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1. Introduction

The neurons are the computational units of the brain, wherein they form very intricate networks by
making over trillion of synaptic connections [1]. Notoriously, the internal state of neuron is encoded
as membrane potential, whereas the action potential (i.e. spike) is an atomic event characterized by
fast rise and decay of membrane potential, both occurring in 5–10 ms. In 1952, Hogdkin and Huxley
defined the first mathematical model of the electric properties of neuron membrane [2] that has brought
math and computational modeling closer to neurobiology. By pursuing this integrative approach, it was
unraveled the highly non-linear and multi-compartmental nature of the single-neuron computation [3,
4], which integrates synaptically-mediated inputs that results in specific patterns of somatic activity [1,
5]. In particular, the diffusion of both supra- and sub-threshold signals throughout the entire neuron are
substantially modulated by geometric and passive membrane properties of neurite [5–8], as described
by the extended versions of the Hogdkin-Huxley model, which is also known as cable equation [5].
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Therefore, these basic neuronal mechanisms altogether implement the logical constructs [1, 3, 4, 8] for
brain computation that overall results in consciousness [9, 10].

The importance of the electric propagation over the neuron membrane is crucial for inter-neuronal
interactions. For synaptic interaction, the action potential propagation to the axon triggers the
neurotransmitter release so changing the membrane potential of the post-synaptic neuron. This in turn
leads to excitatory or inhibitory interactions that underlay several basic operations of the brain circuits
such as synchronization, amplification, and differentiation of the neuronal representation [1].

Also, the electric signals traveling over the neurite diffuse throughout the extra-cellular space,
generating an electromagnetic flux that gives rise to emphatic interactions between
neurons [1, 11–13]. Taking into account the rapid decay of the extra-cellular potential with the
distance from neuritic source (< 150 µm) [12], we may speculate that the diffusion over the neuron
membrane remains the preponderant factor in realizing the emphatic interactions. Although the
importance of these interactions has been underestimated, it was proved that they can readily
synchronize entire neuron sets [11–14], and thus substantially contribute to generate the brain
rhythms that are typically recorded during conscious brain processing [15, 16]. Therefore, these
examples assess the importance of the electric conduction of the neuronal signal over the membrane
in the context of large brain circuits.

Moreover, we note that the fact that the axonal activity necessarily follows the somatic response
assesses the centrality of the perisomatic region in driving the single-neuron computation. As such,
the mathematical characterization of its dynamic is necessary for achieving a better conceptualization
of the overall neuronal dynamic and its functional aspects. Indeed, these mechanisms may be
artificially mimicked for novel high-tech applications such as memristor, neuromorphic chips, and
neural networks.

In this work, we have studied an extended version of the cable equation [2] that includes both active
and passive membrane properties, under the so-called sealed-end boundary condition. We have proved
the existence and uniqueness of the weak solution, and defined a novel mathematical form of the
somatic cable equation. We have then manipulated the equation set to demonstrate that the diffusion
term in the somatic equation is equivalent to the first-order space derivative of the membrane potential
in the proximal dendrites. Our conclusion therefore clues how the somatic potential depends on the
dynamic of the proximal dendritic segments, and provides the basis for the morphological reduction of
neurons without significant loss of computational properties.

2. The biophysical model of the membrane properties

In this section, we have summarized the salient properties of the neuron membrane as described
by the cable equation and Hogdkin-Huxley model [2, 5], which have been subject to our mathematical
manipulation as described in the next sections. Therefore, here we do not provide a comprehensive
description which can be accessed through the typical neuroscience literature [5].

2.1. The cable equation

In biophysical terms, variation of membrane potential correlates with changes in the selective
permeability of the neuron membrane to different ion species, which induces a trans-membrane
current flow through the ion channels. In particular, the Hogdkin-Huxley model describes the
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co-dependence between electrical permittivity of the ion channels and membrane potential in a small
portion of neuron membrane [2] that is conceptualized through a characteristic RC circuit (Figure 1B,
1C). Together, the Hogdkin-Huxley model was extended for explaining the current flow and signal
propagation over multiple neurite, as described by the cable equation.

