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ABSTRACT of impacts, and their dependence on physical parameters

is studied both analytically and experimentally.
A model for physically based synthesis of collision sounds  Although performed using elementary resonator mod-
is discussed. Attention is focused on the properties of theels, this investigation can be helpful for improving exist-
non-linear contact force, and on the influence of the phys-ing contact models in more complex systems: one exam-
ical parameters on the perceptually salient sound featuresple is hammer-string interaction in piano models, where
First, the dependence of the contact time on the force pa-contact time is a key feature for sound quality. The well
rameters is established analytically and validated throughknown Stulov model15] for piano hammer felts provides
numerical simulations. Then, the relation with the time- a realistic description of hysteretic contact forces, and is
varying spectral centroid is discussed. As a result, a map-successful in fitting real data. However, recent research by
ping between the physical parameters of the impact forceGiordano and Mills/8] has questioned to some extent its
and the acoustic parameters of the impact sound is pro-general validity, suggesting the need for further investiga-
posed. tions on alternative piano hammer models.
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Spectral Centroid 2. PHYSICALLY-BASED IMPACT MODELS

2.1. Modeling approaches

1. INTRODUCTION . - :
Impact models have been widely studied in musical acous-

According to eco|ogica| acoustic;ﬁ][the physica' proper- tiCS, mainly in I‘elation W|th hammer'string interaction in
ties involved in sound generation can be grouped into two the piano. If the contact area between the two colliding
broad categoriesstructural invariantsspecify individual ~ objects is assumed to be small (ideally, a point), the sim-
properties of objects such as size, shape, matéréais- plest model9] states a polynomial dependence of the con-
formational invariantscharacterize interactions between tact forcef on the hammer felt compressian

objects (e.g. collisions, frictions, etc.). Recent workd] [ N

have shown that oversimplified physical models are able Fa(t)) = { klz(t)] x>0, @)

to convey information on structural invariants (shape, size 0 z <0,

and materials) and to synthesize “cartoon” sounding ob-

jects where these invariants can be controlled. In this pa-The compression: at the contact point is computed as
per attention is turned to some transformational invariants the difference between hammer and string displacements.
that are originated in collision events, namely the impact Therefore, the conditionr > 0 states that there is ac-
“hardness”. Freed6] has addressed this topic using non- tual felt compression, while the complementary condition
synthetic sounds. We use a non-linear contact force modelx < 0 says that the two objects are not in contact. The
originally proposed by Hunt and Crossleél], and we parameter is the forcestiffness and the exponent de-
apply it to a very simple system where a lumped hammer pends on the local geometry around the contact area. As
strikes a lumped resonator. The basic properties of thean example, in an ideal impact between two spherical ob-
model are investigated both analytically and experimen- jectsa takes the valué.5. Typical experimental values in
tally. The simple structure we have chosen allows us to a piano hammer felt range froimb to 3.5, with no definite
study the influence of physical parameters (hammer andtrend from bass to treble.

resonator masses, elasticity and damping coefficients of More realistic models have to take into account the hys-
the non-linear contact force) on the system behavior. Theteresis effects involved in the interaction. As an example,
contact time and the time-varying spectral centroid are it is known that the force-compression characteristic in
chosen as the perceptually salient aspects of the acoustica piano hammer exhibits a hysteretic behavior, such that
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loading and unloading of the hammer felt are not alike. the dissipative term depends on batlandwv, and is zero

In particular, the dynamic force-compression characteris- for zero compression.

tic is strongly dependent on the hammer normal velocity =~ Marhefka and Orin have studied the following case:

before collision. In order to account for these phenom- an idealized hammer, described as a lumped maés,

ena, Stulov/15] proposed an improved model where the strikes a surface. The surface mass is assumed to be much

contact force possesses history-dependent properties. Thgreater thamn(™), therefore the surface is assumed not to

idea, which is taken from the general theory of mechanics move during the collision. When the two objects collide,

of solids, is that the spring stiffned¢sin Eq. (1) has to the hammer initial conditions are(™) (0) = 0 (hammer

be replaced by a time-dependent operator. Consequentlyposition) and:(")(0) = —w;, (hammer normal veloc-

according to Stulov the contact force can be modeled as ity before collision). Since the surface is assumed not to
move, the hammer position and velocity relate to the com-

