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Quantifying Uncertainty Due to 
stochastic Weather Generators in 
Climate Change Impact studies
Fosco M. Vesely  1, Livia paleari1, ermes Movedi1, Gianni Bellocchi2 & Roberto Confalonieri1

Climate change studies involve complex processes translating coarse climate change projections 
in locally meaningful terms. We analysed the behaviour of weather generators while downscaling 
precipitation and air temperature data. With multiple climate indices and alternative weather 
generators, we directly quantified the uncertainty associated with using weather generators when 
site specific downscaling is performed. We extracted the influence of weather generators on climate 
variability at local scale and the uncertainty that could affect impact assessment. For that, we first 
designed the downscaling experiments with three weather generators (CLIMAK, LARs-WG, WeaGets) 
to interpret future projections. then we assessed the impacts of estimated changes of precipitation 
and air temperature for a sample of 15 sites worldwide using a rice yield model and an extended set of 
climate metrics. We demonstrated that the choice of a weather generator in the downscaling process 
may have a higher impact on crop yield estimates than the climate scenario adopted. should they be 
confirmed, these results would indicate that widely accepted outcomes of climate change studies using 
this downscaling technique need reconsideration.

Climate change impact studies are affected by the statistical properties of the local weather time series1. Shifts in 
temperature and precipitation distributions, including extremes, are critically important for the analysis of agri-
cultural2 and biological systems that incorporate complex, non-linear interactions at the soil-plant-atmosphere 
interface3,4. To develop climate scenarios, multi-model ensembles of General Circulation Models (GCMs) are 
used, which define the uncertainty in projections resulting from structural differences in the GCMs, as well as 
uncertainties in variations of initial conditions or parameterizations5,6. Future projections are based on alterna-
tive Representative Concentration Pathways (RCPs), each of them describing a potential future greenhouse gas 
concentration trajectory during the 21st century7. However, the direct use of climate predictions from GCMs 
is problematic because their coarse spatial resolution may result in biases and uncertainties at a local scale6, 
since GCMs that are used to project future climate scenarios provide gridded-area average simulations while the 
occurrence and intensity of extreme events strongly depend on local factors8–11. Stochastic weather generators 
(WGs) are routinely integrated into ecological or agro-meteorological studies to extend or interpolate incomplete 
weather data series for analyzing the extent of climate impacts within simulation applications, for instance with 
hydrological12, runoff13,14, ecosystem15,16, and crop yield models2,17. After calibration of site-specific parameters 
based on local weather data, WGs simulate synthetic daily weather time-series that are statistically similar to 
inputs18–21. In climate change studies, WGs are used to explore the effect of long-term changes in mean climate 
variables as well as changes in climatic variability and the frequency of extreme events22. Applications of WGs can 
also be found to downscale23 values of precipitation and air temperature with coarse spatio-temporal resolution 
as simulated from GCMs, based on probability density functions24–26. By empirically associating local-scale var-
iables with large-scale atmospheric variables produced by GCMs, WG-based downscaling techniques underpin 
studies on regional and local-scale impact assessments. With weather generation, changes to climate obtained 
from GCM × RCP combinations are employed to alter the generator parameters for the site baseline to generate 
synthetic daily weather data for the future27,28. Weather generation has the advantage of being faster to compute 
than dynamic downscaling approaches such as Regional Climate Models that are driven by GCM outputs29,30.
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The objective of this study was to assess the uncertainty introduced by WG-based downscaling when applied 
to projections of future climate. The analysis targeted scenarios centered on 2040 derived from two GCMs and two 
RCPs as well as the baseline period for multiple sites worldwide. As it is recommended to make multi-comparison 
studies using different WGs31, we compared three stochastic WGs: LARS-WG32, WeaGETS33 and CLIMAK34. The 
choice of the WGs was based on software accessibility and usability, as well as on the availability of complete docu-
mentation. The generated weather series were characterized using an extended set of weather indices and were used 
to feed a simulation model for rice yield estimates under baseline climate and future projections. Among available 
crops, rice was selected because of its importance as staple food for more than half of the world’s population.