Figure 1. The current propagation throughout neuron.
A: The tree-like structure of a neuron: a cell body or soma; the axon, a long thin structure in which action potentials are generated; the

dendrites that receive inputs from the axons of other neurons.
B: The passive membrane circuit for the cable equation.

C: The extended version of the membrane characteristic circuit including sodium (Na) and potassium (K) channels.

Geometrically, each neurite is approximated as a cylinder (with radius a and length L) encased
in the neuron membrane (Fig. 1B), which is a bilayered phospholipid barrier endowed by different
proteins called ion channels. The ion channel allows the selective passage of ion species through
the neuron membrane, inducing a current flow along the longitudinal axis of the neurite, while the
phospholipid barrier is electrically insulating. Therefore, the ion channels and phospholipid barrier
make the conductive and capacitive properties of the neuron membrane, respectively. Furthermore, the
transmembrane current also propagates inside the neurite, along the axial direction, where the internal
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volume is filled by the cytoplasmic reticulum that has resistive properties. All these properties are
modeled by the cable equation.

The cable equation is a partial differential equation defined as

τ
∂V
∂t

= −V + λ2∂
2V
∂x2 (2.1)

where x is the spatial coordinate along the axial direction of the neurite, and indicates the position
of a membrane segment.

The term V (in mV) is the membrane potential and is defined as

V = Vi − Ve − Vrest

where Vi and Ve correspond to the values of the electric potential inside and outside of neuron,
respectively, while Vrest is the resting value of membrane potential. In particular, the difference Vi − Ve

describes the membrane potential, therefore, the term V indicates the deviation of the membrane
potential from its resting value. The term τ (in ms) is the membrane time constant and is defined as

τ = rmcm = RmCm

where rm (in Ωcm) and cm (in F/cm) quantifies the membrane resistance and capacitance, respectively,
while Rm (in Ωcm2) and Cm (in F/cm2) quantifies the specific membrane resistance and capacitance,
respectively. In particular, they equate as

rm =
Rm

2πa
(2.2)

and
cm = Cm2πa (2.3)

The larger Cm, the longer the membrane takes to get fully charged or discharged by current injection.
The larger Rm, the more difficult it is for the current to change V . Therefore, the values of τ provides a
measure of the velocity of the electric propagation throughout a neurite segment as well as a measure
of its intrinsic reactivity.

The λ (in cm) represents the electrotonic length constant and is defined as

λ =

√
rm

ri
=

√
Rm

Ri

a
4

where ri (in Ωcm) is the axial resistance and Ri (in Ω/cm) is the specific axial resistance. The value of
λ estimate how far the stationary current propagates along the axial direction of the neurite. Indeed,
the higher the Ri, the more difficult is for current to propagate along the cytoplasmic medium.

The terms INa and IK are the sodium and potassium currents of the respective ion species flowing
across the neuron membrane (Fig. 1C).

The equation 2.1 can be extended as 2.4

τ
∂V
∂t

= −V + λ2∂
2V
∂x2 + Rm (INa + IK) (2.4)
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The INa and IK are defined as

INa = gNam3h (V − ENa) (2.5)

and

IK = gKn4 (V − EK) (2.6)

where ENa and K are the specific reversal potentials as defined by the Nernst law, gNa and gK are the
conductances associated to the channels, m, h, and n describe the states of the gating variables of the
channels. The gating particles are distinct in activation or inactivation particles, which increase and
decrease the channel permittivity, respectively, during depolarization. In particular, the ion channel
underly the action potential generation [5].

