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Quantum state engineering by nondeterministic noiseless linear amplification
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We address quantum state engineering of single- and two-mode states by means of nondeterministic noiseless
linear amplifiers (NLAs) acting on Gaussian states. In particular, we consider the optimal implementation of a
NLA proposed by Pandey et al. [Phys. Rev. A 88, 033852 (2013)] and we show that it provides an effective
scheme to generate highly non-Gaussian and nonclassical states, when used outside the regime of high-fidelity
amplification. Additionally, we show that in this regime also the amplification of a two-mode squeezed vacuum
state (twin-beam) highly increases entanglement.
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I. INTRODUCTION

Nonclassical and non-Gaussian states of continuous-
variable systems have been a relevant resource in the develop-
ment of quantum information science and technology, as well
as in several fundamental tests of quantum mechanics itself
[1–3]. Quantum state engineering of those states, however, is
often hampered by two major challenges. On the one hand,
generation of nonclassical light usually involves nonlinear
optical media, and the small value of nonlinear susceptibilities
leads to low efficiency. On the other hand, light amplification
is usually involved as well and the linearity and unitarity of
quantum dynamics make this task rather difficult, since they
impose that noise should be unavoidably added when a signal
is amplified, in order to maintain the uncertainty relation [4].

Recently, in order to circumvent these difficulties, ampli-
fying devices have been suggested, which act nondetermin-
istically, i.e., the output state is obtained conditionally by
postselecting on a particular measurement outcome [5–12].
In particular, optimal schemes describing nondeterministic
linear amplifiers (NLAs) achieving successful amplification
with the largest probability allowed by quantum mechanics
have been put forward in theoretical papers [13,14]. These
kinds of devices are appealing for quantum state engineering,
especially in the continuous-variable regime, where several
schemes based on conditional states of continuous-variable
measurements have been already explored and proved effec-
tive [15–22].

In this paper, we address quantum state engineering of
single- and two-mode states aided by the optimal nondeter-
ministic noiseless linear amplifier introduced in [13], acting
on Gaussian states. In particular, we prove that such a NLA
provides an effective scheme to generate highly non-Gaussian
and nonclassical states. Crucially, we distinguish two working
regimes for this kind of NLA. When the device acts on an
input state that lies in a phase-space disk of radius

√
N/g cen-

tered at the origin, such a device generates an approximately
ideal amplified state with the highest possible fidelity [13]. On
the other hand, in the remaining region, where no constraints

are imposed to the fidelity, the NLA proves to be a robust
resource for non-Gaussianity and nonclassicality.

We provide a general framework to address state engi-
neering by NLA, and present explicit results for the non-
Gaussianity and nonclassicality obtained with single-mode
coherent and squeezed vacuum states, as well as with two-
mode squeezed vacuum (twin-beam state). In order to assess
quantitatively the performances of NLAs on those signals,
we quantify nonclassicality using negativity of the Wigner
function (from now on W nonclassicality) [23] and non-
Gaussianity by the relative entropy to a reference Gaussian
state [24,25]. We remark that these quantifiers have recently
been studied also in the context of quantum resource theories
[26–29].

Concerning the action of the NLA on two-mode states,
we consider two scenarios. In the first one, we focus on the
performances of a strong (destructive) NLA measurement on
one mode of a twin beam and analyze the properties of the re-
sulting single-mode conditional states [18]. Our results show
that, depending on the two-mode squeezing parameter and the
gain of the device, the resulting conditional state has a Wigner
function that includes negative parts. This suggests that such
a scheme represents a robust source for nonclassicality. The
second regime that we explore is the proper (nondestructive)
action of the NLA on one mode of the twin-beam state. Here,
we address the degree of entanglement of the amplified state
as a function of the NLA gain parameter, and prove that it
may be significantly enhanced. This would be expected in
the high-fidelity region, where the amplifier acts closely to an
ideal one by increasing the two-mode squeezing parameter.
Nonetheless, we show that also in the other regime the pro-
posed device still enhances the entanglement by making the
state non-Gaussian.

The paper is organized as follows. In Sec II, we establish
notation and review the nonclassicality and non-Gaussianity
measures used across this work, that is, the W nonclassi-
cality and the entropic non-Gaussianity. We also recall the
main ingredients needed to describe nondeterministic linear
amplifiers. In Sec. III, we discuss quantum state engineering
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by NLA on coherent and squeezed vacuum states, focusing
our attention on nonclassicality and non-Gaussianity of the
conditionally amplified states. Section IV is devoted to condi-
tional states generation by exploiting the action of NLAs on
twin beam, in both the destructive and nondestructive regimes.
Section V closes the paper with concluding remarks.

II. PRELIMINARIES

In this section, we briefly introduce the tools we will use
throughout the paper to quantify non-Gaussianity (nG) and
nonclassicality (nC) of a single-mode bosonic quantum state.
For the characterization of nG we employ a measure based on
the quantum relative entropy (QRE) between the state under
examination and a reference Gaussian state [24,25]. Concern-
ing the nC, we use an indicator based on the volume of the
negative part of the Wigner function [23]. The final subsection
is devoted to briefly reviewing the main results about the
measurement operators of a noiseless linear amplifier, as well
as about the corresponding conditionally amplified states [14].

