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Statistical properties of fracture in a random spring model
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Using large-scale numerical simulations, we analyze the statistical properties of fracture in the two-
dimensional random spring model and compare it with its scalar counterpart: the random fuse model. We first
consider the process of crack localization measuring the evolution of damage as the external load is raised. We
find that, as in the fuse model, damage is initially uniform and localizes at peak load. Scaling laws for the
damage density, fracture strength, and avalanche distributions follow with slight variations the behavior ob-
served in the random fuse model. We thus conclude that scalar models provide a faithful representation of the
fracture properties of disordered systems.
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I. INTRODUCTION quasistatic dynamics, and the scalar nature of the interac-

The statistical properties of fracture in disordered medidions- It is thus important to clarify if the observations made
represent an intriguing theoretical problem with importanti the RFM carry over to more complex and realistic situa-
practical application§l]. The presence of disorder naturally tions. In this paper, we address the problem of the scalar
leads to statistical distributions of failure stresses, accumuelectrio interactions of the RFM, by comparing it with a
lated damage, acoustic activity, crack shapes, and so on. Thensorial central force model, the random spring model
application of a standard continuum description based on afRSM) [18,19. The model is a tensorial counterpart of the
elastic equation cannot capture the effect of fluctuations, anBFM: it has quasistatic dynamics, random thresholds, but
hence the effect of disorder has to be considered explicitly. Auses and currents are replaced by elastic springs and forces.
well established way to deal with this problem relies on lat-Dynamic effects have been considered instead in Refs.
tice models, in which the medium is described by a discret¢20,21].
set of elastic bonds with randomly distributed failure thresh-  After discussing the model in Sec. I, we consider the
olds[1]. In the simplest approximation of a scalar displace-typical statistical measures performed using the RSM: dam-
ment, one recovers the random fuse mod@#M) where a  zge |ocalization and average damage profiles are reported in
lattice of fuses with random thresholds is subject to an ingec. |11, while mean damage scaling and damage distribu-
creasing external curref@]. _ _ tions are discussed in Secs. IV and V, respectively. In Secs.

The RFM has been extensively investigated in the past 2Q; anq vii, we discuss the fracture strength distribution and

)t/)eﬁrs,.maugly using nunjer]:caltamqlatp[ns}s]. Tge 'gyﬁe f the size effect on the mean strength. The avalanche behavior
enhavior at Macroscopic Tracture 15 signiicantly INfuencegy analyzed in Sec. VIl and a summary is reported in Sec

by the amount of disord¢B8]. When the disorder is narrowly )
distributed, materials break down without significant precur-v.”l' we have not analyzed the rqughness of the_ final crack
sors. In particular, if the threshold distribution does not ex->nce mn several instances the spring networks fail because of

tend to zero, the lattice breaks suddef8y. As the disorder loss of rigidity.
increases, substantial damage is accumulated prior to failure

and the dynamics resembles percolation. Indeed, in the limit Il. THE RANDOM SPRING MODEL
of infinite disorder, the damage accumulation process can S _ _
exactly be mapped onto a percolation problg®h It has In the RSM, the lattice is initially fully intact with bonds

been suggested that for strong, but finite, disorder, fracturbaving the same stiffness, but the bond-breaking thresholds,
should be interpreted as a first-order transition near a spirl; are randomly distributed based on a threshold probability
odal point[6]. In addition, the fracture of the RFM is pre- distribution,p(t). The bond breaks irreversibly, whenever the
ceded by avalanches of failure evehs10-13. These are force in the spring exceeds the breaking threshold force
reminiscent of the acoustic emission activity observed in exvalue,t, of the spring. Periodic boundary conditions are im-
periments and their distribution follows a power law. Finally, posed in the horizontal direction and a constant unit displace-
the RFM has also been used to compute the fracture strengthent difference is applied between the top and the bottom of
distribution and the related size effe¢i3—17. lattice system.
Modeling the elastic medium using the RFM introduces Numerically, a unit displacemenf=1, is applied at the

drastic approximations in terms of the discretization procesdop of the lattice system and the equilibrium equations are
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TABLE I. Mean and standard deviation of damage density at the
peak load and failure in the random threshold spring model using a
triangular lattice network with uniform disorder distributid®qnig
denotes the number of configurations used in averaging the results
for each system sizg, andp; denote the mean fraction of broken
bonds in a lattice system of sizeat the peak load and at failure,
respectively. SimilarlyA, and A; denote the standard deviation of
the fraction of broken bonds at the peak load and at failure,
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FIG. 1. (Color online Envelope of a typical force-displacement

response obtained using the RSM.