To solve the cable equation, one needs to define the boundary condition of the spatial domain of
the variable x, which ranges in the interval [0, L]. In literature, they were suggested different types
of boundary conditions but only two are the most widely accepted in physiological terms. The most
accepted boundary condition is sealed-end boundary conditions, in which one assumes that

∂V
∂x

(0, t) =
∂V
∂x

(L, t) = 0. (2.7)

In order to analyze the voltage clamp experimental setting, where the membrane voltage is maintained
at a set level, the boundary condition becomes, for example at x = 0, V(0, t) = V0. Now the value V0

is the membrane potential desired value (in the experiment it is necessary to add a suitable current to
hold V0).
Remark. At some endpoints x = L, to involve the activation NMDA receptors, one can assume that
there is a nonlinear relation between current and applied membrane potential,

∂V
∂x

(L, t) + g(V(L, t)) = 0, t ∈ (0,T ),

where g : R→ R is a continuous function fitted experimentally by voltage clamping.

3. Analysis of the space Hodgkin-Huxley model

In order to consider different ionic species and to analyze a more general case we introduce a general
space Hodgkin-Huxley model. Let x ∈ [0, L] the distance along the axis of the cylindrical neurite (axon
or dendrite without branching), t the time, u(x, t) the membrane potential at point x and time t, N > 1
the number of the ionic species, ḡ j the conductance of the j−th ionic channel, E j the Nernst potential,
m j(x, t), h j(x, t), the gating variables corresponding to the dynamics of j−th ionic channel (we are using
the Hodgkin-Huxley theory), J(t) a given function (for example related to an external applied current),
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s j, q j a non-negative integer, we consider the following system

τ
∂u
∂t

= λ2 ∂u
∂x2 − u −

N∑
j=1

ḡ jm
s j

j hq j

j (u − E j) + J(t), x ∈ (0, L), t > 0;

u(x, 0) = u0(x) x ∈ [0, L], u(0, t) = V0,
∂u
∂x (L, t) = 0, t > 0

∂m j

∂t
= α j(u)(1 − m j) − β j(u)m j, m j(x, 0) = m j0(x);

∂h j

∂t
= a j(u)(1 − h j) − b j(u)h j, h j(x, 0) = h j0(x);

(3.1)

with 0 ≤ m j0, h j0 ≤ 1. The rate functions α j, β j, a j, b j are nonnegative smooth functions, a general
expression is given by a rational functions of exponential in u (see e.g. [2])

c1e
u−un

c2 + c3(u − un)

1 + c4e
u−un

c5

(3.2)

where c1, c3, c4, un are nonnegative constants and C2, c5 are positive constants.
In the following we will consider an abstract version of the system (3.1), to this aim, we consider the
following function space (see [20] for the notation),

H = L2(0, L), V = { u ∈ H1(0, L), u(0) = V0 },

where H1 is the Sobolev space with the usual topology.

Theorem 1 (local solution). Let u0 ∈ V, m j0, h j0 ∈ H, 0 ≤ m j0, h j0 ≤ 1 j = 1, . . . ,N > 1,
J ∈ L2

loc(0,T ; H); there is T > 0 such that exists one and only one solution

u ∈ L2(0,T ; V) ∩ H1(0,T ; H), m j, h j ∈ H1(0,T ; H) j = 1, . . . ,N (3.3)

of the system (3.1) with rate functions α j, β j, a j, b j as in (3.2) for suitable constants c.

Proof. Following from the works of L. Lamberti [17], and M. Mascagni [18,19] we split the system in
the non-linear cable equation

τ
∂u
∂t

= λ2 ∂u
∂x2 − B(m, h)u + D(m, h, t) + J(t), (3.4)

where

B(m, h) = 1 +

N∑
j=1

ḡ jm
s j

j hq j

j , D(m, h, t) =

N∑
j=1

ḡ jm
s j

j hq j

j E j, (3.5)

and in the system of the gating functions m j, h j,

∂m j

∂t
= α j(u)(1 − m j) − β j(u)m j, m j(0) = m j0;

∂h j

∂t
= a j(u)(1 − h j) − b j(u)h j, h j(0) = h j0;

(3.6)
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Let m0 ∈ H such that 0 ≤ mo ≤ 1, and consider the problem

m′(t) = α(v)(1 − m) − β(v)m, m(0) = m0, (3.7)

where the function v is a given function in the space L2(0,T ; H), bounded a.e. for (x, t) ∈ [0, L]×[0,T ],
with T > 0, and the functions α, β are H−valued integrable nonnegative bounded functions. Let

