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 1 

Abstract  2 

Synchrotron radiation reflectometry was used to access the transverse structure of model 3 

membranes under the action of the human sialidase NEU2, down to the Ångström length scale. 4 

Model membranes were designed to mimic the lipid composition of so-called Glycosphingolipids 5 

Enriched Microdomains (GEMs), which are membrane platforms specifically enriched in 6 

cholesterol and sphingolipids, where also typical signalling molecules are hosted. Gangliosides, 7 

glycosphingolipids containing one or more sialic acid residues, are asymmetrically embedded in 8 

GEMs, in the outer membrane leaflet. There, gangliosides are claimed to directly interact with 9 

growth-factor receptors, modulating their activation and then the downstream intracellular 10 

signalling pathways. Thus, membrane dynamics and signalling could be strongly influenced by the 11 

activity of enzymes regulating the membrane ganglioside composition, including sialidases. Our 12 

results, concerning the structure of single membranes undergoing in-situ enzymatic digestion, show 13 

that the outcome of the sialidase action is not limited to the emergence of lower-sialylated 14 

ganglioside species. In fact, membrane reshaping occurs, involving a novel arrangement of the 15 

headgroups on its surface. Thus, sialidase activity reveals to be a potential tool to dynamically 16 

control the structural properties of the membrane external leaflet of living cells, influencing both the 17 

morphology of the close environment and the extent of interaction among active molecules 18 

belonging to signalling platforms. 19 

 20 

 21 

1. Introduction 22 
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Signal transduction, cell migration, endocytosis and exocytosis of proteins and lipids are largely 1 

influenced by the dynamic structure of the plasma membrane and by the local aggregation of 2 

specific lipids and proteins [1-4]. The assembly of receptors and associated transducing elements 3 

typically occur in the lipid bilayer matrix of membranes. Specific lipid classes, like sphingolipids, 4 

are driving agents for membrane partition into functional micro-domains [5,6]. Membrane micro-5 

domains enriched in cholesterol and sphingolipids, including glycosphingolipids, leading to a liquid 6 

ordered phase, are usually identified by the term GEMs (Glycosphingolipid Enriched Membrane 7 

micro-domains) [7]. Gangliosides and cholesterol have been found to act synergistically, forcing a 8 

preferential redistribution of components across the membrane and contributing to the super-9 

structuring of their environment [8-10]. 10 

Moreover, specific lipid mixtures have been found in association with particular types of signalling 11 

molecules. To this regard, the FAS/CD95 receptor is typically found in association with the 12 

ceramide/sphingomyelin/gangliosides complexes, while it has been reported that the epidermal 13 

growth factor receptor (EGFR) is mostly associated with the 14 

cholesterol/sphingomyelin/gangliosides ones [11].  Based on recent studies, the emerging concept is 15 

that the local environment of any protein within membrane microdomains may modulate its 16 

propensity to interact with other proteins [12]. Within GEMs, gangliosides appear to play a 17 

multifaceted role, entangling structural and functional properties. In particular, the interactions 18 

between gangliosides and receptors have been demonstrated to be crucial to modulate downstream 19 

signalling pathways. In fact, the interaction between ganglioside GM3 and multi N-20 

acetylglucosamine (GlcNAc) residues of N-linked glycans belonging to EGFR down-regulates the 21 

activation of the receptor [13]. Moreover, the interaction with gangliosides GM3 and GM2 has 22 

shown to inhibit the activation of the hepatocyte growth factor receptor, cMet [14].
 
 23 

In this view, the remodelling of gangliosides in plasma membranes could deeply alter cell 24 

signalling, and enzymes regulating ganglioside metabolism could play a key role in this context. 25 
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Sialidases (EC 3.2.1.18), which catalytically remove sialic acid from different sialo-glyco-1 

conjugates, including gangliosides [15], have been demonstrated to be involved in these 2 

mechanisms.  3 

In mammals, four sialidases (NEU1, NEU2, NEU3, and NEU4) are present. They are involved in 4 

several key physiological events [16] and their deregulation appears to be related to cancer 5 

transformation [17-23]. The typical plasma membrane-associated sialidase NEU3 shows strict 6 

substrate specificity for gangliosides [16] and is prevalently associated with GEMs [24]. Through 7 

the regulation of membrane ganglioside composition, NEU3 modulates the activation of membrane 8 

receptors including EGFR [19,25], androgen receptor [26], and 1 integrin trafficking [23]. 9 

