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Nanostructured materials based on colloidal particles embedded
in a polymer network are used in a variety of applications ranging
from nanocomposite rubbers to organic-inorganic hybrid solar
cells. Further, polymer-network-mediated colloidal interactions are
highly relevant to biological studies whereby polymer hydrogels
are commonly employed to probe the mechanical response of
living cells, which can determine their biological function in physio-
logical environments. The performance of nanomaterials crucially
relies upon the spatial organization of the colloidal particles
within the polymer network that depends, in turn, on the effective
interactions between the particles in the medium. Existing models
based on nonlocal equilibrium thermodynamics fail to clarify
the nature of these interactions, precluding the way toward the
rational design of polymer-composite materials. In this article, we
present a predictive analytical theory of these interactions based
on a coarse-grained model for polymer networks. We apply the
theory to the case of colloids partially embedded in cross-linked
polymer substrates and clarify the origin of attractive interactions
recently observed experimentally. Monte Carlo simulation results
that quantitatively confirm the theoretical predictions are also
presented.

polymer nanocomposites ∣ polymer bridging ∣ colloidal aggregation ∣
depletion force

Incorporation of colloidal micro and nanoparticles in cross-
linked polymeric materials can be used to tune their structural

and electronic properties. For example, introducing inorganic
nanoparticles is a well-established technique to reinforce rubbers.
The mechanical properties of the material will strongly depend
on the size and conformation of colloidal aggregates (1–5), and,
in the last instance, on the polymer-network-mediated colloidal
interactions. Semiconductor nanocolloids can be incorporated
in polymer-based organic photovoltaic devices to improve effi-
ciency (6–10), therefore, controlling the aggregation of colloids
is needed to optimize the performances of materials for renew-
able energy production. For these reasons, there is an urgent
need of tools to understand and control colloidal interactions in
polymer networks, which is currently a bottleneck in the rational
design of functional nanostructured materials.

Besides technological applications, polymeric cross-linked
hydrogels are often adopted as model systems to study changes
in motility, differentiation, and morphology of living cells in re-
sponse to variations in the compliance of their environment
(11–18). Recently, experimental evidence of short-range attractive
interactions between silica colloids deposited on extremely soft
polyacrylamide hydrogels have been reported. However, knowl-
edge about the origin of these interactions is still missing (19).

Colloidal interactions mediated by nonadsorbing polymers
in dilute solutions have been successfully described in terms of
depletion by the theory of Asakura and Oosawa (20). Scientific
investigation then turned to the effect induced by adsorbing poly-
mers forming coronae around colloidal particles (21–25). The
main practical motivation being the clarification of the factors
leading to net repulsion between colloids in solution (steric stabi-
lization). However, the possibility of attractive polymer-mediated
interactions other than depletion was predicted under certain con-

ditions (i.e., partially saturated colloid surface). Thereby, the idea
of polymer bridging was introduced to explain such effects (24, 26,
27). In more recent years, extensive numerical studies have been
devoted to clarify the origin of effective interactions between na-
noparticles dispersed in concentrated polymer solutions or melts,
also for the case of adsorbing polymers (28–38).

In those limits the mixture can be treated globally using the
tools of equilibrium statistical mechanics, which is justified as
long as the polymers are not cross-linked and their concentration
is far away from the glassy regime. However, when the nanopar-
ticles are embedded in a polymer network the system as a whole
is intrinsically far from equilibrium. Under these conditions, the
origin of the effective attraction between colloids remains un-
clear, a major obstacle to its understanding being the inapplicabil-
ity of nonlocal equilibrium theories.

In the present article, we develop a local statistical mechanical
approach to the problem of colloids partially or totally embedded
in cross-linked polymers starting from basic laws of polymer phy-
sics. We implement a coarse-grained model and derive a fully ana-
lytical expression of intercolloidal forces assuming local thermo-
dynamic equilibrium on length scales smaller than the network
mesh-size. Our theory provides a physically transparent descrip-
tion of the effects without trivial fitting parameters. We test this
approach on the problem of interactions between colloids partially
embedded in the surface of soft cross-linked networks. The ana-
lytical results are in excellent quantitative agreement with Monte
Carlo simulations and reproduce available experimental data (19).
Therefore, our theory opens up the way for the rational design
of nanocomposite materials with tailored colloidal interactions
and microstructure. Moreover, it provides a basic and clear under-
standing of the interplay between entropic and energetic contri-
butions determining these interactions, which is an important the-
oretical result on its own with ramifications in biophysics and
surface science.

