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Flux Front Penetration in Disordered Superconductors
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We investigate flux front penetration in a disordered type-II superconductor by molecular dynamics
simulations of interacting vortices and find scaling laws for the front position and the density profile.
The scaling can be understood by performing a coarse graining of the system and writing a disordered
nonlinear diffusion equation. Integrating numerically the equation, we observe a crossover from flat to
fractal front penetration as the system parameters are varied. The value of the fractal dimension indicates
that the invasion process is described by gradient percolation.
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The magnetization properties of type-II superconductors
have been studied for many years, but the interest in this
problem has been renewed with the discovery of high tem-
perature superconductors [1]. The magnetization process
is usually described in terms of the Bean model [2] and its
generalizations: flux lines enter into the sample and, due
to the presence of quenched disorder, give rise to a steady
flux gradient. While the Bean model provides a consistent
picture of average magnetization properties, such as the
hysteresis loop and thermal relaxation effects [3], it does
not account for local fluctuations in time and space. It has
been recently observed that flux line dynamics is intermit-
tent, taking place in avalanches [4], and flux fronts are not
smooth [5–7]. In particular, it has been shown that the
flux front crosses over from flat to fractal as a function of
material parameters and applied field [6].

A widely used modeling strategy to describe the fluctua-
tions around the Bean state consists of molecular dynam-
ics (MD) simulations of interacting flux lines, pinned by
quenched random impurities [8–13]. With this approach
it has been possible to reproduce flux profiles [10], hys-
teresis [10], avalanches [9,12,13], and plastic flow [8,13].
One of the aims of these studies [10] is to establish pre-
cise connections between the microscopic models and the
macroscopic behavior, captured, for instance, by general-
ized Bean models. A different approach treats the problem
at mesoscopic scale, describing the evolution of interact-
ing coarse-grained units [14,15], supposed to represent the
system at an intermediate scale. While these models give
a faithful representation of several features of the problem,
the connection with the underlying microscopic dynamics
remains unexplored.

In this Letter, we investigate the invasion of magnetic
flux into a disordered superconductor, a problem that has
recently been the object of intense experimental research
[5–7]. We first analyze the problem by MD simulations, in
analogy with Ref. [10], and obtain scaling laws relating the
front position and the flux profile to the pinning strength.
In order to understand these results, we perform a coarse
graining of the equation of motion and obtain a nonlinear
diffusion equation for the flux line density. In the absence
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of pinning, the equation reduces to the model discussed
in Refs. [16,17]. This model has been analytically [16,17]
solved to provide expressions for the initial dynamics of
the front that are in agreement with our MD simulations.
We show that when quenched disorder is included in the
diffusion equation, the flux front roughens and is eventu-
ally pinned. Varying the parameters of the model (applied
field, disorder, interaction strength), the fluctuations of the
front display a crossover from flat to fractal that is con-
sistent with experimental observations [5–7]. The value
of the fractal dimension suggests that the strong disorder
limit is described by percolation.

In an infinitely long cylinder, flux lines can be modeled
as a set of interacting particles performing an overdamped
motion in a random pinning landscape [8–13]. The equa-
tion of motion for each flux line i can be written as

G �yi �
X
j

�J��ri 2 �rj� 1
X
p

�G�� �Rp 2 �ri��l� 1 h��ri , t� ,

(1)

where the effective viscosity can be expressed in terms of
material parameters G � F0Hc2�rnc2. Here, F0 is the
magnetic quantum flux, c is the speed of light, rn is the
resistivity of the normal phase, and Hc2 is the upper criti-
cal field. The first term on the right-hand side represents
the vortex-vortex interaction and it is given by �J��r� �
�F2

0��8pl3��K1�j�rj�l�r̂ , where the functionK1 is a Bessel
function decaying exponentially for j�rj . l and l is
the London penetration length [18]. The second term on
the right-hand side accounts for the interaction between
pinning centers, modeled as localized traps, and flux lines.
Here, �G is the force due to a pinning center located at �Rp ,
l is the range of the wells (typically l ø l), and p �
1, . . . ,Np (Np is the total number of pinning centers).
While Refs. [9–11] employed parabolic traps, we decided
to avoid discontinuities in the force and used instead
�G� �x� � 2f0 �x�j �xj 2 1�2, for j �xj , 1 and zero otherwise.
Finally, we add to the model an uncorrelated thermal noise
term h, with zero mean and variance �h2� � kbT�G. Al-
though in the present simulations we restrict ourselves to
© 2001 The American Physical Society
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the case T � 0 (see Ref. [19] for the implementation of
thermal noise in MD simulations), we will discuss the
effect of temperature in the coarse-grained description of
the dynamics.