A(t) =

∫ t

0
α(v)ds, B(t) =

∫ t

0
β(v)ds,

it is easy to prove that the function

mv(t) = e−(A(t)+B(t))
[
m0 +

∫ t

0
e(A(s)+B(s))α(v)ds

]
,

is the unique solution of the equation (3.7). Taking into account that α, β ≥ 0, we have

0 ≤
∫ t

0
e(A(s)+B(s))α(v)ds ≤

∫ t

0
e(A(s)+B(s))(α(v) + β(v))ds

= e(A(t)+B(t)) − 1,

then it follows

0 ≤ mv(t) ≤ e−(A(t)+B(t))
[
m0 + e(A(t)+B(t)) − 1

]
= 1 − (1 − m0)e−(A(t)+B(t)).

Then, for 0 ≤ m0 ≤ 1, we have 0 ≤ m(t) ≤ 1 for any t > 0.
Moreover, if |v(t, x)| ≤ K, for (x, t) a.e. on [0, L] × [0,T ], we have 0 ≤ α(v), β(v) ≤ CK , and after some
easy computations,

‖mv1(t) − mv2(t)‖H ≤ LK

∫ t

0
‖v1(s) − v2(s)‖Hds + ‖m0,1 − m0,2‖H,

for a suitable constant LK , two different functions v1, v2 and two initial conditions m0,1, m0,2. We point
out that the above analysis can be extended to all gating functions m j, h j.
Fixed a function v as above, let m j,v, h j,v the corresponding solutions of the gating variables system
(3.6), and set

bv(t) = B(mv(t), hv(t)), dv(t) = D(mv(t), hv(t)), (3.8)

the resulting terms defined in (3.4). We have the following estimates,

0 ≤ bv, |bv + dv| ≤ MK

|bv(t + h) − bv(t)| + |dv(t + h) − dv(t)| ≤ Nk|h|.

For two different functions v1 and v2 and for two sets of initial conditions (m1
j,0, h

1
j,0), (m2

j,0, h
2
j,0) for the

gating variables, then

‖bv1(t)−bv2(t)‖H + ‖dv1(t) − dv2(t)‖H

≤ C
(
Lk

∫ t

0
‖v1(s) − v2(s)‖Hds

)
+

+

N∑
j=1

(‖m1
j,0 − m2

j,0‖ + ‖h1
j,0 − h2

j,0‖),

(3.9)
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for a suitable constant C. Starting from a bounded function v, with bv and dv defined in (3.8), we shall
first consider the problem

τ
∂u
∂t

= λ2 ∂u
∂x2 − bvu + dv + J(t) (3.10)

which is a linearization of the nonlinear cable equation of (3.1). From known results on linear diffusion
equations (see e.g. [21]), the problem (3.10) has a unique solution u such that

u ∈ L2(0,T ; V) ∩ H1(0,T ; H),

and we have, for a suitable constant C̄,

‖u‖C(0,T ;V) ≤ C̄
(
‖u0‖V + ‖dv‖L2(0,T ;H) + ‖J‖L2(0,T ;H)

)
. (3.11)

In order to prove the local existence of the system (3.1), let W = L2(0,T ; V) ∩ H1(0,T ; H), and z the
solution of the reduced problem

τ
∂u
∂t

= λ2 ∂u
∂x2 + J(t) (3.12)

with z(0) = u0, and the set, T, R > 0,

S z,R,T = {v ∈ L2(0,T ; H) : |v(t, x) − z(t, x)| ≤ R

a.e. on [0, L] × [0, L]},
(3.13)

equipped with the L2(0,T ; H) topology. From the properties of the function z follow that exists a
constant KT,R such that for any v ∈ S z,R,T

|v(x, t)| ≤ KT,R

for (x, t) a.e. on [O, L] × [0,T ]. Finally, we consider the operator

Q : S z,R,T → S z,R,T

defined as follows. For a function v ∈ S z,R,T , we find the solution (mv, hv) of the system of the gating
variables. Then, we compute the terms bv, and dv, and the solution u ∈ W of the linear equation (3.10):
we call u = Q(v). From the previous estimates it is possible to find a time T̂ > 0 such for 0 < T < T̂