solved to determine the force in each of the springs. Subse-

60

70

80

respectively.
Triangular

L Nconfig pp Ap Ps Af
8 40000 0.1213 0.0285 0.2244 0.0482
16 40000 0.1045 0.0179 0.1869 0.0349
90 24 40000 0.0970 0.0137 0.1633 0.0258
32 40000 0.0923 0.0113 0.1477 0.0201
64 8000 0.0835 0.0075 0.1175 0.0106
128 2400 0.0763 0.0051 0.0972 0.0056
256 100 0.0708 0.0031 0.0836 0.0029

quently, for each bondgl, the ratio between the forck and
the breaking thresholg is evaluated, and the bonghaving
the largest value, mai{;/t;), is irreversibly removed. The
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FIG. 2. (Color onling Snap-
shots of damage evolution in a
typical simulation of sizd.=256.
Number of broken bonds at the
peak load and at failure is 13 864
and 16 695, respectively1)—(9)
represent the snapshots of damage
after n, bonds are broken(1) ny
=5000 (2) n,=10000, (3) ny
=12 000, (4 n,=13000, (5) ny
=14 000(just after peak load (6)
n,=15000, (7) n,=15500, (8)
n,=16 000, and(9) n,=16 500
(close to failure.
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forces are redistributed instantaneously after a bond is brdions as failure is approached. If correlations are irrelevant,
ken, implying that the stress relaxation in the lattice systenone should observe percolation scaling up to failure, as in the
is much faster than the breaking of a bond. Each time a bondase of infinite disorder. On the other hand, in the weak
is broken, it is necessary to reequilibrate the lattice system iglisorder case, the current enhancement at the crack tips is so
order to determine the subsequent breaking of a bond. Th@rong that a spanning crack is nucleated soon after a few
process of breaking of a bond, one at a time, is repeated unfionds(or even a single bondre brokeri3]. The interesting
the lattice system falls apart. For the RSM, we consider &ituation corresponds to the diffuse damage and localization
triangular lattice system network and a uniform probability"€9ime, where a substantial amount of damage is accumu-
distribution for threshold disorder, which is constant betweerf@ted prior to failure. Figure 2 presents the snapshots of dam-
0 and 1. The diamond latticesquare lattice with bonds in- age evqutlon'ln a typlcal RSM smulatlon of siker 256'.
clined at 45 degreespring system exhibits certain unstable ilrrgrSVE;r (t:I(i)v:g\égs:rl]%argatg%ilgpt):licl:zearlﬂgrr:torfeg&r)?]as%eo?gotg/t[;)i
modes and hence is not considered. Figure 1 presents ”(IE ! . S - . . _'
envelope of a typical force-displacement response obtaine énFéS g/la;mbu;?ct:roen z;géoa%tzerstigempeergi’lxgh Eli)g(]uerglsjaila Zi% 4
using the RSM. The peak load of the lattice system is define

h ; f f the f disol resent the snapshots of damage profiles within each seg-
as the maximum force of the force-displacement response. yant of |oad-displacement curve of a typical simulation with

Numerical simulation of fracture using large lattice net-niform threshold disorder fdr=256. The damage is diffu-
works is often hampered due to the high computational coslje in the initial stages of loading up to almost the peak
associated with solving a new large set of linear equationfad. Around the peak load, the damage starts to localize and
every time a new lattice bond is broken. In this study, we usejltimately leads to failure, and hence the final breakdown
the multiple-rank sparse Cholesky factorization updating alevent is very different from the initial precursors up to the
gorithm developed in Ref{8] for simulating fracture using peak load. Based on Figs. 3 and 4, it is clear that localization
discrete lattice systems. In comparison with the Fourier acef damage occurs in the RSM prior to failure even for strong
celerated iterative schemes used for modeling lattice breakeut finite disorder. Similar behavior is observed in the ran-
down[23], this algorithm significantly reduced the computa- dom threshold fuse model with both uniform and power-law
tional time required for solving large lattice systems. Forthreshold distribution$22].
instance, solving for al.=256 system takes on average In order to obtain a quantitative description of the damage
15300 s on an IBM power4 1.3 GHz processor. Using thidocalization process, it is necessary to average the damage
numerical algorithm, we were able to investigate damag@®rofiles over different realizations. Since the localization of
evolution in large(L=512 for spring modelinitially fully ~ damage can occur anywhere along thelirection of the
intact discrete lattice systems. However, due to an insuffilattice, & simple averaging of the damage profiles would
cient number of available sample configurations, in this payleld a flat profile irrespective of the individual profile