A. Non-Gaussianity based on quantum relative entropy

In continuous-variable systems, a single-mode radiation
field is described by creation and annihilation operators,
â† and â, respectively, satisfying the bosonic commutation
relation [â, â†] = Î. Coherent states are the eigenstates of
the annihilation operator |α〉, such that â|α〉 = α|α〉, whereas
number states |n〉 are the eigenstates of the number opera-
tor â†â|n〉 = n|n〉. The operators x̂ = (â + â†)/

√
2 and p̂ =

i(â† − â)/
√

2 describe the observable quadratures of the field.
A quantum state, i.e., a density operator �̂, may be represented
in the phase space by means of the characteristic function
χ [�̂](α) = Tr[�̂D̂(α)], where D̂(α) = exp{αâ† − α∗â} is the
displacement operator. The Wigner function, defined as the
Fourier transform of the characteristic function W [�̂](λ) ∝∫

d2α exp{λ∗α − λα∗}χ [�̂](α), is the most iconic quasiprob-
ability distribution for the quantum state [30]. In particular, it
is the only one in the family of the p-ordered quasiprobability
distributions, widely used in quantum optics [31,32], that
gives the probability densities for quadrature measurements
as its marginal distributions.

Gaussian states [33–36] are quantum states having a Gaus-
sian Wigner function

W [�̂G](X) = exp
[ − 1

2 (X − 〈R̂〉)T σ−1(X − 〈R̂〉)
]

2π
√

det σ
, (1)

where we considered the Cartesian representation of real
variables X = (x, p)T . A Gaussian state is fully identified by
its first-moment vector and its covariance matrix (CM), given
by

〈R̂〉 = (〈x̂〉, 〈p̂〉), (2a)

[σ]kl = 1
2 〈{R̂k, R̂l}〉 − 〈R̂k〉〈R̂l〉, (2b)

where R̂ ≡ (x̂, p̂), the anticommutator is denoted as {· , ·}, and
the expectation values 〈·〉 are calculated over � by the Born
rule.

A useful measure of nG for a quantum state may be
obtained by introducing a reference Gaussian state �G, having

the same CM and first-moment vector of the considered state
�̂, namely 〈R̂G〉 = 〈R̂〉 and σG = σ. Given the von Neumann
entropy S(�̂) = −Tr[�̂ ln �̂], the nG measure is then defined
as the quantum relative entropy (QRE) of these two states, i.e.,
δnG[�̂] ≡ S[�̂ ||�̂G] = Tr[�̂(ln �̂ − ln �̂G)], which, eventually,
reduces to

δnG[�̂] = S(�̂G) − S(�̂) (3)

by exploiting the assumptions made on the reference Gaussian
state �̂G [24]. Furthermore, this quantifier corresponds to the
relative entropy of nG, i.e., the minimum relative entropy
between the state into consideration and the whole set of
Gaussian states [37].

The quantum relative entropy is not a proper metric, since
it is not symmetric under exchange of its arguments. In spite
of this issue, it is a well-defined measure of statistical distin-
guishability between quantum states, since the probability of
confusing two states �̂1 and �̂2 when performing measurement
on a large number N of copies of �̂2 is e−NS[ρ1||ρ2] [38]. For
a single mode Gaussian state the von Neumann entropy is
fully determined by its CM as S(�̂G) = h(

√
det σ ), where the

function h(x) is given by

h(x) = (
x + 1

2

)
ln

(
x + 1

2

) − (
x − 1

2

)
ln

(
x − 1

2

)
. (4)

In the following, we will be mostly interested in pure states,
for which S(�̂) = 0; the nG measure thus assumes a simple
form

δnG[�̂] = h(
√

det σ ). (5)

B. Nonclassicality based on Wigner negativity

Phase-space analysis is at the heart of several approaches
to detect and quantify the nonclassical character of quantum
states. Different notions of nC may be introduced, stemming
from the quasiprobability distributions associated to the state
under scrutiny, or by minimizing the distance to a set of
classical states, similar to the nG measurement we have just
introduced.

From the physical point of view, the most relevant notion
of nonclassicality is associated to the Glauber-Sudarshan P
function. A state is P nonclassical when its P function is not a
well-behaved density of probability, i.e., includes singularities
and/or negative parts [39–41]. This notion of nonclassicality
stems from the fact that coherent states are the only pure
quantum states that show classical features from the point of
view of quantum optics. A good measure of P-nC is the so-
called nonclassical depth [42,43], which consists in evaluating
the minimal amount of Gaussian noise required to turn the P
function into a well-behaved probability distribution. A caveat
of this measure is that all pure nG states saturate the upper
bound of the nonclassical depth, i.e., they are all maximally
nonclassical under this measure [44]. As a consequence this
measure is not helpful to analyze in detail the nC properties of
the pure Gaussian states we are going to consider hereafter.
This notion of nonclassicality has been recently studied in
the context of resource theories [45], where an operational
interpretation in terms of metrological usefulness has been
introduced [46,47].