‖Q(v) − Q(w)‖L2(0,T ;H) ≤ L‖v − w‖L2(0,T ;H) (3.14)

with L < 1, for every v and w in S z,R,T . Then, there exists T > 0 such that the operator Q is a contraction
in S z,R,T and it is well known that there exists a fixed point (S z,R,T is a complete metric space) u = Q(u).
It is easy to see that u, m j(u), h j(u) are the unique solution of (3.1) for t ∈ [0,T ] satisfying u ∈ S z,R,T ,
moreover u ∈ W. If u∗ ∈ W is another solution of (3.1), we must have

|u∗(x, t) − z(x, t)| ≤ R

for a small time t. Let T ∗ > 0 be the largest value for which the previous inequality holds, then
u∗ ∈ S z,R,T ∗ and u = u∗. If T ∗ < T it is possible to repeat the same argument starting from the new
initial point u∗0 = u(T ∗) = u∗(T ∗), and then get a contradiction. �
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Remark. The dynamics of the gating variables could be described by the ODE’s

∂m j

∂t
= F j(u,m j),

∂h j

∂t
= G j(u, h j)

where
F j,G j : R2 → R locally Lipschitz continuous;
F j(u, 0),G j(u, 0) ≥ 0 ∀u ∈ R
F j(u, 1),G j(u, 1) ≤ 0 ∀u ∈ R

ensuring the existence, uniqueness and boundedness of the functions m j and h j. We have considered a
particular form for F j and G j in (3.6).
Using the properties of the operator Q as in Theorem 1. and adopting an argument similar to the proof
of the uniqueness of the solution, it is possible to prove a global existence theorem for every finite time
T > 0.

Theorem 2 (global existence). For every T > 0, the nonlinear problem (3.1) has a unique global
solution u ∈ L2(0,T ; V) ∩ H1(0,T ; H), m j, h j ∈ H1(0,T ; H) j = 1, . . . ,N.

3.1. A mathematical model for soma and neurites

Taking into account the Evans’ findings [23], we have considered a nonlinear version of the Rall’s
method for morphological complexity reduction. First, we reduce the entire morphology to the
equivalent cylinders [24] that connect to the soma (Figure 2). We note that we can operate the
morphological reduction under certain condition of spatial symmetry of the dendritic tree [25, 26].
However, we note that this reduction methods assure to not alter the dynamic of the soma.

Figure 2. Transformation made in the development of model of branching complexity. Under
certain symmetry assumptions each dendrite tree can be represented by an equivalent cylinder
giving the equivalent multi-cylinder model.
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In Figure 2 we summarizes the main transformation in constructing the multi-cylinder model.
Indeed, under certain symmetry assumptions (see e.g. [26]), each dendrite tree can be represented by
an equivalent cylinder. Let M ≥ 1 be the number of neurites (dendrites or axon) connected to the
soma and let Li be the length of the equivalent cylinder of the neurite denoted by the index
i = 1, 2, . . . ,M. We regard any neurite as a one-dimensional continuum reduced to the interval [0, Li],
where the common point x = 0 yields the soma position and x = Li represents the free end. Taking an
arbitrary time T > 0 and letting ui : (0, Li) × (0,T ) → R be the potentials, the transmission in the
neurite i is described by the following nonlinear cable equation,

τi
∂ui

∂t
= λ2∂

2ui

∂x2 − ui −

Ni∑
j=1

ḡi jm
si j

i j hqi j

i j (ui − Ei j) + Ji(t), in (0, Li) × (0,T ). (3.15)

Each cable equation is coupled with a system for the gating variables,

∂mi j

∂t
= αi j(u)(1 − mi j) − βi j(u)mi j, mi j(x, 0) = mi j0(x);

∂hi j

∂t
= ai j(u)(1 − hi j) − bi j(u)hi j, hi j(x, 0) = hi j0(x).