Results
This section first reports on the generated data and rice yield estimates obtained with a crop model, followed by 
an analysis of integrated climate indices calculated on both reference baseline and generated series. In the last part 
of the section, we address the effect of using alternative WGs on a set of climate indices by applying rank-based 
ANOVA to assess sources of uncertainty in the generation of downscaled future climate projections.

Generated climate data. Ensembles of baseline and future climate data (from four GCM × RCP combina-
tions) were downscaled with three alternative WGs in mutiple sites worldwide (Fig. 1). LARS-WG returned com-
plete data series in each situation, whereas CLIMAK and WeaGETS did not generate data for some sites and for 
some GCM × RCP combinations. The analysis of CLIMAK results also revealed the occurrence of some abnormal 
numerical values in weather series that were thus not included in further analysis.

effect of the generation of climate change projections on future rice yield estimates. The 
ranges of variation in projected rice yields (percentage changes in future scenarios with respect to the baseline) 
differed widely across sites (Fig. 2). For instance, distinct increases in rice yield were projected at the Brazilian 
site with all scenarios and WGs, whereas an opposite response was found in China but a more complex pattern 
was visible in other sites. With few exceptions, responses from different scenarios tended to cluster around the 
same WG; the same behaviour is advisable in aggregate aridity and climate classification indices (Supplementary 
Information). This indicates that overall variability due to alternate WGs (different colors in Fig. 2) may be larger 
than that induced by GCM × RCP combinations (different shapes in Fig. 2). The study case in Italy shows that rank 
reversal might also occur in rice yield projections when different WGs are used. For instance, either positive (with 

Figure 1. Sites involved in the study, marked according to their completeness for baseline and/or future 
projections. B, BF, N: sites with complete generated weather series for, respectively, baseline, baseline and future 
scenarios, none of them. The latter identifies sites where failures in generation occurred for some combinations 
WG × GCM × RCP.

Figure 2. Climate change impact on rice yields (% compared to the baseline) estimated with the model WARM 
for different combinations weather generator (WG) × representative concentration pathway (RCP) × general 
circulation model (GCM) at eight sites distributed worldwide. sites are also labelled according to ISO 3166 
standard. WGs are CLIMAK (C), LARS-WG (L), and WeaGETS (W). Scenarios indicate combinations of two 
GCMs, HadGEM2-ES (H) and GISS-ES-R (G), and two RCPs, RCP4.5 (4) and RCP8.5 (8).
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LARS-WG) or negative (with WeaGETS) impact was projected using HadGEM2-ES × RCP8.5 scenario. With dif-
ferent WGs, changes in projected impacts on rice yield was about ±5%. This is not a trivial value if for a big rice 
producer like China35 the energy contained in ±5% national rice production would correspond to 12800 megatons.

Generated versus reference weather series. The analysis of generated weather series revealed the abil-
ity of each WG to reproduce the distribution of the values of an extended list of climate indices (reported in 
Supplementary Information) calculated on the reference series. The polar graph of Fig. 3a represents the multi-
variate system created with the set of indices used, with indices plotted on each radial axis. In particular, the value 
plotted on each axis represents the probability for reference and generated series to be the same for that index. 
The closer the contour lines are to one (thick black circle in Fig. 3a), the more similar the probability density func-
tions for the two populations. Therefore, for each index, values close to one indicate a good agreement between 
generated and reference distributions. Figure 3 shows how the WGs differed for their likelihood to reproduce the 
most-probable value of each index (peaks in Fig. 3b). Some indices scored poorly regardless of the generator and 
the site (probably in relation to peculiarities inherent to reference weather series). However, while WeaGETS and 
LARS-WG offered a relatively more stable performance across the sites, the series generated by CLIMAK were 
often the most similar to reference ones.

Results from a robust rank-based ANOVA-like method (factors being WG and Site) are presented in Fig. 4. 
Most of the indices were significantly affected (p < 0.05) by both WG and Site. Their interaction was also often 
significant (p < 0.05, indicated with red in Fig. 4). Site frequently resulted as the most probable source of differ-
ences rather than WG. However, for some indices (mainly those based on percentiles, since they are sensitive to 
extreme values, like tx90p - percentage of days having Tmax > 90th percentile), WG explained most of the varia-
bility observed. Some indices based on maximum and minimum daily air temperatures were often more affected 
by the WG than by the Site. For temperature-based indices, this was observded for monthly minimum of daily 
minima (TNN), as well as for monthly maximum of daily maxima (TXX).