per we consider results up to=256 for spring models. For shapes in a single realization. In this study, we average the

many lattice system sizes, the number of sample configuraggm:?%fpxgiesso?%ggséasrg':'rég ;23 flha(\argae?veegomes :ﬁt/emg
tions, Neonfigs Used is excessively large to reduce the statisti- g ging.

cal error in the numerical resultsee Table)l In Table I, the tively, one could average the magnitude of the Fourier trans-

. . forms of individual damage profiles, thereby retaining the
fraction of broken bondgor damage densilyior each of the requency content of damage profiles. The Fourier method

lattice system sizes is obtained by dividing the number Ofyjininates any artificial biasing associated with the shifting
broken b_onds W|th the total number of bond,, presentin  qf the individual profiles in the real spag22).
the fully intact lattice system. For triangular lattice topology,  Figure 5 presents the average damage profiles for the
Ne=(3L+1)(L+1). The lattice system sizes considered indamage accumulated up to the peak load by first shifting the
this work areL={8,16,24,32,64,128,2%6However, since damage profiles by the center of mass of the damage and
corrections to the scaling laws are strongest for small latticghen averaging over different samples. The results presented
systems, in the following we use lattice sizex 16 for ob-  in Fig. 5 indicate that although the average damage profiles
taining the scaling exponents. Table | presents mean anat smaller lattice system sizes are not completely flat, they
standard deviations in the broken bond denéitgction of  flatten considerably as the lattice system size is increased.
broken bonds at the peak load and at failure for various We tend thus to attribute the apparent profile to size effects.
triangular lattice system sizes. Indeed, for large system sizés.g.,L=128 and 25§ the
results clearly show that there is no localization at the peak
load. Consequently, the localization of damage is mostly due
to the damage accumulated between the peak load and fail-
Qualitatively, damage evolution as described by breakingire, i.e., the final catastrophic breakdown event. Figure 6
of bonds is controlled by two competing aspects: disordepresents the data collapse of the average damage profiles for
and stress concentration in the vicinity of crack tips. In thethe damage accumulated between the peak load and failure
case of strong disorder, bond-breaking events occur in ausing a power-law scaling. A perfect collapse of the data is
uncorrelated manner in the initial stages of damage evolutioabtained using the form
and thus resemble percolation. As the damage starts to accu- - _
mulate, some degree of correlation can be expected due to (Ap(y,L)IAP(O) = Ty - Li2/2), @)
the presence of stress concentration at the crack tips. A natwhere the damage peak scales(ap(0))=L"%%" and the
ral question to ask concerns the relevance of these correl$ocalization length scales &s- L%, with «=0.65(see Fig. 6.

Ill. DIFFUSIVE DAMAGE AND LOCALIZATION

066106-3



NUKALA, ZAPPERI, AND SIMUNOVIC PHYSICAL REVIEW E 71, 066106(20095

0.14 : ; .
— L=24
L=32
— L-64
—— L=128
0.12f L=ieoo
300
=01l J
2 o

0.08

. 0
200 300 (y-L/2)/L

FIG. 3. (Color onling Snapshots of prepeak damage profiles of  FIG. 5. (Color onling Average damage profiles at peak load
a typical RSM simulation with uniform threshold distribution on a obtained by first centering the data around the center of mass of the
triangular lattice of sizd.=256. The damage is uniform in the pre- damage and then averaging over different samples. For each of the
peak regime. In each of the subplots, the abscissa refers tp thesamples, the damage profile is evaluatedp@s=ny(y)/(3L+1),
coordinate of the lattice section and the ordinate is the number ofvheren,(y) denotes the number of broken bonds in yite section.
broken bonds in the section.