In this paper, first we introduce the coarse grained model for
the colloid-polymer network system made of silica colloids and
polyacrylamide (PAA), describe the analytical derivation of the
force arising between two colloids partially embedded in the net-
work, and analyze the predictions. Secondly, we present a set of
Monte Carlo simulations based on the same system and compare
the numerical results with the analytical theory.

Coarse-Grained Model
Polymer coils in dilute and semidilute solution can be successfully
modeled as blobs repelling each other with a Gaussian potential
of amplitude ≈2kBT and range comparable to the radius of gyra-
tion Rg of the coil (39–41). Similar approaches have been applied
to polymer melts and blends (42, 43). In this work, an analogous
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coarse-graining technique is adopted to model cross-linked
networks describing each chain connecting two cross-linking
points as a soft blob (44). We denote with N the average number
of monomers per chain and with b the monomer size. The Flory
radius for a self-avoiding random walk (SARW) RF ¼ bN 3∕5

(22, 45) is used to set the range of blob-blob repulsion.
Given thatRg ≈RF∕2, we approximate the Gaussian blob-blob

repulsion with a square shoulder potential

V bbðrÞ ¼
�
2kBT if r ≤ RF∕2

0 if r > RF∕2.
[1]

The free energy of stretching the end-to-end distance of a SARW
is (45, 46)

V spðrÞ ¼ kBT
�

r
RF

�
5∕2

: [2]

In our coarse-grained picture we assume that each blob is linked
to a set of nearest-neighbors by means of anharmonic springs
described by Eq. 2.

Experiments show that the short-range attraction between
silica colloids deposited on PAA gels is related to a colloid-gel
attraction that keeps the colloids confined and partially em-
bedded in the matrix. This effect is a consequence of attractive
dispersion interactions between acrylamide monomers and silica
surface. We estimate the energy of the van der Waals interaction
between an acrylamide monomer and a silica colloid as −δkBT
where δ ≈ 0.1. This estimate takes into account the hydrophilic
repulsion between silica and acrylamide and treats the colloid
surface as a flat wall (SI Appendix). We emphasize that our de-
scription is general and independent of the particular microscopic
origin of the underlying polymer-colloid attraction. Hence, an
appropriate value of δ can be worked out also for electrostatic,
hydrophobic or other microscopic monomer-colloid attractions.

The thickness of the polymer layer adhering to a weakly
adsorbing wall is ξads ¼ bδ−3∕2 (22, 45) and the free energy of
adsorption per chain is ϵads ¼ −kBTNδ5∕2 (22, 45). In the colloid
limit, that is for σ ≫ RF∕2, where σ is the diameter of the colloid,
ξads and ϵads can be taken as the range and the amplitude of an
effective blob-colloid interaction. We use

V bcðrÞ ¼

8><
>:

þ∞ if r − σ∕2 < ξads∕4

ϵads if ξads∕4 ≤ r − σ∕2 < ξads∕2

0 if r − σ∕2 ≥ ξads∕2.

[3]

The repulsive hard-core accounts for the entropic penalty of
squeezing the blob on the colloid surface. In the limit of high
cross-linking density (small N) or low monomer-colloid affinity
(small δ) the unphysical condition of ξads > RF might occur. To
avoid this inconsistency, the range of blob-colloid interaction
in Eq. 3 can be redefined as minðξads; RFÞ. For the cases pre-
sented in this work, 0.1σ < RF∕2 < 0.15σ. Because ξads ≤ RF
the approximation of colloid limit is acceptable. If RF ≈ σ,
Eq. 3 would need to be modified to account for the curvature
of the colloid surface, for instance by means of the Derjaguin
approximation (47, 48).

Different scalings, other than the SARW, could be easily im-
plemented. For instance the ideal chain scaling (22, 45), suitable
to describe a polymer network in Θ-solvent conditions, would
lead to changes in the range of the blob-blob repulsion and the
range and the depth of the blob-colloid interaction. It would also
imply the replacement of the potential in Eq. 2 with a harmonic
spring. The results of these modifications are discussed in SI
Appendix.

The scaling laws we used neglect prefactors of order unity. A
more accurate estimation of the blob-blob and the blob-colloid
interactions can be done depending on the details of the experi-
mental systems under consideration.