Nonetheless, recently, it has been demonstrated that NEU3 is not the unique sialidase present in the 10 

plasma membrane but also other sialidases, typically located in other cellular districts, can move to 11 

the cell surface and may be involved in many events. Lysosomal sialidase, NEU1, can migrate to 12 

the plasma membrane in different cells, like T lymphocytes [27], macrophages [28], and 13 

erythrocytes [29], there accomplishing important physiological tasks. Sialidase NEU2 is cytosolic 14 

and occurred to be found associated to mouse thymus cells [30]. Thus, plasma membrane proteins, 15 

lipids and enzymes involved in their metabolism appear to be dynamic entities that can move, 16 

entering and exiting from dynamical structures. Alterations occurring in such dynamics could be 17 

related to the deregulation of signal transmission or protein trafficking. 18 

The study of portions of plasma membrane undergoing enzymatic action is then a very interesting 19 

topic. In particular, nanoscale modifications of the membrane structural properties induced by the 20 

punctual action of an enzyme on one of its components are now made possible by innovative 21 

experimental techniques on model systems. Among them, the synchrotron radiation reflectometry 22 

technique [31] is a powerful tool to access the transverse structure of a membrane down to the 23 

Ångström length scale.  24 
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In the work presented here, we applied synchrotron radiation reflectometry to perform a structural 1 

study of single ganglioside-containing model membranes under the action of sialidase NEU2. In 2 

particular, our aim was to observe the changes induced in the cross structure of a biomimetic 3 

membrane by the in situ chemical conversion of one component, namely GD1a ganglioside, in its 4 

metabolic product. It follows previous works we performed concerning the sialidase digestion of 5 

GD1a substrate in the form of colloidal aggregates in solution, either as pure GD1a micelles, or as 6 

mixed micelles or vesicles containing GD1a. [32]. The chemical formula of GD1a ganglioside is 7 

reported in Figure 1 (MW=1849 Da). Among others, the human sialidase NEU2 (HsNEU2) was 8 

chosen because it is water soluble, and therefore it could be added directly in the measuring cell to 9 

the buffer in contact with a pre-existing and characterized target membrane, without the help of any 10 

solubilizing agent. In addition, HsNEU2 is well characterized as a globular protein of ~42 kDa, it 11 

has been successfully purified and its structure and kinetic properties toward many substrates 12 

(gangliosides, oligosaccharides, and sialoglycoproteins) have been determined [33,34]. Within the 13 

family of neuraminidases, HsNEU2 has been found to be the most specific in substrate [35], being 14 

very efficient in removing the 2-3 linked- external sialic acid residues, as in GD1a, GD1b, GT1b, 15 

GM3, sialyllactose, and sialoglycoproteins [34], while showing no activity on internal sialic acid 16 

residues, like in GM1 or in GM2. Some residual activity has been detected on monomeric 17 

dispersions of GM1 [34],Moreover, we observed [32] that, while chemically undergoing the 18 

enzymatic action, biomimetic mixed GD1a-phospholipid vesicles in solution display a transient 19 

response to sialidase, followed by full recovery.  20 

Structural studies often require simplified model membranes. Still, some important features of 21 

biological membranes should be maintained. When mimicking GEMs, the presence of cholesterol 22 

and the asymmetric disposition of gangliosides are of primary importance. By a combination of 23 

Langmuir-Blodgett and Langmuir-Schaefer techniques [36], we deposited single asymmetric 24 

membranes composed by DPPC, cholesterol and gangliosides (only in the outer layer), on 25 

macroscopic silicon supports, with biomimetic molar ratio and disposition [37].  26 
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The reflectometry experiment is illustrated in Figure 1. Two replicas of a GD1a containing 1 

membrane have been built and accurately characterized. Then the target biomimetic membranes 2 

were submitted to the enzymatic treatment, and, finally, the structural properties of the digested 3 

membrane were assessed. Moreover, a much larger experimental landscape has been designed, as 4 

reported in the scheme of Figure 1. On this wider basis, we could finally gain novel and important 5 

additional suggestions on membrane reshaping following sialidase action.  6 

  7 

Figure 1 Scheme of the experimental design. The GD1a-containing membranes mA and mB are 8 

compared to their own in situ digested membrane and with other putative-product membranes. 9 