An alternative approach, based on Wigner function, has
been suggested a few years ago [23]. The W function is known
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to be a well-defined quasiprobability density function, i.e.,
it may display negative parts, but it never has singularities.
The W nonclassicality (W -nC) corresponds to the negative
volume of the Wigner function, and it provides an intuitive and
practical way to detect the amount of nC of a quantum state,
as it allows one to distinguish the degree of nC for different
pure states. Moreover, this stronger form of nonclassicality
(any W nonclassical state is also P nonclassical, while the
opposite is not necessarily true) is the crucial resource for
several quantum information tasks (see below).

W -nC for a generic single-mode quantum state �̂ is defined
as follows:

δnC[�̂] =
∫

dx d p[|W [�̂](x, p)| − W [�̂](x, p)]

=
∫

dx d p|W [�̂](x, p)| − 1, (6)

where the integration is performed over the whole 2D phase
space and the second equality is obtained taking into account
the normalization of the Wigner function. Notice that the
Wigner function may also be computed directly, without
passing through the characteristic function, upon employing
the following expression, valid for any N-density operator:

W [�̂](X ) = 2

π
Tr[�̂D̂(2X )	̂], (7)

with the parity operator defined as 	̂ = (−1)â†â and
D̂(2X ) = ⊗n

k=1 D̂(2xk, 2pk ), where D̂(2xk, 2pk ) =
exp {2ipkx̂k − 2ixk p̂k} is the usual single-mode displacement
operator.

From an operational point of view, the notion of W-nC has
been connected to the impossibility of efficiently simulating
a quantum system via phase-space methods [48,49], or more
quantitatively to the hardness of estimating the output proba-
bilities of an experiment [50]. In turn, this fact seems to play
an important role for schemes aimed at quantum supremacy
with homodyne detection [51,52]. For these reasons, W-nC
has been studied in the context of an operational resource
theory where the free operations are Gaussian ones; a partic-
ularly useful monotone is the so-called Wigner logarithmic
negativity [27], defined as log (δnC[�̂] + 1).

We also stress the deep connection between nG states
and nC states with a negative Wigner function. According to
the Hudson theorem [53], Gaussian states are the only pure
states with a positive W , while for mixed states the situation
is more involved [54–56]. Interestingly, for families of pure
non-Gaussian states where only a single parameter is varied,
quantifiers of nG and W -nC were always found to be in
a monotonic relationship. In particular, this observation has
been made for ground states of anharmonic oscillators [57],
where the behavior of the two quantities is also qualitatively
very similar. However, note that in some cases the behavior
can be wildly different, while retaining monotonicity, e.g.,
when varying the amplitude of cat states the measure δnC

saturates to a finite value, while δnG diverges [27].
Notice also that the quantifier of W-nC in Eq. (6) has the

valuable property of being accessible through experimental
measurements, since the Wigner function can be reconstructed
by means of tomographic techniques, involving photon
counting or homodyne detection of the marginal distributions

W (x, p)

W (x, p)

|αs

W (x, p)

|ξs

|ξs

|αs

|χ

ŝ,χ

ŝ,χ

FIG. 1. Wigner functions W (x, p) of (a) the amplified coherent
state |αs〉 of Eq. (14), (b) the amplified squeezed vacuum state |ξs〉 of
Eq. (17), and (c) the reduced state of an amplified twin beam �̂s,χ of
Eq. (21). These amplified states clearly show a highly nonclassical
and non-Gaussian behavior. The plots have been obtained by setting
(a) α = 0.8, (b) ξ = 0.73, (c) χ = 0.63, and g = 4, p = 3. (d) The
effect of amplification in the average photon number n̄ for these
states, together with the amplified TWB of Eq. (24), is plotted against
the gain parameter g, assuming the same average photon number
n̄ = 0.64 at g = 1.

of W [�̂](x, p) [58–61]. Another experimentally friendly
quantifier of W -nC based on relative entropy was also
proposed [62].

In the following sections, we are going to consider different
kinds of signals undergoing noiseless amplification. In order
to qualitatively anticipate the nature of our results, let us pro-
vide a phase-space snapshot of the corresponding condition-
ally amplified states: in Fig. 1 we show the Wigner functions
of an amplified coherent state, an amplified squeezed vacuum
state, and the reduced state of an amplified twin beam. The W
negativity and the nG character of the amplified states clearly
emerge. We also show the effect of amplification in terms
of the output signal energy (i.e., average photon number),
assuming the same average photon number n̄ at g = 1.

C. Noiseless linear amplification

Ideally, a perfect amplification would be obtained by ap-
plying the operator T̂ = gâ†â, with a positive gain parame-
ter g > 1. The idea behind the NLA is to approximate the
action of this ideal nonunitary operator, by implementing
a measurement protocol with postselection [5]. In fact, the
impossibility of deterministic noiseless linear amplifiers stems
from the unitarity and linearity of quantum evolution that can
only be broken by considering conditional evolutions due to
measurements. However, it is not even possible to implement
the ideal operation with a finite probability of success and
there is a trade-off between the probability of success and the
fidelity to the desired results. The usual approach to obtain a
feasible implementation with nonzero probability of success
is to implement the action of the ideal amplification only
on a finite-dimensional truncation of the Fock space. An
optimal (with respect to the previously mentioned trade-off)
measurement (Kraus) operator for this scheme was introduced
in [13] and further studied [14]. The action of this protocol
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is described as follows: we consider two possible outcomes,
success (s) and failure ( f ), which correspond to a two-element
POVM {Ê p†

s Ê p
s , Ê p†

f Ê p
f } such that Ê p†

s Ê p
s + Ê p†

f Ê p
f = Î. The

success measurement operator reads

Ê p
s = g−p

p∑
n=0

gn|n〉〈n| +
∞∑

n=p+1

|n〉〈n|, (8)

where p is an integer truncation parameter of the Fock space,
i.e., the amplification threshold. The probability of a success-
ful amplification when the measurement scheme is applied to
a generic pure state |ψ〉 may be written as

