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Self-organized branching processes: Avalanche models with dissipation
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We explore, in the mean-field approximation, robustness with respect to dissipation of self-organized criti-
cality in sandpile models. To this end, we generalize a recently introduced self-organized branching process,
and show that the model self-organizes not into a critical state but rather into a subcritical state: when
dissipation is present, the dynamical fixed point does not coincide with the critical point. Thus the level of
dissipation acts as a relevant parameter in the renormalization-group sense. We study the model numerically
and compute analytically the critical exponents for the avalanche size and lifetime distributions and the scaling
exponents for the corresponding cutofiS1063-651X96)08009-9

PACS numbgs): 64.60.Lx, 05.40+j, 05.70.Ln, 05.20-y

I. INTRODUCTION Recently, we have introduced the “self-organized branching
process”(SOBB [27], a mean-field model that allows one to
Many driven systems in nature respond to external perturclarify the mechanism of self-organization in sandpile mod-
bations by a hierarchy of avalanche events. This type of beels. Moreover, the SOBP model can be exactly mapped onto
havior is observed in magnetic systefds, flux lines in su-  a two-state sandpile model in the lintit- oo, whered is the
perconductors[2], fluid flow through porous medig3], dimension of the system.
microfracturing processefgt|, earthquakeg5], and physi- In experiments it can be difficult to determine whether the
ological phenomengs]. In these systems the distribution of cutoff in the scaling is due to finite-size effects or due to the
avalanche amplitudes decays as a power la@(s)~s™ "  fact that the system is nait but rather onlyclose tothe
thus suggesting an analogy with critical phenomena. Selferitical point. In this respect, it is important to test the ro-
organized criticality(SOQ was proposed7] as a possible bustness of SOC behavior by understanding which perturba-
framework to describe those phenomena. Power-law scalingons destroy the critical properties of SOC models.
would emerge spontaneously due to the dynamics, without It has been shown numericall28—-3Q that the breaking
the fine tuning of external parameters such as the temperaf the conservation of particle numbers leads to a character-
ture. Various models have been proposed with the aim oistic size in the avalanche distributions. Here we generalize
capturing the essential features of avalanche dynamics arile SOBP in order to allow for dissipation and we show, in
self-organization. In particular, sandpile models stimulatedhe mean-field approximation, how the system self-organizes
an intense experimentf8,9], numerical[10,11] and theo- in asubcritical state. In other words, the degree of noncon-
retical[12—14 activity. servation is a relevant parameter in the renormalization
As in the case of phase transitions, mean-field theory repgroup sens¢l14].
resents the simplest approach that gives a qualitative descrip- In Sec. Il we derive the SOBP from a dissipative sandpile
tion of the system. Mean-field exponents for SOC modelgnodel. In Sec. Il we study the approach to the critical state.
have been obtained in different ways5—21], but it turns  The critical exponents are evaluated in Sec. 1V, and the re-
out that their valuege.g., 7=3/2) are the same for all the sults are verified numerically. Section V is devoted to con-
models considered thus far. This fact can easily be undeslusions.
stood since the spreading of an avalanche in mean-field
theory is a branching proceg22] because an avalanche can
be described by a front of “noninteracting particles” that
can either trigger subsequent activity or die out. The connec- Sandpile models are cellular automata with an integer or
tion between branching processes and SOC has been invesntinuous variable; (energy associated with each siiteof
tigated, and it has been proposed that the mean-field behas-d-dimensional lattice. At each time step the energy of a
ior of sandpile models can be described bycatical randomly chosen site is increased by some amount. When
branching procesf23-24. the energy on a site reaches a threstmlthe site becomes
However, the nature of the self-organization was not adunstable andelaxesby transferring its energy to its neigh-
dressed by the previous approaches. In fact the branchingors according to the specific rules of the model. In this way,
process is critical only for a given value of the branchinga single relaxation can trigger other relaxations, leading to
probability, while in sandpile models there is no such tuningthe formation of an avalanche. The boundary conditions are
chosen to be open, so avalanches that reach the boundaries
release energy outside of the system. After a transient, the

Il. MODEL AND MEAN-FIELD THEORY
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state model introduced by Manhal]. Energy can take only
two stable valueg;=0 (empty sit¢ and z;=1 (particle.
Whenz;=2 the site relaxesz;—z,—2, and the energy of
two randomly chosen nearest neighbors is increased by one.
This rule conserves the energy, in this case the number of
particles, during an avalanche and leads to a stationary criti-
cal state.