(3.16)

We fixed the initial condition as ui(x, 0) = ui,0, x ∈ (0, Li), i = 1, ...,M. We will consider a
simple boundary condition at the soma, at x = 0, which corresponds to the experimental situation of
the voltage clamp electrophysiological recordings. With voltage-clamp technique intensive research
has been conducted to characterize the kinetic properties of ionic currents. Various versions of the
method were used to determine the charge carrier, voltage gating, ligand gating, activation, inactivation,
recovery, etc. of individual ionic currents. In our model, since all dendrites connect to the soma, the
following boundary condition has to be satisfied

u1(0, t) = u2(0, t) = . . . = uM(0, t) = u0, t ∈ (0,T )

which are in turn coincident with the somatic voltage membrane u0.
In light of the Kirchoff’s law, applied at x = 0, we have the conservation equation, us is the soma
potential,

us + τs
dus

dt
−

M∑
i=1

ai
∂ui

∂x
(0, t) = RsIs(t), t ∈ (0,T ),

where ai are known positive constants related to the conductance os the neurite, while Is(t) is an applied
current at the soma.
The analysis of the linear case for the multi-cylinder model was developed in [27], and [28] when the
us does not change.
First we summarize some useful results concerning the abstract parabolic equation. Let I = [0, L] be the
unidimensional interval, H be the Hilbert space L2(I), B = λ2/τ(∂2/∂x2) the operator B : DB ⊂ H → H,
where DB is the domain of B, V = H1

0(I) the usual Sobolev space with dual space V∗ = H−1, then the
following Theorem holds (see e.g. [22]) for linear parabolic problem with homogeneous Dirichlet
boundary conditions.

AIMS Mathematics Volume 4, Issue 3, 831–846.
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Theorem 3. Let g ∈ V and f ∈ L2(0,T ; H), the problem

u′(t) = Bu(t) + f (t), u(0) = g, (3.17)

has a unique solution u ∈ W = {u ∈ L2(0,T ; V), u′ ∈ L2(0,T ; V∗), with g = u(0). Moreover, from the
embedding W ↪→ C(0,T ; H), u satisfies the following estimate

‖u‖C(0,T ;H) ≤ C(‖g‖H + ‖ f ‖L2(0,T ;H)). (3.18)

Similarly, in the case of a linear reaction term we have the following result.

Theorem 4. Let g ∈ V and f ∈ L2(0,T ; H), d ∈ L∞([0,T ]), d ≥ 0 a.e., the problem

u′(t) = Bu(t) − d(t)u + f (t), u(0) = g, (3.19)

has a unique solution u ∈ W = {u ∈ L2(0,T ; V), u′ ∈ L2(0,T ; V∗)}, with g = u(0).

For the case of a network of active dendrite membranes it could proceed as in the case of the single
nonlinear cable equation, see section 3, by introducing the function spaces

H := L2(0, L1) × . . . × L2(0, LM)

V := {u = (u1, ..., uM) : ui ∈ H1(0, Li), ui(0) = u j(0) = u0 f or i, j = 1, ...,M}.

Theorem 5 (Network of neurites). There exists one and only one solution of the system (3.15)-(3.16)
with u ∈ W = H1(0,T ; H) ∩ L2(0,T ; V).

Proof. For a given bounded v ∈ W, as for the single neurite case, the system (3.16), with u = v has
an unique solution mi j, hi j. Moreover, 0 ≤ mi j, hi j ≤ 1 a.e. on the time interval [0,T ]. Therefore all
the terms of the type ḡi jm

si j

i j hqi j

i j in the equations (3.15) are uniformly limited in H. Moreover, for given
bounded functions mi j(t), hi j(t), from Theorem 4 with B = Bi = λ2/τi(∂2/∂x2), there exists an unique
solution u ∈W of the equations (3.15).
From Theorem 3 we have an unique solution z of (3.15) when ḡi j = 0 for any i and j (no active
membranes). For K > 0 let