Using the scaling concepts of polymer physics we model the
network-colloids system at the local level as a binary mixture
of spheres interacting with square well potentials. All the relevant
physical aspects are embedded in the parameters σ, b, δ, and N.
The number of monomers per chain N controls the size of the
blobs as well as the stiffness of the network and can be tuned ex-
perimentally by changing the concentration of cross-linkers. The
range and strength of the blob-colloid interaction is regulated
by δ which can be tuned by manipulating the surface chemistry
of the colloids. Both δ and N influence the blob-colloid adhesion
energy.

Analytical Calculation of Intercolloidal Forces
Fiocco et al. (49) have recently shown that in a binary mixture of
hard spheres interacting with square well/shoulder potentials,
the effective force between two particles of species 1 (big) isotro-
pically surrounded by particles of species 2 (small) can be calcu-
lated as long as the concentration profile of the small spheres
around the big spheres is known. Exploiting our blob model, we
adapt this approach to calculate analytically the forces induced
between two colloids by the network, specifically addressing the
case of colloids partially penetrating the surface of soft cross-
linked hydrogels. It is straightforward to then extend the calcula-
tion to the general case of colloids fully immersed in the matrix.

Three main issues should be considered: (i) Blobs cannot be
treated as a fluid in equilibrium as they are connected in a
network by anharmonic springs, thus unable to fully explore
the configurational space; (ii) the blob-blob interaction is not
a simple hard-sphere repulsion but the combination of the poten-
tial V sp (Eq. 2) and the soft shoulder repulsion (Eq. 1); and (iii)
in this problem, colloids are not uniformly surrounded by blobs
but sedimented on the surface of the network and partially em-
bedded in it.

Point (i) can be tackled by making a local equilibrium approx-
imation. At length scales small enough that collisional physics
dominates, this approximation enables the calculation of local
physical quantities, even in systems that are macroscopically out
of equilibrium. In our case, blobs can be treated as freely fluctu-
ating, on a length scale given by the average mesh size of the
gel, which is ≈RF, augmented by the range of thermal oscillation
of the anharmonic springs, also ≈RF. Intercolloidal forces can be
computed adapting the approach of reference (49) for surface-
to-surface distances R − σ ≲ 2RF. Point (ii) can be fixed by treat-
ing the blobs as a nonideal gas with a second-order expansion
in the bulk density of the network, as shown below. Point (iii)
requires the introduction of the parameter l quantifying the
penetration depth of the colloid within the network (Fig. 1A),
which can be measured experimentally by atomic force micro-
scopy or evaluated by computer simulations. In the limit l > σ the
theory recovers the case of fully immersed particles. The depen-
dence of l upon N can be qualitatively assessed by using theories
that consider the balance between adhesion and substrate defor-
mation à la Hertz, such as the Johnson–Kendall–Roberts theory
(47). However, these theories provide quantitatively reliable es-
timates only in the limit of l ≪ σ, which is far from being satisfied
in the present case.

We define the radius of the blob-colloid hard repulsion
σbc ¼ σ∕2þ ξads∕4, the range of the blob-colloid attraction as
λσbc ¼ σbc þ ξads∕4 ¼ σ∕2þ ξads∕2, and we use the shortened
notation ϵads ≡ ϵ. The force between two colloids can be calcu-
lated as
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f ðR; lÞ ¼ −
1

β
σ2
bc½IðR; lÞ þ λ2ð1 − eβϵÞIλðR; lÞ�

IðR; lÞ ¼
Z

π

0

dθ
Z

π

−π
dϕρðS;R; lÞ cos θ sin θ

IλðR; lÞ ¼
Z

π

0

dθ
Z

π

−π
dϕρðSλ;R; lÞ cos θ sin θ:

[4]

In the above equation ρðr; R; lÞ is the density of blobs given a
center-to-center distance between the colloids R ¼ jRj and a
penetration depth l. The vectors S and Sλ are shown in Fig. 1A
and β ¼ 1∕kBT. The integrations are carried out in spherical
coordinates with main axis parallel to R and centered around
one of the colloids. Eq. 4 is derived step-by-step in SI Appendix.

Approximating the blobs as an ideal gas, the density can be
written as

ρðr;R; lÞ ¼ ρ0e−βV bccðr;R;lÞ; [5]

where ρ0 is the bulk density of blobs. V bccðr;R; lÞ is the blob-
colloid potential energy landscape in the presence of the two
colloids. Using Eq. 5, f ðR; lÞ can be evaluated analytically (SI
Appendix). The intercolloidal polymer-mediated effective pair
potentials V ðR; lÞ can be worked out by integration and is plotted
in Fig. 1B for a set of penetration depths. V ðR; lÞ is purely attrac-
tive and always zero forR − σ > ξads. BecauseRF ≥ ξads, the local
equilibrium approximation is always valid within the range
of V ðR; lÞ.