Some degree of nonconservation can be introduced in the
model by allowing for energy dissipation in a relaxation
event. In a continuous energy model this can be done by
transferring to the neighboring sites only a fraction-4) of
the energy lost by the relaxing sit28]. In a discrete energy
model, such as the Manna two-state model, one can intro-
duce as the probability that the two particles transferred by
the relaxing site are annihilat¢@9]. For e=0 one recovers
the original two-state model. : _ ! :

Numerical simulation§28,29 show that the two ways of Nary™ o, 13 avalanche generatons caresponding to
_co_n5|der|ng_ d_lSSlpatlon Iead to the same effect: a _c_har_act_eférem ways{(i) with probabilityp(1— €) to two new black sitesiji)
istic length is introduced into the system and the criticality is,yith probability 1— p the avalanche stops, afitl) with probability
lost. As a result, the avalanche size distribution decays not gsc two particles are dissipated at a black site, which then becomes
a pure power law but rather as a marked site ), and the avalanche stops. The black sites are part

. of an avalanche of size=6, whereas the active sites at the bound-
D(s)~s" "hy(s/sc). @ ary yield o3(p,t)=2. The total number of “stopped” sites are
pn=2, and there was one dissipation event such idwa®.

FIG. 1. Schematic drawing of an avalanche in a system with a

Herehg(x) is a cutoff function and the cutoff size scales as

Sc~€ % 2 N
P=Pc= 2(1_6)’ (6)
The sizes is defined as the number of sites that relax in an
avalanche. We define the avalanche lifetilnas the number such that forp>p. the probability to have an infinite ava-
of steps comprising an avalanche. The corresponding distrianche is nonzero, while fgp<p, all avalanches are finite.
bution decays as The valuep=p, corresponds to the critical case where ava-
B lanches are power law distributed.

D(T)~T Y h(TITy), ©) Boundary conditions are important for the process of self-
organization. We can introduce the “boundary conditions”
in the mean-field theory in a natural way by allowing for no
more thann generations for each avalanche. We can view

T~e ¥ (4) the evolution of a single avalanche of sgas taking place
¢ on a tree oN=2"*1—1 sites(see Fig. 1 Note that we are
The cutoff or “scaling” functionsh(x) andh(x) fall off ~ not studying the model on a Bethe latti¢82]; i.e., the
exponentially forx>1. branching structure we are discussing is not directly related
To construct the mean-field theory, we consider the modelo the geometry of the system. The number of generations
as d—x, i.e., for an infinite dimensional lattice. When a N can, nevertheless, be thought of as some measure of the
particle is added to an arbitrary site, the site will relax if alinear dimension of the system. If the avalanche reaches the
particle was already present, which occurs with probabilityooundary of the tree, we count the number of active sites
p=P(z=1), the probability that the site is occupied. If a o (which in the sandpile language corresponds to the en-
relaxation occurs, the two particles are transferred with prob€rgy leaving the systemand we expect that decreases for
ability 1— e to two of the infinitely many nearest neighbors, the next avalanche. If, on the other hand, the avalanche stops
or they are dissipated with probabiligg before reaching the boundary, thprwill slightly increase.
Sinced— implies that the lattice coordination number ~ To make the above statements quantitative, consider the
tends to infinity, the avalanche will never visit the same siteevolution of the total number of particlés(t) in the system
twice, implying that each site that receives a particle from aafter each avalanche
neighbor relaxes with the same probability. The avalanche
process in the mean-field limit is a branching process. More- M(t+1)=M(t)+1-a(p,t) = x(p,b). ™
over, we note that the branching process can be described
the effectivebranching probability

whereh+(x) is another cutoff function and, is a cutoff that
scales as

l?—Yerea is the number of particles that leave the system from
the boundaries ang is the number of particles lost by dis-
P=p(l—e), (5) sipation. SinceM (t)=NP(z=1)=Np, we obtain an evolu-
tion equation for the parameter
wherep is the probability to create two new active sites.
From the theory of branching proces$@g], we know that
there is a critical valug=1/2 or

1-o(p,t)—«(p,t)

. ®

p(t+1)=p(t)+
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This equation reduces to the SOBP mofd#1] for the case 052
of no dissipation £=0). The implications of Eq(8) will be
discussed in the following sections.