K[l — h.(t)] % [z()*] x>0, pression and compression velocity through the equalities
fla(t),t) = { 0 oo, @ am@y = —ut), iM(t) = —u(t). The hammer tra-
- jectory is therefore described by the differential equation
wherex stands for the continuous-time convolution op- m"i™ = f(—z", —i(). Then it is shown ini{2]

erator, andh, (t) = £e~*/7 is arelaxation functionthat that
controls the “memory” of the material. In fact, by rewrit- o
y y dGEMY 6 (A + K) [2]

Fa(t), 1) = ka(t) — et/ / EITu() de (3)

T 0

ing the convolution explicitly the Stulov force is seen to = L=/ =
be: dx(h) v v (6)
/ v dv _/ ay
v i) ) e
where two auxiliary parameters = —\/m(® andK =

for > 0. The Stulov model has proved to be success- —k/m"*) have been introduced for clarity. The integral in
ful in fitting experimental data where a hammer strikes a Eq. (6) can be computed explicitly and gives
massive surface, and the signals of force, acceleration, and )
displacement are recorded. Borin and De P4jlshowed a+1 K+ Av ot
that the model can be implemented numerically without a(v) = [(1\2) (A(v ~ Vin) — Klog K + Avy, )} :
significant losses in accuracy, stability and efficiency with (7)
respect to the simpler moddl)( Equation7) providesz as a function o, and can there-

Useful results on impact modeling are also found from fore be exploited for plotting the phase portrait on the
studies in robotics. Physical modeling of contact events is (z, v) plane. This is shown in Fid(a).
indeed a relevant issue in dynamic simulations of robotic ~ Another remark by Marhefka and Orin is concerned
systems, when physical contact with the environment is with “stickiness” properties of the contact for¢e From
required in order for the system to execute its assignedEq. @), it can be seen thgtbecomes inward (or sticky) if
task (for example, handling of parts by an industrial ma- v < vy, := —1/u. However, this limit velocity is never
nipulator during assembly tasks, or manipulator collisions exceeded on a trajectory with initial conditioms= 0,
with unknown objects when operating in an unstructured v = v;,, as shown in the phase portrait of Fikfa). The
environment). Marhefka and Orii2] provide a detailed  upper half of the plot depicts the trajectories of a ham-
discussion of a collision model that was originally pro- mer which strikes the surface with various normal veloci-
posed by Hunt and Crosslegd]. Under the hypothesis ties (trajectories are traveled in clockwise direction). Note
that the contact surface is small, Hunt and Crossley pro-that the output velocities after collision,,; are always

posed the following form for the contact forge smaller in magnitude than the corresponding. More-
over, for increasing;, the resultingv,,; converges to
kx(t)® + Az(t)*v(t) x>0, the limit valuevy;,,. The horizontal linev = vy, corre-
fla(t),v(t)) = { 0 z <0, 4) sponds to the trajectory where the elastic and dissipative

terms cancel, and therefore the hammer travels from right
wherev(t) = (t) is the compression velocity, anil to left with constant velocity. This horizontal line sepa-
anda are defined as above. The parametés the force rates two regions of the phase space, and the lower region

damping weight. is never entered by the upper paths. The lower trajectories
Equation @) can be rewritten as are entered for an initial compressien> 0 and initial
negativecompression velocity;,, < vy;,. If such con-

flz@),v(®t) = kz(®)*[1 + po(t)] >0, (5) ditions are imposed, then one of the lower trajectories is

traveled from right to left: the hammer bounces back from
wherep = \/k is a mathematically convenientterm. Sim- the surface, while its velocity decreases in magnitude, due
ilarly to Egs. ) and @), the value of the exponent de- to the dissipative term in the forgé
pends only on the local geometry around the contact sur-  Figure/1(b) shows the compression-force characteris-
face. Note that the force modd)(includes both an elastic  tics during collision. Note that the dissipative tepm®v
componentz® and a dissipative termixz®*v. Moreover, introduces hysteresis. In this respect, the role of the dissi-



time equations of the coupled system are given by:
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where the parametets™") and¢(""") are the oscillator
center frequencies and damping coefficients, respectively.
The parameters/m (") control the “inertial” properties

of the oscillators (note that("") has the dimension of a
mass). The termﬁe(h), fe(r) represent external forces.