Membrane C and Membrane D have GM1 and AsialoGM1 gangliosides respectively embedded, 10 

instead of GD1a ganglioside. The lightning symbol stands for enzyme intervention. Nomenclature 11 

is according to Chester [38]. At the bottom: structure of ganglioside GD1a. 12 

 13 

 14 

2. Materials and Methods 15 

2.1. Membrane preparation 16 

Glc

Gal

GalNAc

Neu5Ac

mA mB

dig mA dig mB

Membrane

A (mA)           B (mB)

GD1a

embedded

mC

dig mC

Membrane

C (mC)

GM1

embedded

mD

Membrane

D (mD)

AsialoGM1 

embedded



7 
 

DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine) was purchased from Avanti Polar Lipids. 1 

Cholesterol was from Sigma-Aldrich Co. GD1a  (α-Neu5Ac-(2-3)-β-Gal-(1-3)-β-GalNAc-(1-4)-[α-2 

Neu5Ac-(2-3)]-β-Gal-(1-4)-β-Glc-(1-1)-Cer), GM1 (β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3 

3)]-β-Gal-(1-4)-β-Glc-(1-1)-Cer) and  AsialoGM1 (β-Gal-(1-3)-β-GalNAc-(1-4)-β-Gal-(1-4)-β-Glc-4 

(1-1)-Cer) were extracted and purified as described by Tettamanti et al. [39] and obtained as sodium 5 

salt powder. HsNEU2 sialidase expression and purification were conducted following the procedure 6 

described by Tringali et al. [33]. In order to obtain stable, single asymmetric membranes deposition, 7 

we used the Langmuir-Blodgett/Langmuir-Schaefer techniques [40]. A brief description of the 8 

technique is reported in SI Materials and Methods. 9 

After the Langmuir-Schaefer deposition of the planned layers on a UV-Ozone treated [41] single 10 

crystal of silicon (5 x 5 x 1.5 cm
3
), the sample were closed on a homemade Teflon holder [42], 11 

directly mounted on the measuring station of ID10B beamline. The sample was mounted 12 

horizontally, face down, as schematically reported in Figure 2.  13 

 14 

 15 

Figure 2 Schematic representation of the experimental set-up mounted on ID10B beamline. 16 

 17 

 18 

2.2. Synchrotron Radiation Reflectivity   19 

A reflectivity experiment allows to get information about the internal structure of stratified samples 20 
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[43-46]. Details of the technique are given in SI Materials and Methods. 1 

Reflectivity measurements were performed on the horizontal reflectometer ID10B at the European 2 

Synchrotron Radiation Facility in Grenoble, France. Data were analyzed using the software Motofit 3 

[47] with a 7 layers model (hydrophilic out, 3 hydrophobic, hydrophilic in, a water layer and the 4 

silicon oxide). Electron densities were calculated starting from Nagle and Tristram-Nagle [48], 5 

Boretta et al. [49] and Greenwood et al. [50].  6 

 7 

3. Results 8 

The scheme of the performed reflectivity experiment is reported in Figure 1. We investigated the 9 

changes induced in model membranes by in situ enzymatic removal of sialic acid from parent 10 

gangliosides. Afterwards, we compared the structure of the so-obtained final membrane with that of 11 

a membrane originally built up with the lower-sialylated ganglioside. Moreover, we submitted also 12 

these last membranes to sialidase, in order to test for residual activity on internal sialic acid residues 13 

and for possible non specific interaction with the membrane itself. 14 

The contrast of a material for synchrotron radiation is related to its electron density, which is higher 15 

for the glycolipids than for other lipids (see SI, Table S2) in the region of the sugar heads. Then, 16 

reflectometry allows detecting structural changes of the saccharidic substrates of HsNEU2, within 17 

the membrane, with high sensitivity. To our scope, we prepared and studied four supported 18 

membranes, containing each a different ganglioside species: GD1a (two replicas), GM1 and 19 