0.50

lll. SELF-ORGANIZATION: THE PROPERTIES
OF THE STEADY STATE 048 1

In order to characterize the steady state of the SOBP

model, we rewrite Eq(8) in terms of the average values of 048

p(1)

o and « indicated by angular brackets. The average number b
of particles(a,,) leaving the system from the boundaries in a 0.44 | / < £=025
system ofn generations is computé@2] from the recursive &f K 8jg~£5
nature of the process oa | gf =
(on(p.))=[2p(1-e)]" 9 ?’
0.40 - !
The evaluation of the average number of particles dissi- ¢ 20000 P 40000 60000

pated during an avalanche is somewhat more involved. We

can _f|rst relate the average valueroto the average nymber FIG. 2. The value of the control paramefg{t) as a function of
of sites u where an avalanche does not branch—either betime for a system with different levels of dissipation. After a tran-
cause of dissipation or because the site was erfigty the  sient, p(t) reaches its fixed-point valup* =1/2 and fluctuates
avalanche stops around it with short-range time correlations.

(K)=2() Pe _ (10) the fixed point is attractive. This result implies that the SOBP
pe+1-p model self-organizes into a state wigh=p*. In Fig. 2 we
. . show the value op as a function of time for different values
The calculation of(«) then reduces to the calculation of uf e gissipatione. We find that independent of the initial
(). If we denote byor, the number of active sites at gen- ¢ongitions after a transiemi(t) reaches the self-organized

erationm, theny is given by steady state described by the fixed point vaiie= 1/2 and
n—1 fluctuates around it with short-range correlatiqoéthe or-

= (U _Om+1 :1+s—20n (12) der of one time unjt The fluctuations around the critical
m= moo2 2 ' value decrease with the system size ds. IWhus it follows

that in the limitN— oo the distribution¢(p) of p approaches
wheres=3]_.o, is the total size of the avalanche. The 3 § function
average value of is obtained by summing the series
~8(p—p*). 15
—é 1-[2p(1- o)™ L d(p)~o(p—p*) (15
<S>_m:O (Um>_ 1_2p(1_€) . ( )

By comparing the fixed-point valugl4) with the critical
) ) ) value (6), we obtain that in the presence of dissipation
Combing Egs.(9)—(12), one obtains that EG8) in the (.~ () the self-organized steady state of the systesuls-

continuum notation becomes critical. Figure 3 is a schematic picture of the phase space of
dp 1 N pe
H—N(l—(Zp(l—é)) T peri-p 1
supercritical
1-(2p(1—e)" 1 ) perentica)
X1+ —2@2p(1—¢)"
1—2p(1—e) ( p( )) subcritical :
’t v
+ "(z ). (13) A

subcritical
In Eq. (13), we introduced the functiom(p,t) to describe

the fluctuations around the average valuesradnd . We

have shown numerically that the effect of this “noise” term

is vanishingly small in the limiftN—co. 0 0 0'5 !
Without the noise term we can study the fixed points of )

Eqg. (13). We find that there is only one fixed point,

€

p*=1/2, (14 FIG. 3. Phase diagram for the SOBP model with dissipation.
The dashed line shows the fixed poims=1/2 of the dynamics,
independent of the value &f, the corrections to this value with the flow being indicated by the arrows. The solid line shows
are of the orde©(1/N). By linearizing Eq(13), we find that  the critical points, cf. Eq(6).
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the model, including the lin@=p, of critical behavior(6) The next step is to calculate the avalanche distribution
and the linep=p* of fixed points(14). These two lines D(s) for the SOBP model. This can be calculated as the
intersect only fore=0. average value dP,(s,p) with respect to the probability den-

sity ¢(p), i.e., according to
IV. CRITICAL EXPONENTS

1
In this section, we study the critical properties of the D(S):Ldp¢(p)Pn(S,p)- (21)
model. In the limithn>1 we obtain analytical results for the
avalanche and lifetime distributions for any valuemfthe  since the simulation results show thatp) for N>1 ap-

effective branching probability defined in E(). We show proaches the function 5(p— p*) [cf. Eq. (15)], expression
that the critical branching process wifh=1/2 (obtained (21) reduces to

when e=0) correctly reduces to the mean-field exponents

=3/2 andy=2. D(S):Pn(slﬁ)l’ﬁ‘:p*(lfe)' (22)
A. Generating functions As a result we obtain the distribution
The quantitie®,(s,p) andQ,(o,p) are defined to be the 2\ 127 4t ..
probabilities of an avalanche of sizeand boundary sizer D(s)= (; Texp{—s/sc(e)]. (23

respectively, in a system witlm generations. The corre-

sponding generating functions are defined Bg] We can expand,(P) in e with the result

D)= BD)xS 2
Fo(x,B) =2 Po(s,P)X, (169 S~ o=z 2
= =\ o Furthermore, the mean-field exponent for the critical branch-
gn(x,p)—g Qnl o p)x”. (16 ing process is obtained settirg=0, i.e.,
From the hierarchical structure of the branching process, it is 7=3/2. (29
possible to write down recursion relations Bf(s,p) and ) ) )
Q,(,p), from which we obtair{22] These results are in excellent agreement with the simula-
tion of D(s) for the SOBP mode(cf. Fig. 4. The deviations
fri (X P)=X[(1=P)+PF2(x,P)] (179  from the power-law behavig23) are due to the fact that Eq.
(19 is only valid for 1<s=<n [33].
and
C. Lifetime distribution
9n+10X,P)=(1=P) +Bgr(X,P), (17b)

The avalanche lifetime distributioB(T) is defined, for
the model, as the probability to obtain an avalanche which
spansm generations; here, we identifg with the timeT. It
follows that

wherefy(X,p) =go(X,p) =X.