SK,T = {v ∈W : |vi(x, t) − zi(x, t)| ≤ K

for (x, t) a.e. on [0,T ] × [0, Li], i = 1, . . . ,M}

Let w = u − z, where u is the solution of (3.15) with given mi j, hi j, then w is the solution of the
following system

τi
∂wi

∂t
= λ2∂

2wi

∂x2 − wi −

Ni∑
j=1

ḡi jm
si j

i j hqi j

i j (ui − Ei j), in (0, Li) × (0,T ). (3.20)

Now, from the Theorem 4, exists an unique solution of (3.20) and the set SK,T is uniformly bounded,
i.e., there is R > 0, such that for any v ∈ SK,T we have |vi(x, t)| ≤ RK a.e. (x, t) on [0,T ] × [0, Li].
Then, it is possible to define an operator

Q : H1(0,T ; H) ∩ L2(0,T ; V)→ H1(0,T ; H) ∩ L2(0,T ; V)
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in the following way. Given v ∈ W, solve the system of ordinary differential equation (3.16) and find
the gating functions mi j(v), hi j(v); finally find the solution u of the nonlinear cable equation (3.15) and
put Q(v) = u. From Theorem 3, it is possible to state

|zi(x, t)| ≤ K0, for (x, t) a.e. on [0,T ] × [0, Li]

for a suitable constant K0, and from Theorem 4 that there exists K1 > 0 such that

|Q(v)i(x, t) − zi(x, t)| ≤ K1

√
T , for (x, t) a.e. on [0,T ] × [0, Li].

Then
Q : SK,T → SK,T

for T (K,K1) < (K/K1)2. Moreover Q is a contraction for sufficiently small T ∗(K,K1). Due to the
uniform boundedness of SK,T , we can restart from T ∗ until we get a solution for the whole interval
[0,T ]. �

Remark. Note that, by interpolation, we obtain that

∂ui

∂x
∈ C0([0,T ]; H1(0, Li)) ⊂ C0([0,T ] × [0, Li]),

then the equation for the somatic potential

dus

dt
=

1
τ

 M∑
i=1

ai
∂ui

∂x
(0, t) + RsIs(t) − us(t)

 (3.21)

holds for any t ∈ (0,T ). Furthermore, under the appropriate hypotheses for the current Is, one can
prove existence and uniqueness of the solution for the equation (3.21) by the classic theory of ordinary
differential equations.
Remark. For the axon, the axial current propagates only from the soma, therefore, we can consider
again the reaction-diffusion equation defined as

τ
∂uA

∂t
= λ2∂uA

∂x2 − u −
N∑

j=1

ḡ jm
s j

j hq j

j (uA − E j), x ∈ (0, LA), t > 0;

where uA is the axon membrane potential, LA is the axon length, under the boundary conditions u(0, t) =

us(t) and ∂uA/∂x(LA, t) = 0.
Remark. We analyzed an approximation of the cable equation using classical finite-difference method.
The original equation (2.4) defined by Hogdkin and Huxley can be rewritten as (we consider an uniform
mesh with space step ∆x),

vs (t + ∆t) = vs (t) + ∆t

−vs (t)
τ

+
RsIs (t)
τ

+

M∑
i=1

λ2
i

v j+1
i (t) − 2v j

i (t) + v j−1
i (t)

∆x2

 (3.22)
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The term v j
i , which describes the first compartment of the dendrite, is coincident with vs. Hence

the terms v j
i is the same value as v j−1

i because the soma can be approximate by an isopotential surface.
Therefore, the equation (3.22) can be rewritten as

vs (t + ∆t) = vs (t) + ∆t

−vs (t)
τ

+
RsIs (t)
τ

+

M∑
i=1

λ2
i

∆x
v j+1

i (t) − 2v j
i (t)

∆x

 (3.23)

If we assume that

ai =
λ2

i

∆x
(3.24)

we obtain

vs (t + ∆t) = vs (t) + ∆t

−vs (t)
τ

+
RsIs (t)
τ

+

M∑
i=1

ai
v j+1

i (t) − 2v j
i (t)

∆x

 (3.25)

which coincides with the finite-difference form of the equation (3.15). Therefore, one implicitly
applies the equation (3.15) by implementing the original cable equation (2.4) in form of
finite-difference derivative.