Thus, we consider the scaling of the number of broken bonds

The profile shapes decay exponentially at large system sizest the peak loady,, that excludes the last catastrophic event.
We have also tried a simple linear scaling of the formlIn Fig. 7, we plotn, as a function of the lattice S|z|‘ée| The
(Ap(y,L))/{Ap(0))=f[(y—L/2)/L], but the collapse of the data display a reasonable power-law behawjpr Ne,, with
data is not very good. The result for the fuse model is simi2=0.92. The exponerit=0.92 is in close agreement with the
lar: the profile also displays exponential tails and the expoVvalue obtained for the random threshold fuse model using

nent is found to bexr=0.8[22] . both triangular(b=0.93 and diamond(b=0.91) lattice to-
pologies[22]. The difference between the RSM and RFM
IV. SCALING OF DAMAGE DENSITY models is marginal and may be attributed to the results ob-

ained from the smaller lattice sizes, where corrections to the

It has been noted in the previous section that the fina# . . :
ractal scaling may exist. However, we have noticed some

breakdown event is very different from the initial precursors.

1.4 : : . . , . .
— L=16
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1.2¢ L=32 |
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FIG. 4. (Color onling Snapshots of post-peak damage profiles  FIG. 6. (Color online Data collapse of the average profiles for
of a typical RSM simulation with uniform threshold distribution on the damage accumulated between peak load and failure using a
a triangular lattice of siz& =256. The damage is clearly localized power-law scaling. We have considered the damage profilek for
in the post-peak regime. In each of the subplots, the abscissa referd16,24,32,64,128,256ystem sizes. The average has been per-
to the y coordinate of the lattice section and the ordinate is theformed after shifting by the center of mass. The profiles show ex-
number of broken bonds in the section. ponential tails.
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) ) FIG. 8. (Color onling The cumulative probability distribution
FIG. 7. (Color onling Scaling of the number of broken bonds at for the fraction of broken bonds at the peak load for triangular
peak load for triangular random threshold spring lattices. The scalspring lattices of different system sizes.

ing exponent=0.92 is very close to the exponent obtained for a
random threshold fuse network using triangulla=0.93 and dia-
mond(b=0.9]) lattices. The difference could be attributed to finite-
size effects. The number of broken bonds at peak load can also
fit by a linear function times a logarithmic correction by plotting
np/Ngi @s a function ofNg in a log-linear plot(insey.

collapse has been performed for the random threshold fuse
gpodelin Ref[22]. The inset in Fig. 9 presents a comparison
of the cumulative damage density probability distributions in
the random threshold spring and fuse models. The excellent
collapse of the data in the inset of Fig. 9 suggests that the

systematic deviations from the scaling forr~ Ng by plot-

ting ny/ NB, versusN,,. Since the exponettis close to 1, the
data could be equally well fit by a linear law times a loga- 0
rithmic correction n,=Ng/log(Ng), as suggested in Ref.
[24] (see the inset of Fig.)7Both of these fits imply that in
the limit of large lattices, the fraction of broken bonds prior  07f
to fracture vanishes.

1

V. SCALING OF DAMAGE DENSITY 04l
PROBABILITY DISTRIBUTIONS

Since the final breakdown event is very different from the
initial precursors up to the peak load, in this section we
present the scaling of the cumulative probability distributions 1|
for the fraction of broken bonds at the peak load. The cumu-
lative probability distribution for the damage density at the %
peak load is defined as the probabillty(p,,L) that a sys-
tem of sizel reaches peak load when the fraction of broken
bonds equalg,=n,/Ng, wheren, is the number of broken FIG. 9. (Color onling The collapsed cumulative probability dis-
bonds. Figure 8 presents the cumulative probability distribufribution for the fraction of broken bonds at the peak load in the
threshold spring model for various system size8y simply ~ different system sized. =8,16,24,32,64,128, 256vith uniform
plotting the distribution in terms OFpE(nb_Mn )/(Tnp:(pb disorder when plotted as a fungtlon of the reduced varlppie(p
_pp)/Apv where, and o, denote the mean and standard —p_p_)/Ap_. Iq th(_a inset, a comparison between the cumulative prob-