Figure 3. Agreement between generated and reference baselines. Line colors indicate weather generators 
(WG; C: CLIMAK; L: LARS-WG; W: WeaGETS), whereas line style corresponds to sites. (a) Overall fit of 
weather series for each index (one monthly index for each axis with code labels as reported in Supplementary 
Information); solid black lines indicate perfect fit to reference data. (b) Distribution density of the fit of all the 
indices analyzed (the closer to one, the more the whole set of reference distributions is reproduced by the WGs).

Figure 4. p-values for sources of variation affecting the difference between climate indices calculated on 
reference and generated baselines. WG refers to weather generators, Site to the location for which indices are 
calculated, WG × Site to their interaction. Red colour indicates significance (p < 0.05).
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Uncertainty in downscaling future climate projections due to weather generators. For each 
climate index, the proximity of different GCM × RCP combinations was assessed by approximating the area of 
overlap of the probability density distributions of the index values obtained with each WG. The results summa-
rized in Fig. 5a,b return a quite high likelihood (0.7) to obtain the same value for different indices regardless of the 
GCM × RCP combination. This likelihood was indeed higher than the average resemblance of generated to refer-
ence baselines (<0.5). While a strong dependence of results on geographical location (site-specific) was somewhat 
expected, the most interesting outcome (Fig. 5b) was that results from different GCMs and RCPs tended to cluster 
by WG (more than by site). Given the influence of the different WGs on climate scenarios, the additional uncer-
tainty that may result from the interaction between generation (WGs) and projections (GCMs and RCPs) was ana-
lyzed. A series of nonparametric robust rank order ANOVA tests was thus conducted to assess the effect of different 
factors (Site, WG, GCM, RCP, and their interactions) on each climate index calculated on future series (Fig. 6).

Two main patterns arose: some indices were strongly dependent from all the driving factors (red columns in 
Fig. 6), whereas some factors affected most of the indices (red rows). Besides, some indices, like the cold spell 
duration index (CSDI), were not significantly driven (p > 0.05) by any factor. Evapotranspiration- and rain-related 
indices (i.e., SAM and rx1day) were the most affected by the factors considered (as highlighted by thick red col-
umns). Some factors, i.e., WG, Site × WG, Site and GCM (red rows), appeared to be the most influential for the 

Figure 5. Probability to have the same density distribution for different climate indices. Color lines indicate 
weather generators (C: CLIMAK; L: LARS-WG; W: WeaGETS) whereas line styles correspond to sites 
(ISO 3166 labels). (a) Overlapping areas of probability density distributions of different monthly-based 
climate indices (radial axes, labelled in Supplementary Information) derived from different WGs for each 
Site × GCM × RCP combination. Solid black line indicates perfect fit of different combination GCM × RCP 
generated by the same WG for the same Site. The closer the lines to one, the smaller the difference between 
GCM × RCP combinations. In (b) Overall density similarity across indices for GCM × RCP combinations at 
each site using different generators.

Figure 6. p-value for factors affecting the indices (described in Supplementary Information) derived from 
the analysis of generated future projections. Color scale is the same as in Fig. 4, with red indicating significant 
values (p < 0.05). Site: location of series; RCP: representative concentration pathway; GCM: general circulation 
model; WG: weather generator.
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majority of climate indices. Overall, GCM was the least significant factor, its average p-value being about 150% 
larger than for Site and about one order of magnitude larger than for WG. Results also indicated that influential 
factors are – to a certain extent – uniformly significant (p < 0.05) across different indices.

