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Abstract This paper presents a bike itinerary choice model for a bike sharing system

(BSS). Machine learning techniques are used to characterize the bike itineraries

within a given day. We present a method to detect the ’most faithful’ users with

respect to itinerary types and a Bayesian network model which emphasizes the link

between the conditions with which the itinerary is chosen and the itinerary type.

Abstract Questo articolo presenta un modello di scelta di percorsi ciclabili per un
sistema di bike sharing (SBS). Tecniche di machine learning vengono utilizzate per
caratterizzare i percorsi in un dato giorno. In questo articolo viene presentato un
metodo per rilevare gli utenti ’più fedeli’ rispetto ai tipi di itinerario e un modello
di rete bayesiana che enfatizza il collegamento tra le condizioni in cui si sceglie
l’itinerario e il tipo di itinerario.
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2 Modeling Cyclists’ Itinerary Choices

1 Introduction

Urban mobility is receiving increasing attention as it is considered one of the most

important dimensions of the so-called smart city [1]. Recent developments in urban

planning management have led BSSs to be a viable complement to traditional pub-

lic transport systems. However, there are some important quandaries in organizing

a successful BSS, for example when rightly predicting the behavior of users, and

avoid an uneven distribution of the bikes across the city.

In this paper we are concerned with the optimization of fixed BSS, i.e. BSS with

docking stations, and implement a decision framework to help policy makers to

obtain an optimal prediction of cyclists itinerary choice in the case of a consolidated

docking station-based BSS, the BikeMi system in Milan, Italy. It is operated by

a private company having a service contract with the Municipality of Milan and

receiving in return discounted advertisement spaces nearby the docking stations.

Obviously, all the actors in this kind of BSS (municipalities, private companies

and citizens) can benefit from it if the service is well run. One of the most important

obstacles to the well-functioning of the service lies in the relocation of bikes across

crowded stations and the behavior of users. In this paper we address the former

problem focusing on users’ i tinerary choices. In particular, daily closed users’ paths

are particularly important because they are those paths that identify the ’faithful’

users, i.e. users that tendentiously use the bike similarly day by day. We analyze in

details these path choices using machine learning techniques.

2 Data

Data were daily collected from the BSS BikeMi on each bike trip from June 2015 to

May 2018 forming an overall data set containing initially 11,771,185 records. The

data set was formed by two categories of data: a group of variables related to the

bike sharing process and renting, and a group of variables related to the atmospheric

conditions (including pollution status). In the first group of variables we had the

details about the bike sharing process and renting transaction, including client and

bike ID, the type of bike (traditional or e-bike), information about check-out and

check-in (station number, station slot number, date and time of rent, etc.), rental time

in minutes, distance covered in metres, amount of CO2 avoided, calories consumed

by cyclists, while meteorological variables (average daily temperature, average daily

atmospheric pressure, precipitation condition - i.e. rain or no rain) as well as air

condition indicators (daily average amount of PM10, PM25, NO2 and CO2) were

included in the second group.

The results that we report below refer to a shorter period of time. In particular,

we limited the investigation to the last available year - 2018 - for a total of 151 days,

50858 users and 1,457,609 transactions. Moreover, since we are interested in the

set of ’faithful’ users only, we pre-processed the data set by filtering out sporadic

users. Specifically, we denote as faithful user a person who was active for at least
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Modeling Cyclists’ Itinerary Choices 3

50 days (on average at least 10 days per month) only; we assume that the user was

active on a specific day if he/she performed at least one transaction on that day. A

further manipulation of the data set concerned the creation of the users’ daily bike

itineraries, since the originally released data set is centered on the single transaction

enriched by identification and context variables. To this aim, we first reconstructed

the transaction sequence of each client by leveraging the unique client ID field as-

sociated to each transaction. Operationally, we grouped the check-in and check-out

transactions by the client ID and we ordered them chronologically. Then, to remove

the circadian rhythm, we subdivided users’ sequences into daily itinerary; thus, for

each user, we obtain as many sequences as the number of days he/she was active.

So, an itinerary travelled by a user u at day d is a sequence < s1,s2, . . . ,sn−1,sn >
of docking stations si, where even indexes indicate check-out stations and odd in-

dexes denote check-in dock stations. Finally, we re-scaled the sequences so that

they started from 0. For instance, the itinerary < 10,2,2,3,67,10 > was re-scaled

to < 0,1,1,2,3,0 >. In this way, we were able to highlight the typical behaviors of

the users on riding, rather than focusing on the used docking stations. For this rea-

son, we denoted the scaled itinerary as itinerary type. The entire process has been

represented in Fig. 1 and resulted in a data set made up of 418,591 itineraries.

Client ID
Check-In 

Station

Check-In 

Date

Check-Out 

Station

Check-Out 

Date

101 15 08:00 15-01-2018 67 08:20 15-01-2018

101 67 17:00 15-01-2018 15 17:25 15-01-2018

101 15 07:55 16-01-2018 18 08:15 16-01-2018

101 18 08:20 16-01-2018 27 09:00 16-01-2018

101 27 16:00 16-01-2018 15 17:00 16-01-2018

101 15 08:05 17-01-2018 67 08:25 17-01-2018

101 67 10:00 17-01-2018 27 10:25 17-01-2018

101 18 10:00 21-01-2018 101 10:15 21-01-2018

101 101 12:30 21-01-2018 35 12:45 21-01-2018

101 35 16:50 21-01-2018 20 17:10 21-01-2018

15 67 67 15

15 18 18 27 27 15

15 67 67 27

18 101 101 35 35 20

0 1 1 0

0 1 1 2 2 0

0 1 1 2

0 1 1 2 2 3

Original Dataset Itineraries Itinerary types

Fig. 1 Process for extracting daily itineraries of the ’faithful’ users from the original data set.