. p P ability distributions of the fraction of broken bonds at the peak load
deviation of the number of broken bonds a,t p.eak Ioad,p?,nd is presented for the RSM and RFM. For the RSM, triangular lattices
andA, denote the mean and standard deviation _of fraction of sizes(L=8,16,24,32,64,128, 25@nd for the RFM, triangular
broken bonds at peak loadee Table ), we obtain a very |ayices of sizesL=16,24,32,64,128,256,5Lare plotted. In the
good collapse of the cumulative probability distribution of Repm case, the collapse of cumulative probability distributions at
the damage density at the peak load. Figure 9 shows th@te peak load for different lattice topologigsiangular and dia-
(p,L) may be expressed in a universal scaling form suctmong and different disorder distributiorsniform and power lay
thatI1,(p,L)=I1,(p,) for different system sizek. A similar s presented in Ref22].
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peak regime may indicate the presence of a relatively stron-
ger localization in the RSM compared with the RFM.

VI. UNIVERSALITY OF FRACTURE STRENGTH
DISTRIBUTION

In this study, we start the numerical simulation with a
fully intact lattice system. The fracture strength of such a

system is defined as the stress corresponding to the peak load
of the lattice system response.

Figure 11a) presents the fracture strength density distri-
butions for a random threshold spring model using the stan-

dard log-normal variableg, defined asé=[In(o)—7l/¢,

where g; refers to the fracture strength defined as the peak
ST 3 2 o » > 3 i 5 load divided by the system sizl_e and » and ¢ re_fer to the
(P-P)/A, mean and the standard deviation of the logarithmrpfin

order to verify the universality of fracture strength distribu-
FIG. 10. (Color online Normal distribution fit for the cumula-

tion, the fracture strength distributions frdii7] correspond-
tive probability distributions of the fraction of broken bonds at the ing to the random threshold fuse mod&FM) using trian-

peak load for triangular spring lattices of different system sizes gular lattice systems with uniform disorder are presented in
={8,16,24,32,64,128,25%6 Fig. 11(a) along with those corresponding to the random

threshold spring model. In particular, Fig. (&L shows the
cumulative probability distribution for the damage density atdata for different lattice system sizés, corresponding t¢a)

the peak loadI1,(py,L)=I1,(p,), may be universal. Finally, tr!angular spring IgttlceL={8,16,24,32,64,12}8and (b)
the collapse of the data in Fig. 10 indicates that a Gaussiatiiangular fuse lattices of sizds={4,8,16,24,32,64,128
distribution adequately describék,. In all, there are 13 plots in Fig. 1d), and the excellent
In Ref.[22], we have also checked that the distributions atcollapse of the data for various spring and fuse lattices
failure in the random threshold fuse model obey essentiallglearly indicates the universality of the fracture strength den-
the same laws, i.eﬂ@=Hf(ﬁ)=Hp(ﬁp), whereIl(py) is §|ty distribution. The resu_lts presented in Flg(d)larg I|r_n.-
the probability that a system of sitefails when the fraction ited only up to a system size &= 128 due to the availability
of broken bonds equals,, andp; is the corresponding re- of fewer sam_ple configurations for larger lattice systems. _In
duced variable at failure. However, in the RSM, although a°rder to attain a good collapse of the data for the density
reasonable collapse of the cumulative probability distributiordistributions, it is necessary to consider many sample con-
of damage density at failure can be obtained, the cumulativeigurations. On the other hand, good collapse of the data for
distributions of damage density at peak load and at failurdhe cumulative distributions can be achieved using fewer
appear to be different. In particular, the distributiéhy(p;), ~Sample configurations. Figure (b} presents the cumulative
at failure is not adequately described by a Gaussian distribu¥acture strength versus the standard log-normal variable,
tion. The inadequacy of a Gaussian distribution in the postfor random spring and fuse lattice networks for system sizes

. 5 . 1
0.9 %55‘ %‘ 1 09
0.8} %° % 08
07t % XGQ 07
06 ; o 06
|é‘-’o.s L § ‘f% 1 ;3%.5 s
04f f 1 1 04
03 i ? 03}
02 3 i 1 02}
0.1 j % 1 01
0 . 0 -
-8 % -4 2 [ 2 ! -8 4 0 8
(a) (in( o) =m)/g (b) (In( o) )¢