Our theory allows us to clearly identify the physical effects
behind V ðR; lÞ. Each colloid is surrounded by a spherical shell
(corona) with high polymer density ρ 0 ¼ ρ0e−βϵ, sketched as
the outer annular region in Fig. 1A. When the shells surrounding
the two colloids overlap, a region of higher polymer density ρ 0 0 ¼
ρ 02 ¼ e−2βϵ appears. In this volume, a polymer blob adheres to
the surface of both colloids, forming a bridge and thereby low-
ering the overall free energy of the system. The bigger the brid-
ging region, the stronger the attraction. Only the portions of the
bridging region that are immersed in the network contribute to
the interaction, which explains the reduction in amplitude and
range of V ðr; lÞ when the penetration depth of the colloids l
decreases.

However, the amplitude of the colloid-colloid attraction, com-
puted using realistic values of N, b, and σ heavily overestimates
experimental measurements reported in ref. 19. This overestima-
tion is not surprising, because Eq. 5 neglects blob-blob interac-
tions that effectively account for the steric repulsion between
polymer coronae surrounding the colloids (24). A more reason-
able result is obtained correcting locally Eq. 5 for blob-blob in-
teractions. We treat the blobs as a gas of Brownian hard spheres
with effective volume v and expand the osmotic pressure ΠðρÞ to
the second order in ρ. Then, we use the general relation between
an external potential V ðrÞ and ΠðρÞ to extract ρ in the limit
vρ0 ≪ 1. Following the derivation presented in SI Appendix we
obtain

ρðr;R; lÞ ¼ ρ0e−βV bccðr;R;lÞ

1þ vρ0e−βV bccðr;R;lÞ : [6]

The use of Eq. 6 instead of Eq. 5 also allows the analytical cal-
culation of the force in Eq. 4.

The effective hard-sphere volume of the blobs is related to the
second virial coefficient

B2 ¼ 2π
Z

∞

0

r2½1 − e−βV eff ðrÞ�dr ¼ 2v: [7]

Without considering anharmonic springs connecting the blobs,
the effective blob-blob potential V effðrÞ would reduce to Eq. 1
and Eq. 7 would give v ¼ ðπ∕6Þð1 − e−2ÞR3

F. However, anharmo-
nic springs reduce the effective hard-sphere volume. A simple
argument to account for this effect is the following: two blobs
linked by the potential in Eq. 2 are confined within a distance
≈RF with an average energy ≈kBT. Thus, confinement simply re-
duces the amplitude of the repulsion in Eq. 1 from 2kBT to kBT.
The resulting effective volume is

v ≈
π
6

�
1 −

1

e

�
R3

F ¼ π
6

�
1 −

1

e

�
b3N 9∕5: [8]

The colloid-colloid pair potentials derived using Eqs. 4, 6, and 8
are shown in Fig. 1C. Using the same parameters as for curves
in Fig. 1B, we find a substantial reduction in the depth of the
attractive wells that now agree with experimental observations.
This effect is explained with the reduction of polymer density
in the bridging region by a factor ð1þ vρ0e−2Þ−1 when Eq. 6 is
used instead of Eq. 5 to account for blob-blob repulsion. Physi-
cally, correcting for blob-blob repulsion restores the disjoining
osmotic pressure between polymer coronae coating the particles
(24), which partially hinders the bridging.

Consistent with pioneering theoretical analysis of colloidal
stability by de Gennes (22) and Pincus (24), our model accounts
for the interplay between attractive energetic contributions and
steric repulsion. Also, we recover the net repulsive behavior in
the V ðR; lÞ upon increasing the blob density (24). In this case
the corona surrounding the colloids is saturated and no bridging
can occur. The interaction is then dominated by steric repulsion
between polymer coronae, which is effectively accounted via the
blob-blob repulsion. Predictions by our theory in this regime are
shown in SI Appendix.