Ps,ψ = 〈ψ |Ê p†
s Ê p

s |ψ〉

= g−2p
p∑

n=0

g2n|〈n|ψ〉|2 +
∞∑

n=p+1

|〈n|ψ〉|2. (9)

The corresponding conditionally amplified state is

|ψs〉 = Ê p
s |ψ〉√
Ps,ψ

. (10)

In the limit of low gain, i.e., g = 1 + γ with 0 < γ 	 1, we
may write the success operator in the following simplified
form:

Ê p
s

γ	1
 I − γ

p∑
n=0

(p − n)|n〉〈n|. (11)

The corresponding probability of amplification may be writ-
ten as

Ps,ψ
γ	1
 1 − 2γ

p∑
n=0

(p − n)|〈ψ |n〉|2. (12)

Finally, we remark that, while this optimal NLA scheme
has not yet been implemented experimentally, a theoretical
implementation obtained by interaction of the light mode with
a two-level system was proposed in [14].

In the following, we will consider amplification of paradig-
matic examples of Gaussian states, with emphasis on the
conditional generation of non-Gaussian and nonclassical am-
plified states by means of the NLA process.

III. ENGINEER NON-GAUSSIAN AND NONCLASSICAL
STATES BY NOISELESS AMPLIFICATION OF

SINGLE-MODE SIGNALS

A. Noiseless amplification of coherent states

In order to assess the performances of NLAs in the gener-
ation on nC and nG, let us start by investigating their action
on coherent states, which can be easily generated experimen-
tally. Coherent states correspond to displaced vacuum states
D̂(α)|0〉, and may be expressed in the Fock basis as

|α〉 = e− |α|2
2

∞∑
n=0

αn

√
n!

|n〉, (13)

where α is the coherent state amplitude and n̄ = |α|2 the mean
photon number. According to Eq. (10), an amplified coherent

FIG. 2. Non-Gaussianity and nonclassicality of the amplified
coherent state of Eq. (14). (a) Plot of the nG measure δnG as a function
of the gain parameter g. (b) Plot of the nC measure δnC as a function
of the gain parameter g. Plots of δnG (c) and δnC (d) as a function of the
success probability Ps,α . The three curves for each plot correspond to
different NLA thresholds: p = 2 (solid blue), p = 3 (dashed orange),
and p = 4 (dotted green). The amplitude of the coherent state is
α = 0.8.

state reads

|αs〉 = e− |α|2
2√

Ps,α

⎛
⎝g−p

p∑
n=0

(gα)n

√
n!

|n〉 +
∞∑

n=p+1

αn

√
n!

|n〉
⎞
⎠, (14)

where Ps,α denotes the probability of a successful amplifica-
tion

Ps,α = e−|α|2
⎡
⎣g−2p

p∑
n=0

(g|α|)2n

n!
+

∞∑
n=p+1

|α|2n

n!

⎤
⎦. (15)

The nG of the resulting amplified coherent state is assessed
in terms of the measure δnG, as described in Sec. II A, and,
since the conditional state |αs〉 generated by the NLA is pure,
it can be easily computed by means of Eq. (5). As shown
in the upper left panel of Fig. 2, the action of the nondeter-
ministic NLA on a coherent state is to generate an amplified
noiseless pure state (14) with an amount of nG monotonically
increasing with the gain parameter g. In particular, we chose,
without loss of generality, a real coherent amplitude α = 0.8
and different values of the threshold parameter p = 2, 3, 4. As
it is apparent from the plot, we have a monotone behavior with
g for any p. The larger is p, the larger is the nG at large values
of the gain.

The Wigner function of the amplified coherent state �̂s,α =
|αs〉〈αs| may be conveniently obtained from the expression
(7). As it can be appreciated from the plot in Fig. 1(a), the
Wigner function clearly has negative values. In the upper right
panel of Fig. 2, the W -nC of an amplified coherent state,
i.e., δnC[�̂s,α] in Eq. (6), is shown as a function of the gain
g of the NLA. We notice that W -nC increases monotonically
with g, and the larger is the threshold, the larger is nC, for
large g. Remarkably, both the nG and the nC share the same
qualitative behavior against the NLA parameters, confirming
the connection explained in Sec. II B. The behaviors of the two
quantities suggest identifying the NLA gain as the parameter
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FIG. 3. Plots of the nG and nC measures, δnG (left panel) and
δnC (right panel), as a function of the input amplitude α, for the
photon-added coherent state |α〉add (solid red) and the amplified
coherent state with different configurations: g = 2 (dotted orange),
g = 3 (dashed blue), and g = 4 (red circles). The truncation order p
is fixed at 4 in each plot.

driving the semiclassical coherent signal to a highly non-
Gaussian and nonclassical one. The lower panels of Fig. 2
illustrate the tradeoff between the amount of obtained nG
(nC) and the corresponding probability Ps,α of successful
amplification. Larger values of Ps,α are obtained for smaller
gain.

