the genome-wide distribution of CNVs in regions cover-

ing non-coding sequences, thus affecting the regulation of distant target genes [45]. We

GWAS between CNVs and milk traits in sheep
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Table 2. List of CNVRs significantly associated with MY, FP, FY and PP traits.

N˚ Chr Start End Length IND Genes MY FP FY PP QTL

CNVR_1 6 98915609 99081950 166342 2 CDS1 6.748E-11 0.000229 0.0006981 QTL:14011 Milk

CNVR_2 7 3206482 3429935 223454 4 7.99E-06

CNVR_3 7 18487054 18787472 300419 2 MYO9A, LOC105615633, LOC105615632, SENP8,

GRAMD2, LOC101110145

0.0008319

CNVR_4 7 22026509 22172957 146449 2 LOC101106264, LOC101106528, LOC105613077,

LOC105613076, LOC105613075

0.0008319

CNVR_5 9 78451353 78529564 78212 7 0.0002436 QTL:16015 Milk Fat

Yield

CNVR_6 13 19401523 20051589 650067 2 MALRD1 6.051E-07

CNVR_7 13 20379081 20547863 168783 2 PLXDC2, LOC105616667 6.051E-07 1.89E-08

CNVR_8 13 32965686 33058560 92875 2 ZEB1 1.89E-08 QTL:57750 Milk

Protein

CNVR_9 13 48832966 49706045 873080 27 LOC101117953, LOC101118207, LOC101110166 6.051E-07

CNVR_10 13 49006951 49706045 699095 41 LOC101117953, LOC101118207, LOC101110166 6.051E-07

CNVR_11 13 62376369 62539468 163100 2 LOC105606911, CBFA2T2, LOC101117009 8.93E-05

CNVR_12 14 14964181 15944658 980478 66 NETO2, TRNAM-CAU, ITFG1, LOC105613342,

PHKB, LOC101110611, LOC105613638,

LOC105602056, LOC105602057, LOC105608343

9.693E-09 QTL:57692 Milk Fat

Yield

CNVR_13 14 14964181 15916620 952440 5 NETO2, TRNAM-CAU, ITFG1, LOC105613342,

PHKB, LOC101110611, LOC105613638,

LOC105602056, LOC105602057, LOC105608343

9.693E-09 2.57E-05 QTL:57692 Milk Fat

Yield

CNVR_14 14 15008939 15700496 691558 13 NETO2, TRNAM-CAU, ITFG1, LOC105613342,

PHKB, LOC101110611, LOC105613638,

LOC105602056, LOC105602057, LOC105608343

9.693E-09 QTL:57692 Milk Fat

Yield

CNVR_15 14 17982653 18259322 276670 11 HEATR3, PAPD5, LOC105616847, ADCY7, BRD7 9.693E-09

CNVR_16 14 43271417 43445098 173682 3 CHST8 2.57E-05 QTL:160872 Somatic

Cell Score

CNVR_17 14 44947626 46765514 1817889 2 FXYD3, LGI4, FXYD1, FXYD7, FXYD5,

LOC101123657, LOC101102084, LSR, USF2, HAMP,

MAG, LOC105607576, LOC105602063, CD22, FFAR1,

FFAR3, LOC101103344, FFAR2, LOC105607577,

KRTDAP, DMKN, SBSN, GAPDHS, TMEM147,

ATP4A, LOC101108333, LOC105607579,

LOC105607578, LOC101104171, HAUS5, RBM42,

ETV2, LOC101121538, TRNAT-UGU, UPK1A,

ZBTB32, KMT2B, IGFLR1, U2AF1L4, PSENEN, LIN37,

HSPB6, PROSER3, LOC101122717, ARHGAP33,

PRODH2, NPHS1, KIRREL2, APLP1, NFKBID, HCST,

TYROBP, LRFN3, SDHAF1, SYNE4, ALKBH6, CLIP3,

THAP8, WDR62, OVOL3, POLR2I, TBCB, CAPNS1,

LOC101121285

2.57E-05

CNVR_18 14 45934555 46765514 830960 2 ZNF565, ZNF146, ZNF567, TRNAW-CCA, ZNF461,

ZNF382, LOC105616880, ZNF529, ZNF260,

LOC105616879, ZNF566, LOC101102665,

LOC105616881, ZFP14, LOC101106873, ZNF568,

ZNF829, LOC105607590, ZNF793, LOC101122971,

LOC105607591, ZNF383, LOC101105680,

LOC105607592, LOC101107890, ZNF527, ZNF569,

TRNAE-UUC, LOC105607593, LOC105616882,

ZNF570, ZNF420, LOC105616883, LOC101108155,

LOC101108415, LOC101108680, ZNF790,

LOC101102169

2.57E-05

CNVR_19 16 41463528 41637426 173899 2 PDZD2, LOC105602599 0.0001281

CNVR_20 17 57986988 58424553 437566 4 LOC105602890, LOC105602891, LOC105602892,

MED13L

0.0029188 QTL:57700 Milk Fat

Yield, QTL:14002

Somatic Cell Score

CNVR_21 19 16600046 17485391 885346 15 IRAK2, VHL, LOC105603408, BRK1, FANCD2OS,

FANCD2, EMC3, LOC105603409, PRRT3, CRELD1,

IL17RC, IL17RE, JAGN1, CIDEC, RPUSD3,

LOC101103096, LOC105603411, LOC105603410,

ARPC4, TADA3, OGG1, CAMK1, BRPF1, CPNE9,

MTMR14, LOC105603412, LHFPL4, SETD5,

LOC105603622, LOC105603415, THUMPD3,

LOC105603414, LOC105603416, LOC105603417,

SRGAP3

0.0020466

(Continued)
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Table 2. (Continued)