As a special case, one or both the objects can be an in-
ertial mass, described with one mode, zero spring constant
and zero internal damping. As another special case, one
object can be a “rigid wall”, i.e. a modal object with an
ideally infinite mass.

. The continuous-time systel8)(is discretized using the
compression x [m] «10* (b) bilinear transformationi3] (also known as the one-step
Adams-Moultomethod L] in the numerical analysis lit-
erature). The bilinear transformation is one appealing dis-
cretization technique for various reasons. First, its or-
der of accuracy can be seetl] to be two. Second, the
transformation preserves the order of the system. Finally,
the transformation is stable, since the left-halflane is
mapped into the unit-circle. Consequently, the bilinear
transformation provides a reasonable trade-off between ac-
curacy and efficiency.

After applying the bilinear transformation to system
(8), the resulting discrete-time system appears as a par-
allel bank of second-order low-pass resonant filters, each
2.2. An exciter-resonator model one accounting for one specific mode of the resonator.

It can be seen that, being the bilinear transformation
The Hunt and Crossley impact modé) €an be usedasa  an implicit method, the variableis:(n), v(n)] and f(n)
coupling mechanism between two modal resonators. Forhave instantaneous mutual dependence at each time step
Clarity, the two ObjeCtS are denoted with the SuperSCI’iptS n. That iS, a de|ay_free non_computab|e |00p has been
(h) and(r), which stand for *hammer” and “resonator”, created in the discrete-time equations, and since a non-
respectively. The two objects interact through the contact jinear term is involved in the computation, the loop cannot
force f(z, v) givenin Eq. @). be easily rearranged into a computable structure. This is a

According to modal analysis, the two resonators are known problem in numerical simulations of non-linear dy-
described through a set of decoupled equations in whichnamic systems. An accurate and efficient solution, called
the variableaﬂg.r’h) are referred to amodal displacements K method, has been proposed B8] and is adopted here.
Each mode follows a second-order oscillator equation. As-Details about the discrete-time system have been discussed
suming the two resonating objects ha¥é”) and N (") elsewhere14] and will not be addressed in this paper.
modes, respectively, their displacements at a given point
k are given by a linear combination of the modal displace-

(r,h) . . .
ments: Z;il t,(cg’h)xg””’). Assuming that the interac-

tion occurs at poinf = 1... N of the hammer and In this section we derive an equation that relates the con-
pointm = 1...N() of the resonator, the continuous- tact timet, (i.e. the time after which the hammer sepa-

contact force f [N]

50

Figure 1. Collision of a hammer with a massive surface
for various v;,,’s; (&) phase portrait, (b) compression-
force characteristics. Values for the hammer parameters
arem™ = 1072 [Kg], k = 1.5 - 10'* [N/m*], 1 = 0.6
[s/m],c = 2.8, v, = 1...4[m/s].

pative term in the Hunt and Crossley model is very similar
to that of the relaxation function in the Stulov model

3. CONTACT TIME



rates from the struck object) to the physical parameters of
the contact model. The details of the derivation have been
extensively discussed elsewhetzd], here only the main
steps are summarized.

The contact time has a major role in defining the spec-
tral characteristics of the initial transient. Qualitatively,
a shortty corresponds to an impulse-like transient with a
rich spectrum, and thus provides a bright attack. Simi-
larly, a longt, corresponds to a smoother transient with
little energy in the high frequency region. Therefage
influences the spectral centroid of the attack transient. It
is known that the spectral content of the attack transient
determines to a large extent the perceived quality of the
impact. In a study on perceived mallet hardness, Fiéled [
found that the perception of hardness is strongly corre-
lated to the spectral centroid of the attack transient.