Discussion
In climate change impact studies, the envelope of multiple GCM × RCP realizations includes the uncertainty accu-
mulated throughout the process of climate generation36,37. At the end of the process, fine-scale climate data to feed 
impact models are developed from a variety of coarse scale GCMs and in dependence on alternative emission and 
socio-economic pathways. Uncertainties in model parameters, and imbalances in model equations, may propagate 
through the climate modelling chain, and these uncertainties may be enhanced or compensated during downscaling38 
and then translated into impact estimates39. Studies analysing climate change have mostly emphasized the sources of 
uncertainty associated with adopting alternative GCM × RCP configurations in an ensemble of climate scenarios, 
but without fully considering the amount of uncertainty associated with using WG-based downscaling. Our results 
not only indicate that the impact of stochastic generation on precipitation and air temperature patterns within sta-
tistical downscaling methods can be substantial, but that the projected results may even be reversed, that is, the most 
favourable scenario obtained with a WG may become the worst with an alternative WG (and vice versa). This means 
that generated weather series may differ more due to the chosen stochastic generator rather than to the envelope of 
assumptions. Projection uncertainties handled by comparing different GCMs and RCPs could therefore be super-
seded by the uncertainties due to the WGs employed for the downscaling of climate variables. In our study, the array 
of climate indices and the rice yield analysis performed indicate an effect depending more on the WGs than on other 
factors (followed by the site dependant effect). While the effect of applying generated weather series in different areas, 
and for different crops and objectives is still to be assessed, further simulation experiments will verify if some biologi-
cal resilience attenuate the impacts of stochastic weather generation on (simulated) biophysical processes.

While framing the uncertainty arising from using multiple WGs in the downscaling process, our study points 
out the (risk of) high dependence of climate change impact calculations on WGs (beyond the physics underlying 
the GCMs and the socio-economic scenarios driving the RCPs). Our results stress the need of verification of the 
appropriateness of several climate change studies using WG for downscaling, whose uncertainty - on the basis 
of what we observed - could be larger than expected. The application of our procedure to downscaled climate 
projections may provide information on the characteristics of uncertainty in local climate projections. In the con-
text of agriculture and food security, this would consist of an ensemble of WGs, compared across an ensemble of 
crop models in a variety of agricultural regions. While there may be no best overall WG, the breadth of stochastic 
generation analysis can be used to provide end users with indication of the variability related to the stochastic 
weather generation. In conclusion, our findings advocate incorporation of alternative WG-based downscaling 
techniques as routine tools for the multi-ensemble methodology that already uses alternative RCPs/GCMs in 
impact studies. This would facilitate a move towards a complete assessment of uncertainty in simulations.

Methods
Site specific climate data. For the baseline period 1986–2005, we used the datasets of daily precipita-
tion and air temperature available at 0.25° resolution from the Meteorological Archival and Retrieval System 
(MARS), which is the main repository of meteorological data at the European Centre for Medium-Range Weather 
Forecasts (ECMWF)40. To ensure a wide coverage while keeping the number of cases to a reasonable level, 15 sites 
(Fig. 1) were selected purposely from rice-growing areas.

performance evaluation of weather generators. In each site, the stochastic WGs LARS-WG32, 
WeaGETS33 and CLIMAK34 were used to reproduce the baseline weather series (1986–2005). Although the WGs 
used in this study are only a subset of those available, we think that the three WG types considered here are rea-
sonably representative of current approaches to stochastic generation. The realism of stochastically generated pre-
cipitation and air temperature time-series with respect to the reference baseline was checked and portrayed with 
an array of 33 climatic metrics. They include 27 metrics defined by the Expert Team on Climate Change Detection 
and Indices/Climate Research Division (ETCCDI/CRD)41 complemented with a set of agro-meteorological met-
rics (SPEI42, de Martonne-Gottman aridity43, aridity index proposed by United Nation Environment Programme 
(UNEP) and adopted by Food and Agricolture Organization (FAO)44, Hargreaves Evapotraspiration45, Water 
Balance and Simple Aridity Measure46). The calculation of climatic and agro-climatic metrics helped to synthesize 
the information conveyed by alternative weather sources. For each metric, we first calculated site-specific cumu-
lative distributions (exceedance probability) for the reference baseline and for the baselines estimated with each 
WG. Then, we integrated the overlapping area of two empirical cumulative distributions (with probability equal 
to one in case of perfect overlap and zero in the absence of any overlap). Third, matching the values of overlap-
ping areas, we got the overall distribution for the whole set of metrics. In this way, one indicates perfect overlap 
for all the metrics. The second and third steps were repeated for the comparison of downscaled future climate 
projections. The effect of weather generation in the downscaling process was assessed based on the impact of 
downscaled climate change scenarios on rice yield estimates by using the output of a crop simulator (WARM47) as 
is commonly done in climate change impact studies.