N˚ Chr Start End Length IND Genes MY FP FY PP QTL

CNVR_22 19 33480446 34472912 992467 25 LOC105603452, LOC105603453, SUCLG2,

LOC105603455, LOC105603454, LOC105603458,

LOC105603456, KBTBD8

0.0020466

CNVR_23 19 40179873 41112452 932580 41 FHIT, LOC105603489 2.491E-14

CNVR_24 19 43721683 43797484 75802 8 DNAH12, LOC105603505, TRNAC-GCA,

LOC105603504

1.48E-13

CNVR_25 19 44994104 45113902 119799 7 ERC2 2.05E-09

CNVR_26 19 46527885 46544501 16617 3 CACNA2D3 2.491E-14 1.48E-13

CNVR_27 23 12624271 13131785 507515 131 LOC101104705, SYT4 9.671E-05

CNVR_28 23 12649375 13131785 482411 22 LOC101104705, SYT4 9.671E-05

CNVR_29 23 37464041 38263780 799740 2 EMILIN2, LPIN2, MYOM1, LOC105604463, MRCL3,

LOC101105123, LOC105604464, LOC105604465,

TGIF1, DLGAP1, LOC105604469, LOC105604468,

LOC105604467, LOC105604466

9.671E-05

CNVR_30 23 40785469 40920221 134753 57 PTPRM, LOC105604482 9.671E-05

CNVR_31 23 47820944 48653824 832881 11 ZBTB7C, LOC105604508, LOC105604510,

LOC105604509, CTIF, LOC105604511, TRNAS-GGA

9.671E-05 QTL:13906 Milk Yield,

QTL:13907 Milk Fat

Yield

N˚: number of CNVR

Chr: number of chromosomes

Start: start position of CNVR in bp

End: end position of CNVR in bp

Length: length of the CNVR in bp

IND: number of individuals carrying theper CNVR

Genes: genes symbols identified within of the CNVRs referred to NCBI (www.ncbi.nlm.nih.gov)

MY: milk yield, FP: milk fat percentage, FY: fat yield, PP: protein percentage; phenotypic traits with p-value<0.01 after FDR corrected

QTL: Quantitative Trait Locus overlapped with CNVRs referred to Sheep QTL database (https://www.animalgenome.org/cgi-bin/QTLdb/OA/index)

https://doi.org/10.1371/journal.pone.0215204.t002

Fig 1. Manhattan plots of–Log10 (p-value) for milk yield (a), fat percentage (b) and fat yield (c).

https://doi.org/10.1371/journal.pone.0215204.g001

GWAS between CNVs and milk traits in sheep

PLOS ONE | https://doi.org/10.1371/journal.pone.0215204 April 23, 2019 7 / 13

http://www.ncbi.nlm.nih.gov
https://www.animalgenome.org/cgi-bin/QTLdb/OA/index
https://doi.org/10.1371/journal.pone.0215204.t002
https://doi.org/10.1371/journal.pone.0215204.g001
https://doi.org/10.1371/journal.pone.0215204


identified several genes that played important roles in biological processes related to the con-

sidered milk traits. CIDEC, LPIN2, CDS1, FFAR1, FFAR2, and FFAR3 genes within different

CNVRs, were involved in lipid metabolism. CIDEC (CNVR_21) encodes a member of the cell

death-inducing DNA fragmentation factor-like effector family, and its encoded protein pro-

motes lipid droplet formation in adipocytes and may mediate adipocyte apoptosis. The CIDEC
gene is regulated by insulin and its expression is positively correlated with insulin sensitivity,

and mutations in this gene may contribute to insulin resistant diabetes [46–49]. Lipins (LPIN2
gene in CNVR_29) have dual functions in lipid metabolism by serving as a phosphatidate

phosphatase and transcriptional co-regulators of gene expression [50]. Mouse studies sug-

gested that LPIN2 gene functioned during normal adipose tissue development, and may play a

role in human triglyceride metabolism. This gene represents a candidate gene for human lipo-

dystrophy, characterized by loss of body fat, fatty liver, hypertriglyceridemia, and insulin resis-

tance. The CDS1 gene (CNVR_6) is known to regulate phospholipid metabolism along with

other genes [51], by encoding an enzyme that regulates the amount of phosphatidylinositol

available for signaling by catalyzing the conversion of phosphatidic acid to CDP-diacylglycerol.