We now compare the performances of our suggested
scheme with a well-known de-Gaussification protocol pro-
posed for the generation of non-Gaussian and nonclassi-
cal states. In particular, we will consider photon addition
performed on coherent states of light. The resulting state,
known as photon-added coherent state (PAC), assumes the fol-
lowing expression: |αadd〉 = Naddâ†|α〉, where Nadd = (1 +
|α|2)−1/2. Generally speaking, photon added states can be
generated by coupling the input with an ancillary single
photon state in a beam splitter, then conditioning the output
state upon the outcome “no photons detected.” We recall that
this class of states is experimentally available [63,64]. As
the PACs remain pure, their entropic non-Gaussianity δnG

is obtained via Eq. (5). In Fig. 3, we compare the nG and
nC obtained from coherent states, either acting with photon
addition or with the NLA for different values of the gain.
As it appears, when the input amplitude exceeds a certain
critical value αc that depends on the configuration of the NLA,
the de-Gaussification protocol based on the NLA outperforms
photon addition. This observation suggests that the NLA may
be a powerful resource for non-Gaussianity when applied to
states outside the disk of radius |α|/g, as previously pointed
out. As one may expect, for larger value of the gain g, the
critical value αc becomes smaller. Our comparison of both
the entropic non-Gaussianity and the W nonclassicality thus
testifies the robustness of the optimal NLA for engineering
highly non-Gaussian and nonclassical states.

B. Noiseless amplification of squeezed vacuum

Another important Gaussian state, employed as a re-
source in many quantum protocols, is the squeezed vacuum
state |ξ 〉 = Ŝ (ξ )|0〉, where the squeezing operator Ŝ (ξ ) =
exp{ 1

2ξ (â†)2 − 1
2ξ ∗(â)2} acts on the vacuum state. The phase

of the squeezing parameter ξ = r eiφ specifies which quadra-
ture of the field is squeezed, whereas its modulus quanti-
fies the amount of squeezing. The expression of a squeezed

FIG. 4. Non-Gaussianity and nonclassicality of the amplified
squeezed vacuum state of Eq. (17). (a) nG measure δnG plotted
against the gain parameter g. (b) Plot of the nC measure δnC as a
function of the gain g. Plots of δnG (c) and δnC (d) as a function of the
success probability Ps,ξ . The three curves for each plot correspond to
different NLA thresholds: p = 2 (solid blue), p = 3 (dashed orange),
and p = 4 (dotted green). The squeezing parameter is set to r = 0.73.

vacuum in the Fock basis is given by

|ξ 〉 = 1√
μ

∞∑
n=0

(
ν

2μ

)n √
(2n)!

n!
|2n〉

≡
∞∑

n=0

xn |2n〉,
∞∑

n=0

|xn|2 = 1, (16)

where μ = cosh r and ν = eiφ sinh r. The action of NLA on
the squeezed vacuum with a successful amplification, employ-
ing Eq. (10), reads

|ξs〉 = 1√
Ps,ξ

⎛
⎜⎜⎜⎝g−p

p∑
n = 0
(n even)

gnx n
2
|n〉 +

∞∑
n = p + 1

(n even)

x n
2
|n〉

⎞
⎟⎟⎟⎠,

(17)

where the success probability is given by

Ps,ξ = g−2p
p∑

n=0

g2n
∣∣x n

2

∣∣2 +
∞∑

n=p+1

∣∣x n
2

∣∣2
. (18)

In the upper left panel of Fig. 4, we show the nG measure
δnG[�̂s,ξ ] for the amplified state �̂s,ξ = |ξs〉〈ξs| as a function
of the gain parameter g, for different values of the threshold
p = 2, 3, 4, at a fixed value of the squeezing parameter ξ =
0.73, corresponding to the same input energy, at g = 1, of
a coherent state with α = 0.8. We notice that, starting from
a squeezed vacuum, the efficiency of the NLA in generating
non-Gaussianity is much larger than in the coherent-state case,
in particular for low values of the gain parameter.

In the upper right panel of Fig. 4, we show the nonclas-
sicality δnC[�̂s,ξ ] as a function of the gain parameter g, for
different values of the threshold p = 2, 3, 4, at a fixed value of
the squeezing strength r = 0.73. Similar to the nG measure,
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amplification generates a large amount of nonclassicality, also
for low values of the gain. The role of the threshold p,
likewise, is to increment the nC measure. Again, δnG[�̂s,ξ ]
and δnC[�̂s,ξ ] are two increasing monotonic functions, and
the amplified state is highly nonclassical and non-Gaussian
at the same time. The lower panels of Fig. 4 illustrate the
trade-off between the amount of nG (nC) obtained and the
success probability Ps,α . Remarkably, increasing the threshold
value from p = 3 to p = 4 leads to substantially larger values
of nG and nC, with basically the same success probability.
Furthermore, for the value p = 2 significant values of the nG
and the nC are achieved with interesting success rates. Hence
highly non-Gaussian and nonclassical states may be engi-
neered through the action of an optimal NLA with appealing
efficiency.