AsialoGM1, differing in the number of sialic acid residues in their polar region (see Figure 1). The 20 

lipid matrix consisted of di-palmitoyl-phosphatidyl-choline (DPPC), with a distinct asymmetric 21 

disposition of cholesterol and gangliosides in the two leaflets. The overall components molar ratio 22 

was DPPC: cholesterol: ganglioside = 10: 1.25: 0.5. Gangliosides were deposited in the outer leaflet 23 

of the membranes, exposed to the bulk water, together with 30% of cholesterol. The inner leaflet 24 

composition was therefore DPPC: cholesterol = 10: 1.75 mol, whereas the outer leaflet composition 25 

was DPPC: cholesterol: ganglioside = 10: 0.75: 1 mol. Saturated lipids were used, as they are best 26 
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suited to prepare full-coverage bilayers. Samples were submitted to annealing (see SI) and then 1 

reflectivity spectra were collected at 22°C.  2 

The GD1a-containing membrane (sample mA) was measured both in pure water and in 150 mM 3 

NaCl aqueous solution as bulk solution. The obtained results indicated that the membrane was 4 

stable and resistant against changes in the ionic strength of the solvent. This feature is highly 5 

desirable for a model membrane, suitable for the study of the interactions between the membrane 6 

and approaching macromolecules, usually dispersed in buffer solutions, or for multistep processes, 7 

requiring buffer replacing. Upon salt addition, a slight increase in membrane thickness was detected 8 

(5.7 nm instead of 5.4 nm in pure water). This is consistent with the screening of electrostatic 9 

repulsive interactions among charged ganglioside headgroups, allowing tighter packing of lipids 10 

within the membrane. Then, for all other membranes, experiments were made in the presence of 11 

150 mM NaCl solution, safely flushed before reflectivity measurement. 12 

After characterization of the target membrane mA, the solution containing HsNEU2 sialidase was 13 

injected directly in the measuring cell and, after 0.5 h, reflectivity was measured again. Based on 14 

the known kinetics of HsNEU2 [34], such a delay is suitable for the enzymatic reaction to be fully 15 

completed. In Figure 3A,  the reflectivity spectra of the membrane mA before and after the action of 16 

HsNEU2 are shown, together with the best fitting curve . The density profiles, corresponding to the 17 

best fit of the reflectivity curves and describing the cross structure of the membrane, are reported in 18 

Figure 3B. Vertical dashed lines are drawn to guide the eye and approximately identify different 19 

regions of the deposited raft-mime membrane. Profiles differ mainly in the outer hydrophilic layer 20 

(region b), where ganglioside headgroups are exposed to the enzyme. In particular, the action of 21 

HsNEU2 resulted in a significant increase of the contrast, and therefore of the electron density, of 22 

this region.  23 

The reproducibility of this result was tested on a second replica of GD1a-containing membrane mA, 24 

namely membrane mB. The two membranes (mA and mB) have been independently prepared in 25 

different days, following the same protocol, and are then independent replicas of the same 26 
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membrane system. The measured reflectivity curves are very nicely superimposed, as can be seen in 1 

SI, Figure S1. After exposition to sialidase, results obtained on the membrane transverse structure of 2 

the replica membrane mB confirmed that the enzymatic digestion produced a pronounced increase 3 

of the electron density of the external polar region, from 416 e
-
/nm

3
 to 480 e

-
/nm

3
 (as reported in SI, 4 

Table S1), the hydrophobic core being nearly unaffected. 5 

 6 

  7 

Figure 3 Reflectivity curves (A) and density profiles (B) of membrane mA before (blue dots) and 8 

after (red triangles) the action of HsNEU2 sialidase. The solvent is a 150 mM NaCl solution. T= 9 

22°C. In A) symbols correspond to the experimental data, lines to the best fits, corresponding to the 10 

profiles in B). In B) vertical dashed lines are drawn to guide the eye to approximately identify 9 11 

regions, referring to different portions of the interfacial system: bulk solution (a), outer hydrophilic 12 

layer (b), outer CH2 groups layer (c), CH3 groups layer (d), inner CH2 groups layer (e), inner 13 

hydrophilic layer (f), water layer (g), silicon oxide (h), silicon (i). 14 

 15 

 16 

Then, we wondered whether the “digested” membrane, resulting from the in situ action of the 17 

sialidase on the matrix membrane containing GD1a, had the same structure of a membrane prepared 18 

by mixing the matrix with the digestion product, i.e. GM1. We therefore prepared an asymmetric 19 

membrane, mC, containing GM1 instead of GD1a and measured its reflectivity spectrum. The 20 

