
Design, Malfunction, Validity: Three more tasks

for the Philosophy of Computing

Giuseppe Primiero
Department of Philosophy

University of Milan
giuseppe.primiero@unimi.it

Abstract

We present a review of Raymond Turner’s book Computational Ar-
tifacts – Towards a Philosophy of Computer Science (2018), focusing on
three main topics: Design, Malfunction, and Validity.

1 Computational Artifacts

A philosophy of computing should be able to guide a society currently thriv-
ing with technological evolution. To this aim, the epistemology and ontology
of Computer Science object of Raymond Turner’s Computational Artifacts –
Towards a Philosophy of Computer Science [11] are undoubtedly the first and
most important steps, offering a philosophical understanding of the notions of
program, computation, programming language, machine, along with associated
methodologies for their construction and development.

Turner’s book does a fantastic job of illustrating the complexity of this task,
at the same time providing a well-grounded and substantially solid philosoph-
ical theory, based on the interpretation of computational artifacts as technical
ones in the sense of the Philosophy of Technology. Specifically, computational
artifacts are characterized by a layered ontology and a related epistemology,
combining a physical, material nature with an abstract one. The first realiza-
tion of this duality is known in the literature as the relation between speci-
fication and implementation, which has been object of early research [10, 9].
Turner’s more refined analysis considers computational artifacts as construed
by: function, design, structure and implementation ([11, p.27]). For programs,
these elements are instantiated respectively by: specification, design, symbolic
program, implementation (see [11, p.27]). Each layer can be associated with a
corresponding notion of information, see [6].

Three aspects related to the layered ontology and epistemology of compu-
tational artifacts, and which are of major relevance for the continuation of a
profitable and impactful research agenda, are:

1



1. design: what is the role that a philosophical and formal analysis of design
can play in the context of the philosophy of computing?

2. malfunction: how can a theory of computational malfunction be developed
and applied to the benefit of both technological development and society?

3. validity : what is the appropriate notion of validity for computational ar-
tifacts?

These topics emerge in Turner’s book, although their analysis is not fully
developed. This commentary will highlight their importance, and argue for a
research agenda in their direction, also in the light of the social role that any
philosophy of computing should play.

2 Design

Designs as objects of formal and philosophical analysis date back to the 1960s
and should be understood as methods to rationalise (software) systems in terms
of problem-solving processes and logics. Several methodological approaches to
design are available in the literature, and the logics of design answer the need for
a generalisable and systematic approach. For computational systems, designs
are crucial. In Chapter 15 [11, p.129], Turner overviews the problem from a
dual perspective:

”we introduce programming and software design from the perspective
of the philosophy of design. [...] One fundamental question concerns
the nature of design:

• What is a design, what kinds of things are designs, and what is
a good one and how do we judge?

[...] This raises basic metaphysical, epistemological, and aesthetic
questions about design. [...] Of course, these questions cannot be
completely separated from the methodological ones:

• Which methods are used in practice to obtain good designs?
How do we evaluate them?”

Here Turner hits a major issue in the philosophical debate on computing:
the centrality of design is primarily due to the fact that the result of design
is at its higher abstraction level the specification, and the latter is normative
for the implementation (see also [11, pp.79-89 and 217-218]). This also means
that there is a correctness requirement for designs themselves, along with other
desirable properties, like simplicity [11, ch.16], modularity [11, ch.16], and the
use of a methodology which guarantees a balance with the speed of development
[11, ch.18]. For designs (of technical artifacts at large) as objects and the process
of obtaining them, Turner tells us the following [11, p.26]:

2



”The output of the design process is a structural description of an ar-
tifact, and there might be many structural forms that fulfill a given
function. [...] The design process may itself be divided into sev-
eral stages, where more informative structural descriptions emerge
at each stage. Even so, the final description does not have to be
a complete structural description in the sense that all the physical
properties need to be included.”

In the case of software (see [11, p.54]), the design process needs to follow require-
ments specification through a structural description of the intended system by
appropriate methods (e.g. UML diagrams or any specification language). Es-
sential properties specific for the good and successful design of programming
languages are (see [11, Ch.19]):

• Simplicity, requiring an understanding of minimality and maximality con-
ditions of correctness, which Turner distinguishes in syntactic and onto-
logical terms.