B. Avalanche size distribution

The solution of Eq(173 in the limit n>1 is given by P(MP)=Qms+1(c=0p)—Qm(c=0p). (26)

1-y1-4x%p(1-p
5 ~p( p). (18 As for the avalanche distributioD(s) we have that
xp D(T)=P(m=T,p) evaluated fop=p*(1—¢).
For p=1/2 we use the general res{#t?]

f(x,p)=

We expand Eq(18) as a series ixx, and by comparing with
the definition(163, we obtain for sizes such that<ls<n

1 —
[33] — = 1+mp+O(Inm), m>1, (27
R 1-Qu(0=0p)
P~ " ex-S/s(B)]. (19 and obtain
The cutoffs,(p) is given b pt
e cutoffs,(p) is given by P(T,5)=p77[1+O(InT/T)+.--]. 28)

se(P)=— == (20)
In4p(1-p) Note the strong correction to scaling B T) in this case.

For avalanches witm=s=<N it is possible to use a Taub- Forp<1/2 we find[22]

erian theoren{34-364, and show thaP,(s,p) will decay _ _
exponentially. 1-Qm(o=0,p)~cy(2p)™, (29
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FIG. 4. (a) Log_log plo’[ of the avalanche d|s’[r|but|dh(s) for FIG. 5. (a) LOg-lOg plOt of the lifetime dlSt”bUUOrD(T) for

different levels of dissipation. A line with slope=3/2 is plotted ~ different levels of dissipation. A line with slope=2 is plotted for
for reference, and it describes the behavior of the data for interme€ference. Note the initial deviations from the power law éer0
diate s values, cf. Eq(23). For larges, the distributions fall off ~ due to the strong corrections to scaling, cf. E2f). (b) Data col-
exponentially.(b) Data collapse produced by E(@3). lapse produced by E¢30).

V. DISCUSSION AND CONCLUSIONS

for m>1, wherec,;>0 is an unknown constant. This expres- . o .
sion yieldsD(T)~ € exp (~ne). We have studied the effect of dissipation in the dynamics

We can combine the above results in the scaling form ©f the sandpile model in the mean-field limd-(<). In this
limit, the dynamics of an avalanche is described by a branch-
ing process. We have derived an evolution equation for the
D(T)~T 2exp(—T/T,), (30 branching probability that generalizes the self-organized
branching proces6SOBB introduced in Ref[27]. By ana-
lyzing this evolution equation, we have shown that there is a
where single attractive fixed point which in the presence of dissipa-
tion is not a critical point. The level of dissipatiertherefore
acts as a relevant parameter for the SOBP model. We have
determined analytically the critical exponents describing the
scaling of the characteristic size withand the form of the
avalanche distributions, and numerically verified the above
results.
These results prove, in the mean-field limit, that criticality
in the sandpile model is lost when dissipation is present. It
y=2. (32 would be interesting to use a similar approach for other
forms of perturbations. In particular it has been shown for
other SOC models that the presence of a nonzero tempera-
In Fig. 5, we show lifetime distributions for different values ture [37] or of a nonzero driving ratE38] are relevant per-
of €, together with the data collapse produced by ). turbations leading to a noncritical steady state.

Te~e ¥, y=1. (31

The lifetime exponeny was defined in Eq(3), wherefrom
we obtain the mean-field result
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Finally, we discuss the relations between the SOBP modehodel, differs from the SOBR27] in the way open boundary
and thesimplest possible SOC systeetcently introduced by conditions are imposed.
Flyvbjerg[39]. The minimal definition of SOC, as a medium
in which externally driven disturbances propagate leading to
a stationary critical state, is well exemplified by the SOBP ACKNOWLEDGMENTS
model. The disturbance is described by the branching pro-
cess and the medium by the evolution equation for the den- K.B.L. acknowledges support from the Danish Natural
sity of particles in the systerfEq. (8)]. The example given Science Research Council. The Center for Polymer Studies is
by Flyvbjerg, being a two-state random-neighbor sandpilesupported by NSF.
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