IV. ENGINEER NON-GAUSSIAN AND NONCLASSICAL
STATES BY NOISELESS AMPLIFICATION OF TWIN BEAM

A. Destructive noiseless amplification of twin beam

The projection postulate offers a viable mechanism to
realize synthetic dynamics and, in turn, to generate quantum
states otherwise unreachable with Hamiltonian evolution [18].
In this section, we analyze the effects of both destructive
and nondestructive implementations of NLA on maximally
entangled continuous-variable states, namely the twin-beam
(TWB) state:

|χ〉 =
√

1 − χ2
∞∑

n=0

χn|n, n〉, (19)

where 0 < χ < 1 and |n, n〉 = |n〉 ⊗ |n〉 is the Fock basis for
the two-mode system. The TWB state is a Gaussian two-
mode state obtained by the action of the two-mode squeezing
operator Ŝ2(χ ) = exp{χ âb̂ − χ∗â†b̂†} on the vacuum |0, 0〉,
where a and b denote the two involved modes. Without
loss of generality, we will consider χ as a real parameter.
These states of light may be generated in nondegenerate op-
tical parametric amplifiers by spontaneous down-conversion
or by mixing at a balanced linear mixer two squeezed
vacua with opposite squeezing phases. Since the efficiencies
of these processes are relatively weak, it is of interest to
investigate protocols to enhance the resulting nonclassical
properties.

According to the reduction postulate, a measurement per-
formed on one of the two constituents of an entangled bipartite
system leaves the other part in a conditional state, which
depends on the outcome of the measurement. Considering
the twin-beam state (19) and a successful NLA amplification
performed on subsystem a, the subsystem b is reduced into a
diagonal state

�̂s,χ = 1

Ps,χ
Tra

[|χ〉〈χ |Ê p†
s Ê p

s ⊗ Îb
]

(20)

= (1 − χ2)

Ps,χ

[
g−2p

p∑
n=0

(gχ )2n|n〉〈n| +
∞∑

n=p+1

χ2n|n〉〈n|
]
,

(21)

FIG. 5. Non-Gaussianity and nonclassicality of the amplified
state of Eq. (21). (a) nG measure δnG plotted against the gain
parameter g. (b) Plot of the nC measure δnC as a function of the gain
g. Plots of δnG (c) and δnC (d) as a function of the success probability
Ps,χ . The three curves for each plot correspond to different thresholds
p = 2 (solid blue), p = 3 (dashed orange), and p = 4 (dotted green).
The TWB parameter is set to χ = 0.63.

where Ê p†
s Ê p

s denotes an element of the POVM described by
the NLA, Îb is the identity operator acting on Hb, and Ps,χ is
the probability of successful amplification:

Ps,χ = (1 − χ2)

⎡
⎣g−2p

p∑
n=0

(gχ )2n +
∞∑

n=p+1

χ2n

⎤
⎦. (22)

In order to compute the nG measure for the amplified state
in �̂s,χ we refer to Eq. (3). As the state (21) is diagonal in
the Fock basis, its reference Gaussian state �̂G is a thermal
state with mean photon number n̄s,χ = Tr[�̂s,χ â†â] and diag-
onal CM σ = 1

2 Diag(1 + 2n̄s,χ , 1 + 2n̄s,χ ). Moreover, the von
Neumann entropy S(�̂s,χ ) = −∑

n ρn ln ρn can be directly
calculated with the diagonal matrix elements ρn of the state
(21). The resulting nG measure for this amplified mixed state
can, thus, be written in this simple form:

δnG[�̂s,χ ] = h

(
1

2
+ n̄s,χ

)
+

∑
n

ρn ln ρn. (23)

In the upper left panel of Fig. 5 we show the nG measure
(23) as a function of the gain parameter g for the amplified
state �̂s,χ . The three curves correspond to different thresholds
p = 2, 3, 4 and, as already observed in the previous cases, the
function δnG[�̂s,χ ] increases monotonically with the gain. The
same happens if one increases the threshold.

As highlighted in Fig. 1(c), the Wigner function of the am-
plified state �̂s,χ may assume negative values. The nC measure
δnC[�̂s,χ ] is shown as a function of the gain g in the upper right
panel of Fig. 5 and it displays a monotonic growth. At variance
with the previous cases, i.e., amplification of coherent and
squeezed vacuum states, we observe that the W-nC of �̂s,χ

is zero before a threshold value of the gain, and then starts to
grow monotonically for any value of p. This happens since
the Wigner function of the amplified state is diagonal in the
Fock basis and, thus, phase independent. It begins to warp as
the gain increases but remains positive. Only after a particular
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|αs

|ξs

ŝ,χ
|αs

|ξs

ŝ,χ

FIG. 6. Plots of the nG and nC measures, δnG (left panel) and
δnC (right panel), as a function of the mean input energy n̄, for
the amplified states |αs〉 (dashed orange), |ξs〉 (solid blue), and �̂s,χ

(dotted green). The parameters of the NLA, g = 3 and p = 2, are
fixed in each plot.

value of the gain, depending mainly on the TWB parameter
χ , the Wigner function takes on negative volumes. Thus we
have found that the two quantifiers we considered are still in a
monotonic relationship, even though they have a qualitatively
different behavior, as already mentioned in Sec. II B.