• Expressive power, formulated as a parameter of Turing completeness,
while its ontological counterpart can be formulated as the domain of ref-
erence.

• Security, enforced through semantic properties of typing, and in combina-
tion with uniformity represents a solution to an optimization problem.

The possible conflict between simplicity and expressive power is solved by a
balance between principles of (see [11, Ch.20]):

• Correspondence: for each form of definition or declaration there exists a
corresponding parameter mechanism, and vice versa.

• Type completeness: every term is typed, types may be contextual inde-
pendent, no empty types are defined, functions may use parameters, and
provide outputs of any type.

• Abstraction: all major syntactic categories should have abstractions de-
fined over them, i.e. phrases of semantically meaningful syntactic classes
may be named.

This analysis provides a clear and useful understanding of properties of designs
for programming languages.

But the initial ontological and methodological aims of providing a definition
of designs for computational artifacts at large, and to characterize their good
properties, remain to be addressed. In particular, it is a crucial task for the phi-
losophy of computing to establish characteristics of designs as computational
objects, their properties, and how we model them. A logic of design of a system
as a specific kind of conceptual logic of the design of the model of a system,
that is, the blueprint that provides information about the system to be created

3



has been recently considered in [1], a task reconsidered further in [7], where a
blueprint is a formal object composed by a tuple <process, resources, output>,
required to instantiate a system. For such a formal object one can study re-
source access properties and thereby establish the logic of how computational
artefacts are made, but also the logic that validates the design. In the latter case,
a number of properties can be studied, for example minimality and maximal-
ity conditions on resources satisfying intended requirements; other properties
(like those identified by Turner for the design of programming languages, but
also others related to: explanation, external and internal correctness, security)
should become a major objective of the philosophy of computing.

From a theoretical perspective, designs have the potential to be for the
philosophy of computing the formal object of investigation, similar to what
has been the case for proofs for over two centuries in logic and the philosophy
of mathematics. From a practical viewpoint, designs are the tool necessary
to improve the methodology of development and evolution of computational
systems.

3 Malfunction

The requirement of correctness for designs impacts another central issue: mal-
function. On the one hand, correct designs are the criterion to establish when
a computational artifact malfunctions (see [11, p.46]):

”specifications are normative in the sense that they fix the criterion
of correctness and malfunction for any proposed program.”

To establish taxonomies of computational malfunctions, and of malfunctioning
software in particular, has been the task of a number of recent proposals in the
literature ([3, 5, 2]), relying on the essential multi-layered structure of compu-
tational artifacts. This aspect is also briefly highlighted by Turner [11, p.57],
although he does not report on current research in the area:

”Each level of abstraction offers different possibilities for malfunc-
tion. Once the requirements are employed as a specification for the
design stage, there is a possibility for malfunction. Once accepted,
the design acts as a functional specification for the design of individ-
ual programs. This provides yet another possibility for malfunction.
Finally, the actual physical devices may malfunction. Moreover, the
conceptual natures of correctness and malfunction at each stage are,
as we shall see much later, rather different.”

The philosophy of computing (and of Computer Science in particular) should
endorse the problem of defining miscomputation as among the most relevant
ones in its agenda in terms of formal correctness criteria on designs.

In view of the impact that malfunctioning computational artifacts have on
everyday life and especially in safety-critical systems, there is another aspect

4



of correctness of designs that we urgently need to account for: the malicious
modification of the design of a system to induce malfunctioning. This issue
surfaces today mostly in the enormous distribution of malware, known since the
1980s and object of continuous attempts at identification and categorization.
From a conceptual and formal point of view, analyses are starting emerging
in the literature ([4, 8]) which go beyond the classificatory approach typical of
software engineering.

But a more extensive effort is needed to connect the issue of induced malfunc-
tioning with the above presented formal and conceptual description of designs
for computational artifacts. A problematic theoretical aspect is that the mod-
ification of designs implies that technically an artifact affected my malware is
compliant to its (modified) design, and hence not strictly speaking malfunction-
ing, as it by-passes the principle of correctness as a match to an intended speci-
fication. This means to recognize the limits of existing behavioral analyses. We
need to investigate thoroughly properties of security and resilience; to provide
formal models of behaviour prevision under changing environmental execution
condition; and to define designs resistant to undesired modifications. To these
aims, trustworthy designs should be defined and their properties investigated.