density profile is reported in Figure 4, in comparison with that of the digested-mB membrane. 21 
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Remarkably, mB membrane (and replica mA) obtained after HsNEU2 digestion of GD1a was 1 

different from mC membrane, prepared by directly mixing GM1 to the matrix. In particular, the 2 

electron density of the hydrophilic layer was higher in the digested-mA and digested-mB 3 

membranes (480 e
-
/nm

3
) than in the mC membrane (419 e

-
/nm

3
). 4 

  5 

Figure 4 Contrast profiles of the in situ digested-mB membrane (after the action of HsNEU2 6 

sialidase, red) and of membrane mC (green). The solvent is 150 mM aqueous solution. T= 22°C. 7 

Vertical dashed lines are drawn to guide the eye, as in Figure 3. 8 

 9 

Why digested-GD1a-containing membranes could be different from ab initio GM1-containing ones 10 

is not trivial. In principle, because of the reported activity of HsNEU2 on monomeric GM1 [34], a 11 

weak activity of sialidase on GM1 produced by GD1a hydrolysis in model membranes could not be 12 

excluded. Thus, to address this point, we exposed the GM1-containing model membrane, mC, to 13 

HsNEU2.  14 

The reflectivity profiles of the mC membrane before and after the action of sialidase were almost 15 

superimposable, as seen in Figure 5. This finding also excludes that non specific interaction occurs 16 

between the enzyme and the membrane. A minor effect could be related to the mentioned weak 17 

action of the sialidase on dispersed GM1 molecules. 18 
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 1 

Figure 5 Reflectivity curves from membrane mC before (green dots) and after (violet triangles) the 2 

action of HsNEU2 sialidase. The solvent is 150 mM NaCl aqueous solution. T= 22°C. Symbols 3 

correspond to the experimental data, line to the best fit, corresponding to the profile in Figure 4, 4 

green curve. 5 

 6 

We performed reflectivity experiments on a membrane containing Asialo-GM1, mD. The 7 

corresponding spectrum, together with the best fit line, and the fitted cross profile are reported in 8 

Figure 6. The transverse structure of membrane mD was different from membrane mA both before 9 

and after HsNEU2 digestion. 10 

 11 

 12 

 13 

Figure 6 Reflectivity curve from membrane mD (A) and contrast profile (B). The solvent is 150 14 

mM NaCl aqueous solution. T= 22°C. Symbols correspond to the experimental data, line to the best 15 
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fit, corresponding to the profiles in B). In B) vertical dashed lines are drawn to guide the eye, as in 1 

Figure 3. 2 

 3 

Finally, in Figure 7, we compare all the recovered electron density profiles, restricted to the external 4 

headgroup region. It is easily seen that all of them appear very similar, except for the one 5 

corresponding to the digested-GD1a model membrane, remarkably different from the others. In 6 

fact, its external polar region has a much higher contrast than all of the other model membranes, 7 

including the chemically-identical GM1-containing membrane, mC. 8 

 9 

Figure 7 Contrast profiles of the external head-group region of the different membranes in 150 mM  10 

NaCl solution: mA before (blue) and after (red) HsNEU2 digestion, mC before (green) and after 11 

(violet) HsNEU2 digestion and mD (black). T=22°C. The external polar region GD1a-digested 12 

membrane mA (red) has a remarkably higher contrast. The horizontal axis refers to distances from 13 

the mid-plane (z = 0) of the external head-group regions. 14 

 15 

4. Discussion 16 

In biological membranes, gangliosides are transformed into lower-sialylated species by sialidases, 17 

while being already packed in the membrane aggregate. From this start point, interesting issues 18 

emerge. Gangliosides disposition and relative concentration within the lipid structure could affect 19 

enzymatic activity and kinetics. Also, and more intriguing, the enzymatic action could not only 20 
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produce a new molecule in the membrane, but also induce changes in the membrane organization, 1 

such as lipid lateral segregation, membrane core fluidity and roughness, maybe reminiscent of its 2 

chemical and structural history. 3 

In the experiment presented here, our aim was to study the transverse structure of ganglioside 4 

containing membranes submitted to sialidase digestion. So we applied synchrotron radiation 5 

reflectometry to four supported model membranes containing three different ganglioside species: 6 