FIG. 11. (Color onling Universality of fracture strength distribution in the random threshold spring and fuse m@l&lsacture strength
density distributions for triangular spring latticds={8,16,24,32,64,128 and triangular fuse latticed. ={4,8,16,24,32,64,128with
uniform disorder(b) Cumulative fracture strength distribution for triangular spring lattides{8,16,24,32,64,128,2%6and triangular
fuse lattices(L={4,8,16,24,32,64,128,256,5)2with uniform disorder. The collapse of the data in random spring and fuse models

suggests universality of fracture strength distribution. In the RFM case, the universality of fracture strength distributions with respect to
different lattice topologies is presented in Rgf7].
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FIG. 12. (Color online Probability distribution fits for fracture strengths at the peak load in a triangular spring lattice network for
different lattice system sizds={8,16,24,32,64,128,2%6(a) Modified Gumbel distributior(top). (b) Weibull distribution(middle). (c)
Log-normal distribution fit for all the 16 curvgsee Fig. 11b)] (bottom). Since the data for different lattice system sizes do not collapse onto
a single curve, Weibull distribution may not be an adequate fit for representing fracture strengths in the RSM. On the other hand, the collapse
of the data in the reparametrized log-normal distribution fit suggests that the log-normal distribution describes the fracture strength distri-

bution adequately.

up toL=512. In particular, in Fig. 1b), we plot the numeri-
cal simulation results of RSM for system sizds
={8,16,24,32,64,128,2%Glong with those of RFM for
system sizes.={4,8,16,24,32,64,128,256,512In all,
there are about 16 curv€s for triangular spring lattices and
9 for triangular fuse latticgesn Fig. 11(b), and the excellent

collapse of the data suggests universality of fracture strength
distribution. In Ref[17], we have also presented the collapse
of the fracture strength distribution for different lattice to-

pologies(such as triangular and diamonavhich is consis-

tent with the notion of universality of fracture strength dis-

tribution. That is,P(o< o)=Y (¢), where P(o< o) refers
to the cumulative probability of fracture strengtts oy, W is
a universal function such that<Q¥<1, and &=[In(o})
-]/ ¢ is the standard log-normal variable.

Figures 12a) and 12b) present the modified Gumbel and
Weibull fits for the fracture strength distribution of a trian-
gular spring lattice network using

1
A:k<—5> -Inc

OF:

@)

for the modified Gumbel distribution, and

A:mln<i>—lnc (3

¢
for the Weibull distribution. In Egs(2) and(3), k, 8, ¢, and
m are constants, andl is defined as

A:_m{_ In[1 Lr:wf)]

whereP(o;) denotes the cumulative distribution. From these
figures, it is clear that fracture strength data for different
lattice system sizes do not collapse onto a single straight line
as they should, if the data were to follow HE) or Eq. (3).
This indicates that neither modified Gumbel nor Weibull dis-
tributions may represent the fracture strengths distribution
accurately for the RSM. In Ref17], similar conclusion has
been drawn for the fracture strengths distribution of RFM.

On the other hand, in Fig. 18, we test the log-normal
description for fracture strengths by plotting the inverse of
the cumulative probabilitysp~[P(c%)], against the standard

log-normal variableé. In the above descriptiod(-) denotes
the standard normal probability function. In particular, in
Fig. 12c) we present the log-normal fit for the cumulative
fracture strength distributions obtained for random threshold
spring and fuse models.e., for all of the 16 curves in Fig.

(4)
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TABLE I1l. Peak load in the random threshold spring model 80
using a triangular lattice network with uniform disorder distribu-
tion. Neonsig denotes the number of configurations used in averaging 79[
the results for each system size.
60f
Triangular
<50
L Neonfig Mean Std §
=40
8 40000 1.8125 0.3318 §
16 40000 2.8646 0.3364 301
24 40000 3.9170 0.3558
32 40000 4.9619 0.3761 20
64 8000 9.0865 0.4632 10
128 2400 17.1286 0.6122
256 100 32.8959 0.8024 00 5'0 160 150 2(')0 250 300