We associated to each itinerary the context information inherited from the corre-

sponding transactions, i.e. the first check-in and last check-out time slots (from 1 to

24), the weekday of the rent (from 1 to 7), the client ID, the average/minimum/maximum

temperature of the day, the length and the duration of the whole itinerary, the num-

ber of visited dock stations, and the rain condition. Finally, we also introduced a

boolean variable which indicates whether or not the user comes back to the first

dock station of the itinerary. In the first case we indicate the itinerary as “closed”,

while in the latter the itinerary is “open”.

3 Results

In this preliminary work we first tried to study the types of itineraries on the basis of

the heterogeneity and the frequency with which they occur. Table 1 shows the corre-

sponding Gini coefficients for the first 10 itineraries in terms of frequency. For each

itinerary the Gini heterogeneity coefficient (calculated using the users as categories)
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4 Modeling Cyclists’ Itinerary Choices

is obtained on the basis of the number of times each user chooses that itinerary at

least once. It will be noted that heterogeneity is high; this means that the particular

itinerary does not discriminate for selecting ’faithful’ users. However, considering

for each user the itineraries he/she chooses daily and considering a Gini hetero-

geneity (calculated using the itineraries as categories) threshold of 0.8 and choosing

always the same itinerary type the number of users ’faithful’ for a particular itinerary

can be obtained (Table 2). So, for example, 2331 users can be considered preferring

the itinerary type (0, 1), 455 users can be considered preferring the itinerary type (0,

1, 1, 0), and so on. Fig. 2 displays the CDF with respect to the Gini heterogeneity

coefficient computed in this way and the red bar is the chosen threshold. Finally

Fig. 3 shows the map of the first 20 docking stations from which most of open (red

circles) and closed (blue circles) itineraries originate.

Table 1 The Gini heterogeneity index measured for the ten most common itinerary types.

Itinerary type Gini Heterogeneity Number of users

(0, 1) 0.999957 5603
(0, 1, 1, 0) 0.999813 5248
(0, 1, 1, 2) 0.999788 5237
(0, 1, 2, 3) 0.999798 4859
(0, 1, 2, 0) 0.999757 4817
(0, 1, 1, 2, 2, 3) 0.999551 1672
(0, 1, 1, 2, 3, 4) 0.999630 1494
(0, 1, 2, 3, 3, 4) 0.999583 1484
(0, 0) 0.998336 1426
(0, 1, 1, 2, 2, 0) 0.999004 1418

Table 2 Distinguishing itinerary types.

Itinerary Type Number of users

(0, 1) 2231
(0, 1, 1, 0) 455
(0, 1, 1, 2) 119
(0, 1, 2, 0) 54
(0, 1, 2, 3) 31
(0, 0) 6
(0, 1, 1, 0, 0, 1, 1, 0) 1
(0, 1, 1, 2, 2, 1, 1, 0) 1

We also performed a Bayesian network (BN) analysis having the itinerary type

as target variable. The question we wanted to address was the following: can the

itinerary type, and perhaps its final station, be predicted knowing the weather con-

ditions, the weekday, the starting station, the starting time, etc.? BNs implements

a graphical model structure known as a directed acyclic graph (DAG), enabling an

effective representation of the joint probability distribution (JPD) over a set of ran-

dom variables. The structure of a DAG is defined by a set of nodes and a set of
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Fig. 2 CDF of the normalized
Gini impurity on the sequence
types of each bikers. The
red vertical line indicates the
threshold used to identify
bikers having a distinguishing
itinerary type.

Fig. 3 Map displaying the
first 20 docking stations from
which most of open (red
circles) and closed (blue
circles) itineraries originate.

directed edges. The nodes represent random variables, whereas the edges represent

direct dependencies among variables and are represented by arrows between nodes.

Fig. 4 shows a preliminary example of a BN applied to our data. A lot of arcs

(edges) exist between sequence characteristics and target nodes. Using the JPD it

is possible for example to predict the more probable sequence given the weather

conditions (rain), the week day, the start section, the start hour, or to predict the

more probable final station given the expected normalized sequence. One of the

main benefit of BNs is that they provide an opportunity to conduct what if sensitivity

scenarios.

4 Conclusion

This paper sought to evaluate the impact of closed itinerary choices of bike-sharing

users in the overall functioning of the system. The high heterogeneity detected in the

itinerary type analysis highlights the complexity of traffic forecasting. On the other

hand, the first attempt to model JPD encourages the use of such models, that allow

to simulate what-if sensitivity scenario. We limited the analysis to the last available

year - 2018 - and only a subset of variables; further analysis and robustness tests

are therefore needed. Future work will consider adding other data sources. Further

information on users are available from the annual customer satisfaction survey.
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6 Modeling Cyclists’ Itinerary Choices

Fig. 4 BN obtained using score-based algorithms Hill-Climbing greedy search. Data-driven ap-
proach is used, no prior knowledge is imposed. Possible target nodes are highlighted in red.

We plan also to analyze neighboring stations together and the characteristics of the

public transport network and of the commercial endowment of the area in which

they are located. Other machine learning techniques, already applied in the BSS

field [3] [4] will be taken into consideration.
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