GD1a, GM1 and AsialoGM1. We investigated the changes induced by sialic acid removal by in-situ 7 

enzymatic digestion, and we compared the final membrane with a membrane originally built up 8 

with the lower sialylated ganglioside. The successful deposition of single macroscopic membranes 9 

containing GD1a and AsialoGM1 was itself a first remarkable result, following the previous 10 

successful preparations with GM1 and cholesterol [8,51] and opens the way to the construction of 11 

model membranes with increasing bio-similarity. 12 

The occurrence of a change in the cross structure of the GD1a-containing membrane, mA, upon 13 

enzymatic action is clearly visible in Figure 3. Then, the technique proves to be extremely sensitive 14 

in following this kind of membrane-enzyme interaction and constitutes an experimental and 15 

technical achievement. In fact, the technique is able to reveal structural changes in the sugar-16 

containing hydrophilic layer of the membrane, where sialidase is acting. However, before the 17 

experiment had been performed, it was difficult to foresee the extent of experimental sensitivity to 18 

these structural changes. In fact, the mole fraction of GD1a with respect to the hosting 19 

phospholipids of the outer layer is as low as 1:10. In addition, the enzyme removes only the external 20 

sialic acid residue of GD1a (one sugar unit out of 6), likely located quite far from the membrane 21 

surface (about 1.5 nm distance), while the phospholipid headgroups of the matrix are confined in a 22 

closer layer (some 1 nm thick). Remarkably, despite the visibility of a clear effect was not obvious 23 

to anticipate, an unambiguous variation of the average electron density of the hydrophilic layer as a 24 

whole was observed. We note that the outer hydrophilic layer (region b) accounts for the dense 25 

hydrophilic region of the membrane, where DPPC headgroups (the majority compound) are 26 
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confined, contributing to space filling with the bound hydration water. Reversely, the protruding 1 

portions of the ganglioside headgroups, containing the external, terminal, sialic acid unit to be 2 

removed by the enzyme (see Figure 1), sparingly populate a far-layer that is not dense enough to 3 

effectively contrast against bulk water. In this far layer one can estimate that the headgroup surface 4 

occupancy is in the range 10-20% of the total available area.  5 

The density profiles reported in Figure 3B differ mainly in the outer hydrophilic layer (region b), 6 

where ganglioside headgroups are exposed to the enzyme. Upon HsNEU2 digestion, a significant 7 

increase of the contrast of this region occurred, i.e., its electron density increased. We remark that 8 

the same result was obtained on the replica GD1a-containing membrane, mB; thus, the 9 

reproducibility stands as a strong proof of the reliability of the outcome. 10 

This result is of great importance and adds interesting information on the cross local structure of the 11 

ganglioside-containing membrane, integrating the compositional result of GD1a turned to GM1 by 12 

biochemical catalysis. In fact, a decrease in the average specific volume of the layer, corresponding 13 

to increased lipid layer compactness, cannot be invoked to explain the observed large increase in the 14 

average electron density of the hydrophilic close-layer, about 1 nm thick. In fact, no corresponding 15 

change is seen in the electron density of the hydrophobic region of the outer layer (see SI, Table 16 

S1). A more tricky effect should occur. 17 

We observe that an increase in the electron density profile of the hydrophilic close-layer, without 18 

affecting the hydrophobic region, can be obtained by replacing a fraction of the hydrophilic close-19 

layer with an equal volume with higher electron density. This suggests that the headgroups of the 20 

GM1 molecules emerging from in situ digestion are not only shortened by one charged external 21 

unit, but also retracted closer to the membrane surface with respect to the parent-GD1a headgroups. 22 

It seems that they lay down on the membrane surface. We recall that the lying conformation, 23 

requiring the ganglioside headgroups to tilt with respect to the axis of the hydrophobic chains 24 

embedded in the membrane core, has often been hypothesized in the literature. The interconversion 25 

between the standing and lying conformations of headgroups has been observed to occur in 26 
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ganglioside aggregates as a consequence of the action of external parameters like temperature, 1 

dehydration, or salinity [9,52].  2 

By integration of the (z) profiles in the region of the external polar heads of membrane mA before 3 

and after digestion (blue and red curves of Figure 7), the number density of additional electrons in 4 

the close-layer can be calculated. A 30% increase in the electron density excess with respect to 5 

water has occurred, corresponding to a 1.3% GM1 head retraction per unit volume. Very 6 

interestingly, this is consistent with a glycolipid head volume redistribution increasing its lateral 7 

hindrance by 4%, the same value estimated for the interfacial area increase upon GM1 tilting in 8 

micelles [53]. The corresponding variation in the low-contrast hydrophobic moiety, 4% each for the 9 