We perform MD simulations based on Eq. (1) and ana-
lyze the flux front propagation for different values of the
pinning strength f0. We use N � 5000 flux lines in a sys-
tem of size (Lx � 800l, Ly � 100l [20]), with Np �
800 000 Poisson distributed pinning centers of width l �
l�2, corresponding to a density of n0 � 10�l2. The
injection of magnetic flux into the sample is implemented
similarly to Ref. [10], concentrating at the beginning of the
simulation all the flux lines in a small strip, parallel to the
y direction, of length L0 � 1022l and imposing periodic
boundary conditions in both directions. The front position
xp is identified as the x coordinate of the most advanced
particle in the system at different times. In Fig. 1 we show
that xp grows initially with time as t1�3 and eventually
saturates to a value jp which increases as the strength
of the pinning centers f0 is decreased. The data collapse
shown in the inset of Fig. 1 indicates that the front pinning
length jp scales as f1�2

0
. When the front saturates, we

measure the density profiles [10] which can be collapsed
using the scaling form r�x� � f21�2

0
F�xf1�2

0
� (see Fig. 2).

In addition, we vary the density of pinning centers, using
n0l2 � 2.5, 5, 7.5, and 10, and find that similar scaling
collapses hold if f0 is replaced by f0

p
n0.

In order to understand these results, we perform a coarse
graining of Eq. (1), starting from the Fokker-Plank equa-
tion for the probability distribution of the flux line coordi-
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FIG. 1. The average position of the front, obtained from MD
simulations injecting a constant magnetic flux from the bound-
ary, is plotted as a function of time. The curve increases as t1�3

and saturates at long times to a value depending on f0. In the
inset, we show by data collapse that the pinning length scales
as f21�2

0
.

nates P��r1, . . . , �rN , t�,

G
≠P
≠t

�
X
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�=i�2 �fiP 1 kBT �=iP� , (2)

where �fi is the force on the particle i given by Eq. (1).
Next, we introduce the single particle density r��r, t� �
�
P
i d

2��r 2 �ri��, where the average is done over the distri-
bution P��r1, . . . , �rN , t�. The evolution of r can be directly
obtained from Eq. (2) and is given by

G
≠r

≠t
� 2 �=

( Z
d2r 0 �J��r 2 �r 0�r�2���r, �r 0, t�

2
X
p

�G�� �Rp 2 �r��l�r��r , t�

)
1 kBT=2r ,

(3)

where r�2���r , �r 0, t� is the two-point density, whose evolu-
tion depends on the three-point density, and so on. The
simplest truncation scheme involves the approximation
r�2���r , �r 0, t� 	 r��r , t�r��r 0, t�. We then coarse grain the
equation considering length scales larger than l. This can
be done by expanding �J in Fourier space, keeping only
the lowest order term in �q, and retransforming back in
real space. The result readsZ

d2r 0 �J��r 2 �r 0�r��r 0, t� 	 2a �=r��r , t� , (4)

where a �
R
d2r �r ? �J��r��2 � F

2
0�4.

The coarse graining of the disorder term is more subtle.
A straightforward elimination of short wavelength modes
would give rise, as in the previous case, to a random force
�Fc��r� � 2g �=n, where n is the coarse-grained version of
the microscopic density of pinning centers n̂��r� �

P
p 3

d2��r 2 �Rp� and g ~ f0. This method cannot be applied
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FIG. 2. The pinned density profiles measured in MD simula-
tions. In the inset we show the data collapse.
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for short-range attractive pinning forces such as the one
we are investigating. In this case, short wavelength modes
yield a macroscopic contribution to pinning that cannot
be neglected. Consider, for instance, the flow between
two coarse-grained regions: short-range microscopic pin-
ning forces give rise to a macroscopic force that should
always oppose the motion, while the random force derived
above could, in principle, point in the direction of the flow.
In other words, Fc��r� should be considered as a friction
force [21] whose direction is always opposed to the driv-
ing force �Fd (in our case �Fd � a �=r) and whose abso-
lute value is given by jg �=nj for j �Fdj . jg �=nj and to j �Fdj
otherwise [22].