Let us now compare the performances of the amplifica-
tion process in the generation of single-mode nG and nC.
To this purpose, we consider input signals with the same
initial energy undergoing identical amplification processes,
i.e., n̄α = n̄ξ = n̄χ ≡ n̄, where n̄α ≡ 〈α|â†â|α〉 = |α|2, n̄ξ ≡
〈ξ |â†â|ξ 〉 = sinh2 r, and n̄χ = χ2/(1 − χ2). In Fig. 6 we plot
δnG (left panel) and δnC (right panel) as a function of n̄, with
fixed NLA parameters g = 3 and p = 2. In particular, we see
that for both the nG and nC measures the amplified squeezed
vacuum state (17) performs better than the amplified coherent
state (14), whereas the amplified reduced TWB state (21)
has the lowest values of nG and W-nC. We observe that the
single-mode squeezing is a better resource in obtaining highly
non-Gaussian and nonclassical states, whereas the destructive
measurement performed on the amplified TWB state some-
how spoils the input quantumness.

B. Increasing entanglement by nondestructive
NLA on twin beam

In this section, we examine the action of a successful
nondestructive probabilistic amplification on a TWB state by
focusing on the nG and the entanglement between the two
correlated modes. Applying the NLA on one mode of a TWB
results in the following pure conditional state:

|χs〉 = Ê p
s ⊗ Ib|χ〉√

Ps,χ

=
√

1 − χ2√
Ps,χ

⎛
⎝g−p

p∑
n=0

(gχ )n|n, n〉 +
∞∑

n=p+1

χn|n, n〉
⎞
⎠,

(24)

where the success probability is given by Eq. (22). The nG
measure for the amplified TWB state reduces to Eq. (5), as
the state (24) remains pure under the action of the NLA. In
order to compute the reference Gaussian state, we make some
considerations on the CM (2b) of a two-mode Gaussian state

σ2, which can be written in a block form as

σ2 =
(

A C
CT B

)
, (25)

where A, B, and C are 2 × 2 matrices. By means of local
symplectic transformations, it is possible to derive four sym-
plectic invariants, namely I1 ≡ det A, I2 ≡ det B, I3 ≡ detC,
and I4 ≡ det σ2, and derive a simple expression for the two
symplectic eigenvalues of σ2:

d± =
√

�(σ2) ±
√

�2(σ2) − 4I4

2
, (26)

where �(σ2) ≡ I1 + I2 + 2I3. The von Neumann entropy
of a generic two-mode Gaussian state can be written as
S(�̂) = h(d+) + h(d−). In the case of the amplified TWB
state (24) it is easy to see that I1 = I2 = ( 1

2 + N̄χ )
2
, with

N̄χ = Tr[|χ〉〈χ |(â†â + b̂†b̂)], and that d+ = d− = √
I1 + I3.

Overall, the nG measure may be expressed as

δnG[|χs〉〈χs|] = 2h(d+) = 2
√

I1 + I3 (27)

and it is plotted as a function of the gain parameter in the left
panel of Fig. 8.

As it is apparent from the plot, we recover the same be-
havior as in the previous examples concerning the monotonic
growth with increasing gain of NLA. We compare the nG
measure of the amplified states (21) and (24) for a NLA
with, respectively, destructive and nondestructive measure-
ments. In particular, by fixing the same squeezing parameter
χ1 = 0.63 at g = 1, meaning that the resource TWB state
(19) is fixed, we notice an enhancement of the NLA pro-
tocol in the nondestructive-measurement case (dashed curve
with respect to the solid one). On the other hand, another
comparison can be made by limiting the amount of mean
energy of the resource state at g = 1, i.e., fixing n̄χ1 = N̄χ2

with χ2 = 0.50. Also, in this case, the enhancement of the
amplification process occurs for a NLA with nondestructive
measurement (dotted curve with respect to the solid one).
The initial resources being equal, a NLA with nondestructive
measurement acting on a TWB state strongly enhances the
non-Gaussianity character of the amplified state.

Let us compare the amount of non-Gaussianity gener-
ated by the NLA with alternative de-Gaussification proto-
cols performed on the TWB state. In particular, we consider
photon addition and photon subtraction schemes that are
experimentally accessible. In existing experiments, the
photon-subtracted squeezed vacuum (PSSV) states are gen-
erated from twin beams with beam splitters of low reflexivity,
whereas the photon-added squeezed vacuum (PASV) requires
weak-gain parametric down converters. The expressions of
PSSV and PASV are respectively given by

|χs〉 = Nsâb̂|χ〉 =
√

(1 − χ2)3

1 + χ2

∞∑
n=0

χn(n + 1)|n, n〉, (28)

|χa〉 = Naâ†b̂†|χ〉 =
√

(1−χ2)3

1+χ2

∞∑
n=0

χn(n+1)|n+1, n + 1〉.