10% ganglioside molecules in the layer, is not visible.  10 

The comparison between the “enzyme digested” membrane and a membrane prepared by mixing 11 

the matrix with the digestion product, reported in Figure 4, is extremely interesting. In particular, 12 

the electron density of the hydrophilic layer is higher for the digested-mA (digested-mB) membrane 13 

than for mC. 14 

This is an interesting point. Why should digested-GD1a-containing membranes be different from ab 15 

initio GM1-containing ones is not obvious. An incomplete digestion of GD1a into GM1 or further-16 

proceeding digestion leading to AsialoGM1 can be excluded. In fact, despite direct biochemical 17 

assessment on the deposited membranes is unfeasible, enzymatic activity has been previously 18 

studied in different ganglioside-containing systems: incomplete digestion of GD1a is unlikely since 19 

HsNEU2, similarly to other sialidases, has been proved to go through full GD1a-to-GM1 20 

conversion in different aggregated structures in solution, as micelles or mixed vesicles [32,54]. 21 

Moreover, the amount of added enzyme was intentionally in large excess with respect to the 22 

substrate. Moreover, being the electron density of the hydrophilic outer layer higher than both 23 

GD1a- and GM1-containing membranes, so out of any weighted average of the two, trivial 24 

incomplete digestion is unable to provide straightforward explanation of the experimental result. On 25 

the other hand, a weak activity of sialidase on GM1 inserted in model membranes, producing the 26 
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Asialo-GM1, could not be excluded [34] in principle. This was ruled out by testing that the 1 

reflectivity spectra of the GM1-containing mC membrane before and after exposure to sialidase 2 

were almost superimposable, as seen in Figure 5. Furthermore, the transverse structure of the 3 

Asialo-GM1-containing mD membrane is different from that of GD1a-containing membranes mA 4 

and mB, both before and after HsNEU2 digestion (Figures 6A and 6B). 5 

From the comparison of the electron density profiles restricted to the external headgroups region, 6 

reported in Figure 7, we see that the lying conformation, corresponding to high close-shell contrast, 7 

is not the only one admitted for GM1, in the membrane. As well, GM1 headgroups can stand more 8 

perpendicular to the membrane (as in mC), displacing their center of mass farther from the surface. 9 

This arrangement appears to be similar to the one adopted by both GD1a and AsialoGM1 in 10 

membranes mA (and its replica mB) and mD. Notably, when the same protocol was followed for 11 

sample preparation, the cross profiles of the external close-layers at 40mN/m were nicely the same. 12 

Although the polar heads of the different gangliosides are different, their initial portion, included in 13 

the close-layer, is the same and, at the given surface dilution, behaves the same way. The obtained 14 

results (Figure 7) indicate that in this condition of surface concentration and pressure, the 15 

ganglioside headgroups assume the standing conformation with respect to the membrane plane. But, 16 

upon specific and proper stimulation, they can turned to lying, seemingly modulating the 17 

mechanical properties of their local environment. 18 

 19 

5. Conclusion 20 

The outcome of this work is that the action of the enzyme HsNEU2 has a deeper effect on 21 

biomimetic membranes than just turning GD1a to GM1 by external sialic acid removal. The in-situ 22 

produced GM1 glycosidic headgroup is retracted to the membrane surface, storing additional 23 

packing surface. Stored surface could eventually be used to promote or allow for mechanical 24 

deformations of the membrane, providing structural support to biological functions. In fact, 25 



18 
 

ganglioside-enriched domains are easily associated with membrane protrusion or caveolae. The 1 

present observations, then, support the hypothesis that the sialidase action drives the membrane to a 2 

structural turning point, where it can be readdressed to different final fates.  3 

Finally, it is sometimes argued that the packing properties of aggregating molecules are likely to be 4 

washed out once in a large structure, like a membrane, where they happen to be mixed with other 5 

different species. In this experiment, as in many others, it comes out that, instead, molecular 6 

packing and membrane properties respond to each other, contributing to membrane structural and 7 

functional evolution.  8 

 9 

 10 
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