Hunt and Crossley1lQ] found an expression for the
normal velocity after collisiorv,,; in the limit of small
1 (a similar discussion is also reported B2]). In this
limit the relationuvy,: = (—1+ %,u)vm is found, in which
thecoefficient of restitutiohas a linear dependence on the
parametey:. In the general case (i.e., when the parameter
u is allowed to take non-small values), studying the be-
havior ofv,,; is less trivial, and Hunt and Crossley do not
address this case.

The velocitiesv;,, andwv,,; correspond to the points
wherex; = 0, i.e. to the roots of the right-hand side in
Eq. (7). Therefore, from Eq.4) v, is found as

K+ Av
:L'h('Uout) = A(Uout - Uin) - Klog ﬁ e
eHvout eHvin
1+Mvout B 1+'U/Uln

)
This equation shows that,,,; depends only om and the
input velocity v;, even in the general case. A graphic
study of the functiore*? /(1 4+ uv), as given in Fig2(a),
provides a qualitative description of the dependenge(v;y, ).
Itis seen that,,; — vy, for v;, — oo, consistently with
the phase portrait in FidL.
The second Eq/9) can be rewritten as
HVin

€
1+ pv

in

eVt = a (1 4 pweyt) , Wherea = (20)
Thereforev,,; is the intersection of the exponential on
the left-hand side and the linear function on the right-hand
side, as shown in Fi@(b). The velocity,,,; can be found
numerically as the root of Eq10).

Havingwv,,., the contact time, can now be computed.
If collision occurs att = 0, then the contact time is by
definition given bytg Ot(’ dt. Moreover, sincelt =
dzy /v, also by definition, it is easily seen from Ecg) (
that

g — dv
v Av + K)x

to Vout
to = dt =
0 / / (Av + K)z¢ K )z

in

Recalling Eq. [7), z~ can be rewritten in the integral as
a function of the velocitw. Thus, the integrand function
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Figure 2. Graphic study ob,,,; for variouswv;,,’s. Values
for the parameters are the same used in Hig.

depends only on. Then straightforward calculations lead
to the expression

)\ & N
to = : .
k a+1
vin dv
out (1 + pw) [—,u(v — Vi) + log ‘11_;;7*:}”1 }

(12)

It can be checked that the constant outside the integral has
dimension [8/m], while the integral itself is a velocity
[m/s]. Therefore, the whole expression on the right-hand
side has dimension [s].

Equation [L2) states that the contact tintg depends
only on y, the exponenty, and the ratiom™ /k (plus
the impact velocity;,,). Note that, for a given value of
«, the constant outside the integral depends onlyuon
and the ration™ /k. Since neithemn") nor k affect
the value of the integral (recall that,,, depends only
on p andv,,), it follows that the power-law dependence
to ~ (m™ /k)1/(@+1) holds. The dependenag() is
less easily established analytically; however, numerical



integration of Eq./12) can be used in order to study such
dependence. Note that the singularitiesat, v;, require
additional care while integrating near the boundaties.

The influence of the model parameters on the contact

time has been analyzed experimentaRy1], in order to
validate equation2). Here we summarize the results.
Two types of numerical experiments were performed.

In a first setup the hammer strikes a rigid surface and re-

bounds from it (this is the same setting used in S8c.
for deriving Eq. 12)). A second experimental setup in-

the varying parameter, and are in accordance with previ-
ously established result$,2]. Note in particular that the
contact time is almost independent on

The plots in the second column of figuBsdepict the
spectral centroid as a function of time (first 100ms) and
of the varying parameter (the arrow indicates the direction
of increase of the parameter). The centroid was computed
on 1024 sample DFT (i.e., & 23ms time window, with
a 44.1kHz sampling rate). A clear correlation between
the contact time and the spectral centroid can already be

volves collision between the non-linear hammer and the noticed: as the contact time increases, the initial “bump”

resonator described in SeZ.2. Several simulations were

in the resulting sound is lenghtened and correspondingly

run in which the parameters were varied over a large rangethe centroid estimation is lowered. For sufficiently long

and the contact tim&, was computed and compared with
the values resulting from numerical integration of E2)(

contact times, the estimated centroid becomes lower than
the resonator pitctfy: see in particular the plots in the

One notable result from numerical experiments is that the first and fourth rows of figur@. An example of initial

contact time varies very slowly with, while m(" /k and
« have a stronger influence e When the hammer col-

lides with a resonating object, an additional dependence
of ¢y on the resonator parameters is introduced. Experi-

mentally we observed that in this caigas always higher
than the value predicted by equatidr®), due to the com-
pliance of the struck object.