Downscaled future projections. In order to estimate a range of possible climates, we used two GCMs 
(GISS-E2-R48 and HadGEM2-ES49) that provided future projections centered on 2040 from RCP4.5 (moderate 
greenhouse gas concentration trajectory) and RCP8.5 (very high greenhouse concentration trajectory).

The fully coupled atmosphere-ocean GCM GISS-E2-R, developed by the National Aeronautics and Space 
Administration’s (NASA) Goddard Institute for Space Studies (GISS), is a contributor to the Coupled Model 
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Intercomparison Project Phase 550. With horizontal resolution of 2° latitude by 2.5° longitude and 40 vertical 
layers, the atmospheric model extends through the mesosphere (model top of 0.1 hPa). The latter is coupled 
to the Russell ocean model51, which has horizontal resolution of 1° latitude by 1.25° longitude and 32 vertical 
layers. As well, HadGEM2-ES is a coupled Earth System Model, used by the Met Office Hadley Centre for the 
Coupled Model Intercomparison Project Phase 5 centennial simulations. It comprises an atmospheric GCM at 
1.25° (lat) × 1.875° (lon) horizontal and 40 km vertical resolutions, and an ocean GCM with a 1° horizontal reso-
lution (increasing to 1/3° at the equator) and 40 vertical layers.

The delta-change technique perturbs the locally generated weather record with additive or multiplicative 
coefficients, based on the mean change from baseline to future frames extracted from the climate models. This 
approach circumvents the inherent limitations of a conventional delta-change approach that barely applies mean 
additive or multiplicative adjustments directly to reference baseline26.

Climate change impact on estimated rice yields. As climate-change impact measure, we considered the 
projected to current rice yields estimated with the crop model WARM47 (averaged on 19-year long series, that is, 19 
rice-growing seasons in 20 years of weather data in both hemispheres). We applied the impact study on rice yield 
at multiple sites using weather series obtained from different GCM × RCP × WG combinations. With three WGs, 
we could in particular estimate the relative weight of the uncertainties in the output with respect to the WG used.

Variance analysis and decomposition. Robust rank analysis of variance (ANOVA) tests52 were con-
ducted using climatic and agro-climatic indices coming from downscaled outputs under conditions identified 
by four factors. A split-plot design with Site as main plot, and GCM and RCP as sub- and sub-sub-plots was 
further extended to accommodate a fourth factor - weather generator (CLIMAK, LARS-WG, WeaGETS) - 
through additional subdivision of each sub-sub-plot into sub-sub-subplot. For the ANOVA, years were used as 
replication within each 20-year period. Here, the ANOVA tests were based on Rfit code53. Though the nonpara-
metric ANOVA adopted does not require the assumptions of homogeneity of variance between the groups and 
the normality of residuals, a balanced design (the same amount of index values for each level of each factor) is 
required to detect the differences between the groups. Flaws in the generation process ended in having a limited 
set of series fulfilling the requirements (Fig. 1 and Supplementary Table 2). The reason is that the failure in one 
RCP × GCM × WG combination drives to failure for the whole location when trying to compare future pro-
jections. When one site encountered failures only in future scenarios, it was used in the analysis performed on 
the baseline (Fig. 4). Vice versa, when errors occurred only in the baseline generation (Fig. 6), series were only 
included in the analysis of future scenarios. In this way, all the ANOVA tests were performed according to a bal-
anced design, depending on the occurrence of failures during weather generation.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

ECMWF policies prompt not to reproduce, distribute, license, transfer, assign, sell, disclose or otherwise for-
ward the Archive Products. By the way, weather data may come from whatever source with no difference in the 
considered terms. Anyway http://apps.ecmwf.int/datasets allows to access some datasets.

CLIMAK official page for further information and availability: http://semola.uniud.it/index.php?id=129\L=1.
LARS-WG home page: http://resources.rothamsted.ac.uk/mas-models/larswg.
WeaGETS host page on MathWorks: https://it.mathworks.com/matlabcentral/fileexchange/29136-stochastic- 

weather-generator–weagets.
WARM official web page: http://www.cassandralab.com/applications/2.
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