Collecting all the terms, we finally obtain a disordered
nonlinear diffusion equation for the density of flux lines

G
≠r

≠t
� �=�ar �=r 2 r �Fc� 1 kBT=2r . (5)

The boundary conditions representing our MD simulations
correspond to a constant number of flux lines MLy in-
jected into the system, so that the total density is conservedR
dx dy r�x, y, t� � MLy . With these boundary condi-

tions, the T � 0 behavior depends on a single effective
coupling constant g0 � g

p
n0��aM� as can be shown by

rescaling Eq. (5) and the conservation law as

r � r̃�M, t � t̃��GaM2�, n � ñ
p
n0 . (6)

In the limit g0 � 0 and T � 0, Eq. (5) was solved by
Bryskin and Dorogotsev [16] using similarity methods,
and the solution reads r�x, y, t� � t21�3h�x�t1�3�, where
h�u� � �1 2 u2��6 for u , 1 and vanishes for u $ 1
[16,17,23]. Notice that we recover here the t1�3 behavior
observed in MD at early times for the front position [24].
When disorder is present �g0 . 0�, we expect the front to
deform and eventually encounter a strong pinning region
where it stops. The scaling of the front position jp with
f0 observed in MD simulations can be explained, notic-
ing that the front will be pinned when the force due to the
density gradient is equal to the friction force of the order
of f0

p
n0. The gradient force can be estimated as a=r 


r0�jp , where the density at the boundary is given by r0 

M�jp . Thus we find that jp 
 �Ma�f0

p
n0 �1�2 � g21�2

0
,

in agreement with MD simulations.
In order to confirm the validity of these considerations,

we discretize Eq. (5) on a tilted square lattice and integrate
the equations numerically by using a finite volume tech-
nique with an upwind scheme to avoid numerical instabili-
ties. At the beginning of the simulation, all flux lines are
concentrated at the boundary of the sample (i.e., x � 0)
and in each site of the lattice we define an uncorrelated
Gaussian pinning center density n, with mean n0 and vari-
ance

p
n0, thus defining a local random friction force. As

flux lines enter into the sample, we identify the flux front
by using a burning algorithm and compute its average po-
sition xp . In the initial stage, xp grows as t1�3 up to a
3624
crossover length scaling as jp 
 g21�2
0

, in agreement with
MD simulations (see Fig. 3). In addition, we measure the
density profiles and find that they rescale with g0 in the
same way as in MD simulations.

The numerical integration of the diffusion equation al-
lows for a direct analysis of the fluctuations in the front as
a function of different internal parameters. Measuring the
width W of the fronts as a function of time for different
values of g0, we find that in the initial stage W grows as a
power law tb where b 	 0.35 until it saturates to a value
that decreases with g0. Thus the front crosses over from
flat to fractal as it enters into the material. In principle, we
can control the strength of the fluctuations and the associ-
ated characteristic length j� by tuning g0, which directly
reflects experimentally measurable parameters.

In order to compare the model with experiments, we
have to implement appropriate boundary conditions. In
Refs. [5,6] the external field was ramped at a constant rate,
which corresponds to a constant increase of the boundary
density: r�0, y, t� � ht [17]. Integrating the equation with
this boundary condition, we observe that for strong disor-
der the flux front roughens, displaying substantial over-
hangs (see the inset of Fig. 4 [25]). Here the box counting
method is applied to estimate the fractal dimension of the
front: we divide the lattice into boxes of size b and count
the number of occupied boxes N�b�, which decays as
b2Df , where Df is the fractal dimension. Figure 4 shows
that for b , j� the data are well fitted by a power law
with exponent Df � 4�3, which coincides with the frac-
tal dimension of the perimeter of the percolation cluster.
For b . j� the fractal dimension crosses over to Df � 1,
corresponding to a flat front. The observed behavior is
reminiscent of gradient percolation [26], a model in which
the concentration of occupied sites p decreases with the
distance from the sample boundary. The invaded area is
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FIG. 3. The front position measured by simulating the contin-
uum equation for different values of g. In the inset we show the
data collapse.
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FIG. 4. In the inset we show a density plot obtained by simu-
lating the continuum equation with g � 5, a � 6.28, n0 � 8,
and concentration at the boundary increasing at rate h � 0.01.
In the main figure we report the box counting plot of the front,
averaged over 12 realizations of the disorder. The front has frac-
tal dimension Df � 4�3 (solid line) and crosses over to Df � 1
at large length scales.

compact, but its perimeter is fractal (with Df � 4�3) up
to a length scale j� which depends on the concentration
gradient.

In experiments on flux penetration in Tl2Ba2CuO61x

thin films with controlled anisotropy, Df was found to
change continuously from Df 	 1.5 to Df 	 1 as the de-
gree of anisotropy and the applied field was varied [6]. It
would be interesting to check if the observed continuous
variation of the fractal dimension can be explained by a
crossover from a percolation process at short length scales
to a flat invasion at large length scales, with a crossover
length depending, for instance, on the degree of anisotropy.

In conclusion, we have analyzed flux front penetration in
disordered type-II superconductors, establishing connec-
tions between microscopic flux line dynamics and a meso-
scopic nonlinear diffusion equation. This equation allows
one to interpret the results of MD simulations and provides
a useful framework to analyze experiments.
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