4. SPECTRAL CENTROID

In section3 we have stated that the contact time has a
major role in defining the spectral characteristics of the
initial transient of an impact sound. This section provides
an original quantitative assessment of this statement.
The exciter-resonator model summarized in sys@m (

transients with short and long contact times is given in
figure4(a).

The plots in the third column of figui®depict the aver-
agec,, of the spectral centroid (first 100ms) as a function
of the contact time, and illustrate more clearly the correla-
tion between the two parameters. Note that the parameter
1 has an effect on the centroid even though the contact
time remains approximately constant. This effect is illus-
trated in figured(b): asp is lowered, the amount of en-
ergy transferred to the higher partials during contact is in-
creased, and the centroid increases accordingly. Similarly,
note that the centroid increases significantly for low val-
ues ofa, even though the contact time varies slowly. This
effect is illustrated in figurd(c): asa is lowered, the im-
pact force increases significantly and eventually produces
multiple bounces of the resonator on the hammer, with a

was used as a numerical experimental testbed. The sim¢,nsequent increase of the centroid. This effect also ex-

ulations described in the remainder of this section were

performed using the following settings.

e Hammer: N(") = 1,w§h) = O,gY‘) =0, i.e., the
“hammer” was described as an inertial mass without
resonating modes.

ResonatorN (") = 3, [wj(.h)] =21 fo[1,(5/3.011)2,
(7/3.011)2] (i.e. the resonator was given 3 resonat-
ing modes tuned to those of an ideal bar with free
edges]; f, is the pitch), an@§") = w;/q, whereg
is the quality factor of the second-order oscillators.

Using these settings, simulations were run in which the
physical parameters of the impact foree™ k&, 1, o)

were varied on a wide range. For each simulation, the con-

tact time and the time-varying centroid in the first 100ms
were computed.
The results are summarized in figiBe Each row re-

plains the non monotonicity of the contact time—centroid
curve for lowa values.

5. DISCUSSION

The discussion in sectioi®and4 about the influence of
the physical parameters on contact time and spectral cen-
troid have shown in particular that

e The contact time is almost independent on the dis-
sipative component of the contact force.

e The centroid is strongly correlated to the contact
time, but depends also on the dissipative component
of the contact force.

These results can be exploited to derive a mapping be-
tween the physical parameters of the contact force and the
sound features. Given an exciter-resonator system, and

ports the results for one of the four parameters. The plotsgiven the hammer mass(") and force exponent, the

in the first column depict the contact time as a function of

1The integrand function has two singularitie;gt,; andv;,,. How-

ever, it can be checked that at these boundaries the integrand func-

tion converges asymptotically tb/(v — vout)®/ (@t and1/(v —

vin )@/ (@+1) respectively. Therefore the integral takes finite values for fits for theto

anya > 0.

results outlined in sectioi®and4 can be used to derive a
mapplng(kv :u) = (th C(w)'

As a first approximation, a linear regression on the ex-
perimental data can be tried. Figueshows the linear
(k), cav(k), andcgq, (1) curves (logarithmic
scales). By using these linear fits, the control mapping
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Inversion of this equation results in a perceptually-motivated

control mapping, in which the parametgps, ;1) of the
physical model are determined on the basis of the sound
featureg(to, cay )-

More rigorous investigations are needed in order to as-
sess the perceptual relevance of the selected acoustic pa-
rameters and the salience of the proposed map{iBy (

In particular, listening tests should be performed using au-
ditory stimuli synthesized with the proposed model, in or-
der to investigate quantitatively the role of contact time [2] F. Avanzini and D. Rocchesso. Modeling collision
and spectral centroid on the perceived hammer hardness. sounds: Non-linear contact force. Rroc. COST-
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