(29)
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FIG. 7. Left panel: plots of the entropic non-Gaussianity δnG as
a function of the input energy n̄ for the photon-added twin beam
(solid red), the photon-subtracted twin beam (dotted blue), and the
amplified two-mode squeezed vacuums with different calibrations of
the NLA: g = 2 (dashed orange), g = 3 (dot-dashed gray), and g = 4
(red circles). Right panel: the probability of success Ps,χ as a function
of the gain parameter g for different input energies of the initial twin
beam: n̄ = 1 (solid blue), n̄ = 3 (dashed orange), and n̄ = 4 (dotted
green). The truncation order is set on p = 3 for all the plots.

Since both these states are pure, their non-Gaussianity cap-
tured by the quantum relative entropy δnG is easily evaluated.
In the left panel of Fig. 7, we show plots of the entropic non-
Gaussianity for the PSSV, the PASV, and the amplified TWB
for different configurations as a function of the input energy n̄.
We observe that, apart from the case of weak input energies,
the NLA generates the greatest amount of non-Gaussianity.
Moreover, as it appears, the more intense is the amplification,
the broadest is the range of input energies where a substantial
non-Gaussian character is achieved. In a conditional evolu-
tion, the efficiency of the process is determined by the prob-
ability of the postselected outcome to occur. Regarding the
NLA based scheme, this latter coincides with the probability
of a successful amplification. In the right panel of Fig. 7, we
plot the rate of success for an amplification to be implemented
on twin beams of different energies as a function of the gain
(the threshold being fixed at p = 3). We notice that beyond
g = 2, the probability to achieve a successful amplification
decreases softly and still attains attractive values notably for
high input energies. Interestingly, those configurations where
the optimal NLA is efficient lead up to highly non-Gaussian
two-mode states, thus identifying its action on relevant input
twin beams as a powerful de-Gaussification protocol.

Finally, let us study whether the NLA enhances entangle-
ment in the amplified TWB state. The most notable measure
of entanglement for a bipartite pure state |�〉 is the entropy of
entanglement, which is defined as the von Neumann entropy
of one of the reduced states �b = Tra[|�〉〈�|]:

E [|�〉] = S[�̂b] = −
∞∑

n=0

ρn ln ρn, (30)

where ρn are the eigenvalues of the reduced state. In our case,
the initial TWB state is pure and the corresponding reduced
state of mode b is exactly the amplified state (21) with a
nondestructive measurement. We already calculated S(�̂s,χ )
in the evaluation of the nG measure δnG[�̂s,χ ], highlighting
the strong relation between non-Gaussianity of the reduced
amplified state �̂s,χ and the amount of entanglement of the
bipartite amplified state |χs〉. We can observe in the right panel
of Fig. 8 that the entanglement measure E [ |χs〉 ] shows a

|χ2s

|χ1s

ŝ,χ1

χ = 0.63
χ = 0.20

χ = 0.80

FIG. 8. Left panel: nG measure δnG plotted as a function of the
gain parameter g for the amplified states �̂s,χ1 (solid blue curve),
|χ1s〉 and |χ2s〉 (dashed orange and dotted green curves), with χ1 =
0.63 and χ2 = 0.50. Right panel: plot of entropy of entanglement
E [|χ〉〈χ |] as a function of the gain parameter g. The three curves
correspond to different squeezing parameters of the TWB state: χ =
0.20 (solid blue), χ = 0.63 (dashed orange), and χ = 0.80 (dotted
green). The three points at g = 1 are the reference values of the
entropy of entanglement for three initial TWB states corresponding
to the three values of χ listed above.

characteristic peak depending on the value of the squeezing
parameter, occurring at lower values of the NLA gain for
higher values of χ . The remarkable result is provided by
the comparison between the curves and the reference values
of the amount of entanglement for the initial TWB state at
g = 1 (highlighted points in the figure). For any value of
the NLA gain g > 1, the amplification process brings along
an enhancement of entanglement in the amplified state with
respect to the amount of entanglement of the corresponding
TWB state.

V. CONCLUSION

In this work we have investigated the action of a nonde-
terministic noiseless linear amplifier on single- and two-mode
Gaussian states in order to generate highly non-Gaussian and
nonclassical amplified quantum states. In particular, we have
focused on amplification of feasible Gaussian states, e.g.,
coherent states, squeezed vacuum states, and entangled twin
beam.

Our results show that noiseless amplification is, in general,
a powerful scheme to generate nonclassical non-Gaussian
states, with the detailed performances depending on the inter-
play between the gain of the NLA, its threshold for amplifica-
tion, and the parameters of the input signal. Upon comparing
results for input signals with the same initial energy, we have
shown that better performances, i.e., larger output nG and
nC nG, are obtained by amplification of squeezed vacuum.
We have also analyzed the performances of nondestructive
amplification, showing that amplification of twin beam highly
increases entanglement.

Concerning the efficiency of the process, we have shown
that, while the probability of successful amplification de-
creases with the NLA gain, there is a convenient trade-off
between nG (or nC) and the success probability itself. We have
also shown that for squeezed vacuum input, one may increase
nG and nC at fixed success probability by increasing the NLA
amplification threshold.
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Overall, we have proved that NLA provides an effec-
tive scheme to generate highly non-Gaussian and nonclas-
sical states and may be used to increase entanglement in
continuous-variable systems. Our results pave the way for
optimized implementations of NLA and suggest that both de-
structive and nondestructive implementations of NLA would
be of interest in quantum technology.
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