L

11(b)]. Once again, this figure clearly indicates that the frac- F'C- 13- (E?:'c’r oPéi:n?EF;rgposeld scT:a_inng '?W for the mean fric'
ture strength distribution obtained for different lattice system®" st:gng;. (_Eeoa'g7 ‘22) T °1)- (I) fnangu f\‘;’ slzmngb nl.et\*/v?.r
sizes collapses onto a single curve, although a minute deviéﬁi’m °'_' R ranguiar fuse networkSymoot. =-):
tion from straight line behavior is evident. The log-normal «=0.956; the corresponding Weibull fit for the mean fracture
distribution can be understood to have e\}olved as a cons strength is shown in the inset. Nonlinearity of the plots in the inset

L %hggests that mean fracture strength does not follow a power-law
quence of the multiplicative nature of a large number of ran-,

TR ) scaling consistent with the Weibull distribution.
dom distributions representing the stress scale factors neces-
sary to break the subsequent "primary” boridg definition,

an increase in applied stress is required to break a "primaryform u{=1/(A;+B,InL) that is consistent with a modified
bond leading up to the peak lodd 7]. As long as the num- Gumbel distribution for fracture strength3-16.

ber of "primary” broken bonds is large, the fracture strength  Since a very small negative exponéat-1) is equivalent
probability distribution approaches a log-normal distributionto a logarithmic correction, i.e., for(l-a)<1,L*?

(by central limit theoremirrespective of the precise charac- ~[log(L)]™%, an alternative expression for the mean fracture
ter of the individual stress scale factor random distributionsstrength may be obtained ag=u;/(logL)”+(c/L), where
[17] We have also used the normal distribution to CO||apseM: andc are constants that are related to the Consﬁﬂwd

the fracture strength data of triangular spring and fuse latticg, . This suggests that the mean fracture strength of the lat-
systems. Although the data collapse is reasonable, it is not ag.e system decreases very slowly with increasing lattice sys-
good as that of the log-normal distribution based on thgem size, and scales ag~1/(logL)¥, with ~0.15, for
Kolmogorov-Smirnov goodness-of-fit test. very large lattice systems.

VIl. SIZE EFFECTS IN THE MEAN
FRACTURE STRENGTH

— L=24
— L=32
The mean fracture strength data for various random 107} — L=64 |
threshold spring lattice system sizes are presented in Table II o t:;gg

In Ref.[17], for the RFM, we have suggested a scaling form 42

Fpea=CoL*+C4 for the peak load, wher€, andC, are con-
stants. Correspondingly, the mean fracture strength definer 10,
as ur=Fpead L, is given by u;=CoL**+(C,/L). We have &
used the same scaling law for the random threshold sprin¢ 107
model as well, and the result presented in Fig. 13 indicates
that the exponent is approximately equal to 0.97, whichis 10}
once again consistent with the=0.96 obtained for RFM )
using both triangular and diamond lattice topologies. The 10°t N Wm
inset in Fig. 13 presents a power-law fi~ L™ that is n* |
consistent with a Weibull distribution for fracture strengths. o7
From the nonlinearity of the plots in the inset of Fig. 13, it is 1e 10 19 18
clear that the mean fracture strength does not follow a simple

power-law scaling that is consistent with a Weibull distribu-  FIG. 14. (Color onlin@ The distribution of avalanche sizes
tion for fracture strengths. We have also verified that thgwithout the last catastrophic eveérior triangular spring lattices of
mean fracture strength does not follow a scaling law of thelifferent sizes.
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(a)
FIG. 15. (Color online Data collapse of the avalanche size dis- 1
tributions excluding the final catastrophic event. The exponent: anl

used for the collapse are=2.5 (the reference line has this slope
andD=1.1. The distributions have been logarithmically binned to  o.8}

reduce fluctuations. o

VIIIl. AVALANCHES 0.6F

—_

=l

The avalanche size distribution, once the last event is ex %9-5-

cluded, is a power law followed by an exponential cutoff at =
large avalanche sizgsee Fig. 14[25]. The cutoff sizes,

increases with the lattice size, so that we can describe th 03f

distribution by a scaling form

0.4r

0.2r
P(s,N) = s"g(s/N>?), (5) - ]
whereD represents the fractal dimension of the avalanche 0
andN=(3L+1)(L+1) is the number of bonds. Figure 15 pre- -4 8
(b) (PP,

10

Slope = 0.68

FIG. 17.(Color onling The collapsed cumulative distribution of
the last avalanchda) RSM, (b) RFM. The insets in each of these
figures show how well the data can be represented by a normal
distribution fit. The presence of significant nonlinearity of the data
in these insets suggests that normal distribution may not be an ad-
equate fit for representing the distribution of the last avalanche size
for the RSM model, whereas it may be an adequate fit for the RFM
model.

sents the data collapse of the distribution of avalanche sizes
using the exponents=2.5 andD=1.1.