In Fig. 1D we show V ðR; lÞ computed using the same para-
meters as in Fig. 1C but with δ ¼ 0. In this regime there is no
polymer adsorption, and V ðR; lÞ reduces to the typical shape of
depletion interaction potentials. However, the amplitude of the
attraction is experimentally negligible, indicating that entropy
driven intercolloidal attraction plays a marginal role in networks
of nonadsorbing polymers. The interaction is dominated by brid-
ging or steric repulsion in networks of adsorbing polymers.
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R/σ
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1 1.1 1.2
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−0.1
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l/σ=0.0−0.2
l/σ=0.3
l/σ=0.4
l/σ=0.5
l/σ=0.6
l/σ=0.7
l/σ=0.8−1.0

A

Fig. 1. Theoretical model for polymer-network-mediated colloidal interactions. (A) Schematic layout of two colloids with diameter σ (dark blue circles) at
distance R ¼ jRj partially embedded in a polymer substrate delimited by the horizontal dashed line. The dashed circle of radius jSj ¼ σbc delimits the range of
blob-colloid hard-core repulsion whereas attractive blob-colloid interaction of energy −ϵ is active in the annular region of internal radius σbc and external
radius jSλj ¼ λσbc. (B and C) Theoretical colloid-colloid effective potentials computed for N ¼ 1;000, b ¼ 0.005σ, and δ ¼ 0.1 for different values of l using the
ideal gas approximation for distribution of the blobs in Eq. 5 (B) and applying the second-order correction for blob-blob interactions in Eq. 6 (C). (D) Pair
potentials computed assuming ϵ ¼ 0. The legend applies to B, C, and D.

Di Michele et al. PNAS ∣ June 26, 2012 ∣ vol. 109 ∣ no. 26 ∣ 10189

A
PP

LI
ED

PH
YS

IC
A
L

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1202171109/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1202171109/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1202171109/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1202171109/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1202171109/-/DCSupplemental/Appendix.pdf


Consistent with our results, short-range attraction between
colloids has been described by the polymer reference interaction
site model (PRISM) integral equations theory (29, 30) and con-
firmed by extensive computer simulations studies (31–38) for
the case of equilibrium dense polymer solutions and melts. In
particular, Hooper and Schweizer (29, 30) describe four types of
polymer-mediated colloidal forces, including contact depletion
interaction, direct polymer bridging, and steric repulsion. Our
analytical theory recovers those situations with extended applic-
ability to the case of nonequilibrium cross-linked polymer net-
works with fully or partially embedded colloids.

Monte Carlo Simulations
A set of Monte Carlo simulations in the canonical ensemble
based on our blob model were performed to check the predictions
of our theory. We use blob-blob repulsion as described by Eq. 1.
Each blob is linked to six nearest-neighbors using the potential
in Eq. 2. The network is initially arranged in a simple cubic lattice
of cell parameter RF spanning the simulation box in x and y
direction, with periodic boundary conditions. Blobs constituting
the bottom layer are confined to the plane z ¼ 0 by a potential
V spðzÞ ¼ kBTðz∕RFÞ5∕2. Colloids interact with blobs through the
potential in Eq. 3 and with other colloids via hard-sphere repul-
sion. Gravity of realistic modulus pushes the colloids toward
the surface of the network. Full details about the simulations are
provided in SI Appendix. A typical snapshot of the system is
shown in Fig. 2A.

To calculate theoretical pair-potentials and compare them with
simulated ones, we need to determine the penetration depth of
the colloids l and the bulk density of the network ρ0. We run a set
of simulations of single colloids at different values ofN and mea-
sure the density profile ρðzÞ of the polymer gel using the center of
the colloid as a reference. The density ρðzÞ is evaluated sampling

the blobs distribution far away from the colloid to avoid pertur-
bations following the deformation of the network. Curves of ρðzÞ,
shown in Fig. 2B, are fitted using the Fermi function:

ρðzÞ ¼ ρ0

1þ exp
�
z−lþδ∕2

Δ

� : [9]

The parameter Δ determines the width of the network interface
that, as would happen in experimental situations, is not sharp.
Fluctuations in ρðzÞ are a consequence of the layered structure
of the network and are more evident for small N, when the net-
work is stiffer. The bulk density ρ0 increases with decreasing N
due to the reduction of RF as well as because of the increasing
stiffness of anharmonic springs which causes the gel to shrink. As
shown Fig. 2C, l monotonically increases with N due to the soft-
ening of the network and the increasing of ϵ. We emphasize that
the penetration is only due to colloid-blob adhesion. Gravity
alone is not enough to cause any significant penetration.

In Fig. 2D we show color maps of the blobs density distribution
ρðx; zÞjy¼0 for different values of N, with the plane y ¼ 0 passing
through the diameter of the sphere. As expected, a corona of high
monomer density surrounds the surface of the colloid embedded
in the network.