This task can significantly increase the relevance of our research area for the
practitioners, in particular software developers and system administrators, and
for the legislators, who are to be given clear conditions under which systems
can be identified as under threats and actions characterised as culpable.

4 Validity

The aims of defining correct and trustworthy designs and of obtaining a clear
conceptual definition of well-functioning, secure computational artifacts, pre-
serving essential properties of evolution and resilience, lead us to a third, over-
arching main issue for the philosophy of computing: what is an appropriate
notion of validity for computational artifacts? Also in this case, the layered
ontology and epistemology of computational artifacts play a crucial role.

Correctness is the property usually referred to for computational artifacts
since the formal approaches started in the 1960s, and with the modelling prac-
tices advanced by Software Engineering since the second half of the 1970s. The
term correctness refers to the matching relation between implementation and
intended specification, and thus it is essentially expressed by a syntactically
defined, behavioural property of the physical program. Levels of abstraction,
though, are not exhausted by the duality of specification and implementation.
A more refined description of the epistemology and ontology of computational
systems is offered in [6], including:

• Intention: at this level one reflects on and expresses the computational
problem to be solved;

• Specification: at this level the set of requirements needed by the solution
of the problem is stated;

5



• Algorithm: at this level a procedure is formulated which satisfies the re-
quirements and provides a solution to the problem;

• High-level programming language instructions: at this level the task res-
olution provided by the algorithm is implemented in linguistic constructs
for the chosen language;

• Assembly/machine code operations: at this level the operations which
need to be performed for the realization of the programming language in-
structions are translated to the low-level constructs required by the hard-
ware;

• Execution: at this level, operations are executed by electrical charges and
the information flow on the hardware.

This description includes both syntax and semantics at different levels. The
difference from Turner’s analysis, is that it goes beyond the standard under-
standing of the normativity of rules (see [11, p.79]):

”To say that meaning is essentially normative is to say that certain
norms are valid, or in force. In terms of programming languages,
the“ normativity of meaning” has it that any semantic account must
provide a criterion of correctness.”

Distinguishing an abstract (intention/specification/algorithm), an implementa-
tion (high/low level language) and a physical (execution) level of abstraction
for computational artifacts means also to establish properties for each. These
properties require to account for:

1. the role of language and encoding of the algorithm;

2. the identification of the physical architecture and its effects on the behavior
of programs;

3. the validation and verification of formal and computational models.

These properties allow us to identify several, interdependent notions of correct-
ness: functional, procedural, executional, and of the artifact with its object of
study or intended output. Validity and Correctness for the formal, physical and
experimental notions of computing should be studied comprehensively, a task
which the philosophy of computing at large should make its own.

Turner’s contribution leaves open these and other venues of investigation
into the ontology, epistemology, metaphysics and ethics of computational sys-
tems. The hope is that the community of philosophers of computing will further
explore them to establish its role as the most relevant philosophical task of this
century.

6



References

[1] L. Floridi. The logic of design as a conceptual logic of information. Minds
and Machines, 27(3):495–519, 2017.

[2] L. Floridi, N. Fresco, and G. Primiero. On malfunctioning software. Syn-
these, 192(4):1199–1220, 2015.

[3] N. Fresco and G. Primiero. Miscomputation. Philosophy & Technology,
26(3):253–272, 2013.

[4] Simon Kramer and Julian C. Bradfield. A general definition of malware.
Journal in Computer Virology, 6(2):105–114, 2010.

[5] G. Primiero. A taxonomy of errors for information systems. Minds and
Machines, 24(3):249–273, 2014.

[6] G. Primiero. Information in the philosophy of computer science. In
L. Floridi, editor, The Routledge Handbook of Philosophy of Information,
pages 90–106. Routledge, 2016.

[7] G. Primiero. A logic of efficient and optimal designs. Journal of Logic and
Computation, 2019.

[8] G. Primiero, F.J. Solheim, and J.M. Spring. On malfunction, mechanisms
and malware classification. Philosophy & Technology, Nov 2018.

[9] W.J. Rapaport. Implementation is semantic interpretation. The Monist,
82(1):109–130, 1999.

[10] R. Turner. Specification. Minds and Machines, 21(2):135–152, 2011.

[11] R. Turner. Computational Artifacts - Towards a Philosophy of Computer
Science. Springer, 2018.

7