So far we have considered avalanche statistics integrating
the distribution over all the values of the forces up to the
peak load, but the avalanche signal is not stationary: as the
force increases, so does the avalanche size. In particular, the
last avalanche is much larger than the others. Its typical size
grows as snz(nf—np)~Nb, with b=0.68 (see Fig. 18
which is once again in good agreement with 0.7 value

FIG. 16. (Color onling The mean avalanche size of the last Obtained for RFM(see Fig. 14 of Ref.22]). The cumulative

catastrophic everi,=(n;—ny)] scales as a power law df,. Once
again, the scaling exponeht0.68 for RSM is similar to the scal-

distribution of the last avalanche sizes for the RSM and RFM
is presented in Figs. 1& and 17b), respectively. While the

ing exponentb=0.7 obtained for RFM using triangular and dia- distribution is approximately Gaussian for RFM as shown by
mond lattices(see Fig. 14 of Ref(22)).

the data collapséalmost lineay in the inset of Fig. 1),
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there appears to be significant nonlinearity in the data colbut in both cases it is not possible to distinguish a power law
lapse of the plots in the inset of Fig. @J. This suggests that from a linear behavior with a logarithmic correction.
normal distribution may not be an adequate fit for represent- (ii) Damage distributions.The distribution of broken
ing the distribution of the last avalanche size in the RSMbonds at peak load follows a normal distribution for RFM
model. We notice here that the postpeak regime is differenand RSM.
in the two models because the RSM can fail due to loss of (iv) Fracture strengthThe fracture strength distribution
rigidity. In general, the significantly different nature of the is found to be log-normal for both models and the mean
last avalanche with respect to the precursors is revealed boflacture strength scales logarithmically.
by the distribution typgGaussian or power lawand by its (v) Avalanches.The integrated avalanche distributions
characteristic value, scaling ab21.36 orD=1.1. This dif-  follow a power law in both models. The results of the RSM
ference reflects the fact that the last avalanche is a catgield an exponent=5/2 that is very close to the exponent
strophic event corresponding to unstable crack growth, whil@bserved in the global load sharing fiber bundle model
precursors reflect metastable crack growth and the two praFBM), while larger deviations are found in the RF{le.,
cesses are different. 7=2.7[12]).
Thus, in conclusion, we can state that RFM and RSM are
qualitatively very similar: distributions have the same forms,
IX. SUMMARY localization proceeds in the same way, and avalanches are
In this study, we investigated the universality of randomsimilar. However, minor differences can be found in terms of

threshold spring and fuse models using large-scale numeric&Mall quantitative deviations in the exponents. We cannot
simulations and a large number of sample configurations toule out that these deviations are due to differences in the
reduce the statistical error in the numerical results. For botfinite-size behavior of the models and that at large scales the
models, we considered triangular lattice topology with uni-behavior is the same. In addition, the rigidity mechanism that
form disorder and increased the load quasistatically. We pe#S present in the RSM and not in the RFM could explain
formed several statistical measures characterizing the fraome deviations in the postpeak regime. Our analysis sug-
ture process that can be summarized as follows. gests that a simplified scalar model can capture all the essen-
(i) Damage localizationThe process of localization is tial features of a numerically more expensive tensorial
similar in the RFM and RSM. Damage is accumulated in gmodel. Hence, the RFM could be considered as the basic
uniform manner up to the peak load and then suddenly |0m_odel to invest!gate the statistical properties of fracture in
calizes, leading to complete failure. This process is describedisordered media.
by damage prof[les that are paspally flat until peak load .and ACKNOWLEDGMENTS
show a peak, with exponential tails, in the postpeak regime.
The collapse of the damage profiles implies some small dif- This research is sponsored by the Mathematical, Informa-
ferences in the exponents for the two models. tion and Computational Sciences Division, Office of Ad-
(i) Damage densityThe number of broken bonds at fail- vanced Scientific Computing Research, U.S. Department of
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