A group of free fatty acid (FFA) receptors, encoded by genes including FFAR1, FFAR2, and

FFAR3 (CNVR_17), previously known as GPR40, GPR43, and GPR41, respectively, are recep-

tors for FFAs and enable FFAs to act as signal molecules [52]. Mielenz [53] reported the pres-

ence of these genes in bovine mammary gland epithelial cells and in different ovine adipose

tissues. It is important to highlight that the fatty acid content and milk fat profile affect the

technological properties and the nutritional value of dairy products. Sicilian sheep dairy prod-

ucts are highly appreciated for their taste and flavor, and dairy production is mainly based on

high quality PDO cheese as Vastedda della Valle del Belice and Pecorino Siciliano. Our find-

ings could be applied on future selection scheme in Valle del Belice breed oriented towards

milk yield and milk composition (protein and fat content) to maintain competitiveness of

these products. The CAPNS1 gene (CNVR_17) showed significant effects on natural drip loss,

lightness and intramuscular fat content in sheep [54].

GO and KEGG analyses showed that the functions of the proteins encoded by these genes

included a wide spectrum of biological processes, cellular components, molecular functions,

Fig 2. Manhattan plots of–Log10 (p-value) for protein percentage (a), protein yield (b) and somatic cell score (c).

https://doi.org/10.1371/journal.pone.0215204.g002
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and pathways (Table 3),multiple significant categories (p�0.01). In particular, GO terms for

cellular components were strongly represented by GO:0005622 intracellular (14 genes), molec-

ular functions by GO:0003676 nucleic acid binding (14 genes) and, GO:0046872 metal ion

binding (14 genes), and biological processes by GO:0006355 regulation of transcription (11

genes) (Table 3). KEGG showed five genes related to ‘Regulation of actin cytoskeleton’ and

four related to ‘Oxytocin signaling pathway’ with enrichment of genes involved in several GO

terms was observed. We have not discussed in detail all the genomic regions within CNVRs

associated with the studied traits in detail, but have focused on selected genes in highly GO

enriched terms with reported associations with several specific traits related to livestock. We

therefore summarize the functions of the candidate genes within significant CNVRs below.

Some genes identified by DAVID software participated in biological processes that are related

to milk traits considered in this study. For example, the following genes located in CNVRs on

OAR14 were associated with MY and FY traits: CLIP3 (CNVR_17), which plays roles in the

positive regulation of protein phosphorylation (GO:0001934) and glucose transport

(GO:0001934) and in fat cell differentiation (GO:0045444); ADCY7 (CNVR_15), involved in

the positive regulation of cAMP biosynthetic process (GO:0030819) and intracellular signal

transduction (GO:0035556) directly related to inositol lipid-mediated signaling (GO:0048017);

APLP1 (CNVR_17) involved in the negative regulation of cAMP biosynthetic process

(GO:0030818); CHST8 gene (CNVR_16) involved in carbohydrate biosynthetic process

(GO:0016051);HCST gene (CNVR_17) in protein phosphorylation (GO:0006468) and positive

regulation of phosphatidylinositol 3-kinase signaling (GO:0014068), and PHKB (CNVR_12–

14 range) involved in glycogen metabolic process (GO:0005977). Furthermore,MALRD1 gene

(CNVR_6) on OAR13 was associated with MY and FY traits via roles in cholesterol homeosta-

sis (GO:0042632) and negative regulation of bile acid biosynthetic process (GO:0070858),

while SUCLG2 (CNVR_22) in OAR19 is involved in metabolic process (GO:0008152), and

ZBTB7C (CNVR_31) in OAR23 is involved in the positive regulation of fat cell differentiation

(GO:0045600). These sets of genes, associated to milk traits, possess a wide spectrum of molec-

ular function and provide a huge resource for testing hypotheses on the genetic basis of pheno-

typic variation within our breed.

Conclusion

At present, limited knowledge is available on association between CNVs and production traits

in sheep. To the best of our knowledge, this is the first GWAS of CNVs and milk production

traits in dairy sheep breed. Our results indicate that many CNVRs are associated with one or

more milk production traits, and probably contribute to phenotypic variation. In particular,

the two most significant CNVRs (p-value = 2.49E-14) located on chromosome 19 and associ-

ated with MY will be more investigated.

Table 3. The enrichment of GO terms associated with the CNVRs genes (P–value< 0.05).

Category GOTerm GO Name Count P-value

GOTERM_CC_Direct GO:0005622 intracellular 14 6.61E-04

GOTERM_MF_Direct GO:0003676 nucleic acid binding 14 7.27E-06

GO:0046872 metal ion binding 14 5.78E-04

GOTERM_BP_Direct GO:0006355 regulation of transcription, DNA-templated 11 1.04E-04

GO:0006366 transcription from RNA polymerase II promoter 3 0.041031

GO:0050832 defense response to fungus 2 0.057082

https://doi.org/10.1371/journal.pone.0215204.t003
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These findings provide a useful basis for the development of breeding programs. The genes

identified in the CNVRs associated with the studied traits may be used for more detailed inves-

tigation of their roles in the metabolic pathways related to milk production and health traits in

sheep. However, future studies based on a wider sample would be particularly relevant to

refine and validate our results.
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