In Fig. 2E we show blob-distribution maps for a two-colloids
system built upon changing the colloid-colloid distance R by
taking sections through the planes μ and Σ as sketched in Fig. 3F.
It is clear that when the accumulation shells surrounding single
colloids overlap, the region of high polymer density appears to
form a bridge between the particles. Combining sections Σ and
μ, we can reconstruct the shape of the bridging volume as a func-
tion of R. At short distance, it assumes a semitoroidal shape
due to the exclusion of blobs from the central, narrow part of the
gap between the colloids. Upon increasing R, the radius of the
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600 800 1,000
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0.5

N
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C

R/σ=1.00

µ
Σ

R/σ=1.10

E

R/σ=1.20

0.2

0.5

0.8
F

Σ
µ

Fig. 2. Monte Carlo simulations of colloids partially embedded in a polymer network. (A) Snapshot of the system. The two colloids are represented by big light
green beads. Smaller beads represent blobs: bottom layer (red), bulk layers (light blue), and top layer of the network (green). (B) Density profile ρðzÞ of the blobs
in the direction z perpendicular to the surface of the network in presence of a single colloid. Here, z ¼ 0 corresponds to the center of the colloid. Symbols indicate
simulation results; solid lines are fitting curves using Eq. 9. (C) Penetration of single colloids as a function of N. (D) Color maps of the blob-density distribution
around single colloids at different N. The section is taken from the vertical plane passing through the equator of the colloid. (E) Color map of the blob-density
distribution around two colloids at different center-to-center distance R andN ¼ 1;000. Sections are taken from planes Σ and μ, as schematically displayed in F. All
the simulation are run using b ¼ 0.005σ and δ ¼ 0.1. In D and E the density is normalized to the maximum of each panel. The legend applies to both.
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semitorus decreases until the gap between the colloids is wide
enough to fit blobs and the bridging region becomes semiellipsoi-
dal. At even larger distances, the accumulation shells surrounding
single colloids do not overlap and the bridge does not form.

We computed the pair-potential from simulations sampling the
distance between two colloids and using umbrella sampling to
improve efficiency (50). We compare simulated curves with the-
oretical predictions calculated according to Eqs. 4, 6, and 8 using
ρ0 and l as extracted by simulations. The results are displayed
in Fig. 3.

We see quantitative agreement between theoretical predic-
tions and simulations concerning the depth and the range of the
attractive interactions. The oscillatory behavior found in the
simulations is explained as the effect of nonlocal blob-blob cor-
relations, which are not accounted for in Eq. 6. A possible way to

describe these effects consists in evaluating the blob-colloid radial
distribution function numerically by means of integral equations
theory and derive ρðr;R; lÞ using superposition approxima-
tion (49).

Both simulations and theoretical model successfully describe
the experimental pair-potentials between silica colloids deposited
on PAA cross-linked gels (19).

Conclusions
In summary, we presented an analytical coarse-grained theory
predicting the interactions between colloidal particles partially
or fully embedded in cross-linked polymer networks, in excellent
quantitative agreement with Monte Carlo simulations.

We tested the theory on the problem of interactions between
silica colloids deposited on a cross-linked polymer gel for which
experimental observations are available (19). We are able to ex-
plain the physical origin of these interactions, which are of con-
siderable interest due to the widespread use of colloid-filled poly-
mer networks in materials and energy (e.g., super-rigid rubbers,
composite solar cells, etc.) and also in investigating the biomecha-
nical response of living cells (11–18). Simulated and analytically
derived pair-potentials reproduce existing experimental data (19)
successfully and clarify the emergence of a net attraction between
otherwise repulsive colloidal particles as a consequence of the
local increase of polymer density in the gap between the two
approaching colloids. The theory shows that this restructuring of
the polymer is mainly driven by energetic terms related to the van
der Waals attraction between monomer and colloid (which can
be as weak as 0.1 kBT to produce attractions of order 2 kBT),
whereas entropic effects (e.g., depletion) play a comparatively
minor role.

In the limit of colloids deposited on cross-linked polymer sub-
strates, the interaction is regulated by the penetration depth of
the colloid, which ultimately depends on the cross-linking density
of the network.

Our theory has no trivial fitting parameters and thus provides
a quantitative tool for the synthesis of polymer-colloid nanocom-
posites where the colloid-colloid interactions and the colloid
network structure inside the polymer network can be finely tuned
and engineered by varying the cross-linkers density as the control
parameter. This framework will have a deep impact on the ra-
tional design of nanostructured materials in engineering, biome-
dical applications, and energy-related materials.
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