3.2. A numerical test

We consider a preliminary numerical test where we compare passive/active dendrites tree with
different morphology. To carry out our simulations, we used two neuron morphologies, one
concerning of the full dendrite tree, another which consists of the reduced morphology by applying
the Ralls law (see Figure 3A). Both morphology includes a soma which is approximated as an
isopotential sphere of 80 mm in diameter. The full morphology is formed by 12 dendrites
approximated as cylinders. There are 4 and 8 dendrites arranged in the first and second order
branches, respectively. For both orders, cylinders are 100 mm in length, whereas the diameters are 20
mm 12.6 mm for the first and second order dendrites, respectively. Thus, the diameters matched the
2/3 Ralls power law. The reduced morphology is formed by 4 identical cylinder that are 200 mm in
length and 20 mm in diameter. Passive and active membrane properties were identical for both
morphology and uniform over the entire neuron, as summarized in Table 1.

Table 1. Numerical values of the biophysical parameters for the dendrites dynamics.

cm 0.9 mF/cm2

tm 25 ms
Ri 50 W · cm

Vrest −65 mV
Active membrane properties

Na
ENa 60 mV
gNa 0.036 nS/cm2

Active membrane properties
K
EK −70 mV
gK 0.12 nS/cm2
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Figure 3. (A) A single neuron with two different dendrites morphology; (B) The behaviour
action potential at the soma corresponding to a weak and, respectively, a strong.

We have considered only two species of ionic currents as described in Hodgkin and Huxley’s model:
sodium current (Na) with total conductance gNam3 , and potassium current (K) with conductance gKn4.
We have also considered two experimental cases for the injected current: a case with a weak current,
and a case with a strong current. For numerical tests we used a multi-compartment approach we a
standard time integration Ruge-Kutta method. Figure 3B shows the influence of the different dendrite
morphology on the dynamics, in particular differences are observed in the hyper-polarization phase of
the action potentials, and in the firing rate. This effect is more evident in the case of stronger currents.
During a one-second numerical simulation, the morphology with more branches produces 60 spikes in
the weak current case, and 80 spikes for the strong one. While the dynamics of the reduced morphology
consists of 70 spikes for the weak current and of 100 spikes corresponding to the strong current.

4. Conclusion

The dynamic underlying the neuronal signal over the membrane has been a subject of great
interest [29], since it underlies all the brain functioning based on non-linear and compartmental
computation [3, 4, 8] as well as synaptic and ephaptic interactions [1, 11–16]. Starting from the cable
equation [5], here we have re-defined it for the soma and the neurites in its proximity, demonstrating
that the membrane potential diffuses linearly from the neurites to the soma. In particular, we have
demonstrated the existence and uniqueness of the solution for the cable equation as represented by a
mathematical system of reaction-diffusion equations under suitable boundary conditions. We have
demonstrated the this set of differential equations is well-posed, which is an important property that
provide the basis for further extensions. This provides the basis for further extensions of the model.
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In particular, in the future, we may consider a network of realistic neuron where the equations
for the synaptic terminals are subject to non-linear boundary conditions; we may apply the model to
reduce the morphological complexity of neuron without causing loss of the computational properties.
This would benefit us over the artificial replication of the biophysical mechanisms but also to analyze
the intrinsic properties of single-neurons. For example, in previous works, computational modeling
based on the Hogdkin-Huxley equations was applied for analyzing the intrinsic properties of neuron
that determine the action potential propagation over neurites [7]. Instead, here we have unraveled a
biophysical concept by re-formalizing the cable equation, giving novel insight into how the somatic
response depends linearly on the proximal neurites. In the next work, we aim to address when this
linearity extends to the non-proximal portions of the dendrites, in order to understand whether there
exist specific values of the biophysical properties that may affect the nature of signal propagation rather
than just the speed or the dispersion as it is more commonly assumed in literature.
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