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Abstract. Let X be a real Banach space with the closed unit ball BX
and the dual X∗. We say that X has the intersection property (I) (gen-
eral intersection property (GI), respectively) if, for each countable family
(for each family, respectively) {Bi}i∈A of equivalent closed unit balls such
that BX =

⋂
i∈ABi, one has BX∗∗ =

⋂
i∈AB◦◦i , where B◦◦i is the bipo-

lar set of Bi, that is, the bidual unit ball corresponding to Bi. In this
paper we study relations between properties (I) and (GI), and geometric
and differentiability properties of X. For example, it follows by our results
that if X is Fréchet smooth or X is a polyhedral Banach space then X
satisfies property (GI), and hence also property (I). Moreover, for separa-
ble spaces X, properties (I) and (GI) are equivalent and they imply that
X has the ball generated property. However, properties (I) and (GI) are
not equivalent in general. One of our main results concerns C(K) spaces:
under certain topological condition on K, satisfied for example by all zero-
dimensional compact spaces and hence by all scattered compact spaces, we
prove that C(K) satisfies (I) if and only if every nonempty Gδ-subset of K
has nonempty interior.

1. Introduction

Let X = (X, ‖ · ‖) be a real Banach space and BX its closed unit ball.
Assuming that the norm of X coincides with the (pointwise) supremum of

a family of equivalent norms ‖ · ‖i (i ∈ A), it is natural to ask whether also
the norm of the bidual X∗∗ is the supremum of the corresponding family of
bidual norms.

Clearly, the same question can be reformulated in terms of closed unit balls:
for each i ∈ A, if Bi is the closed unit ball of the norm ‖ · ‖i , and B◦◦i is the
bipolar set of Bi (that is, the corresponding bidual closed unit ball), does the
following implication hold?

(1) BX =
⋂
i∈ABi ⇒ BX∗∗ =

⋂
i∈AB

◦◦
i .
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If the answer is affirmative for each countable family (for each family, respec-
tively) {‖·‖i}i∈A of equivalent norms on X, we say that X has the intersection
property (I) (has the general intersection property (GI), respectively).

The aim of the present paper is to study relations between properties (I)
and (GI), and geometric and differentiability properties of Banach spaces.

After some preliminary results, the first step in our study consists in dual
characterizations of property (I), given in Proposition 3.3, including a charac-
terization in terms of the so-called intermediate envelope (defined in [8]; see the
text after Definition 2.7). These characterizations enable us to prove all main
results of the paper concerning property (I). Then we present a similar charac-
terization for property (GI) and we study relations between the two properties:
it is clear that property (GI) implies property (I), and Theorem 3.6 shows that
the two properties coincide if X is separable or w∗-sequentially dense in its
bidual. However, properties (I) and (GI) are not equivalent in general (see
Propositions 5.8 and 5.1).

It is an obvious observation that if X is reflexive then every equivalent
norm on X has property (I). In Section 4, we give several characterizations
of reflexivity in terms of properties (I) and (GI). In particular, Theorem 4.1
shows that also the converse of the above observation holds true.

In Section 5, we study properties (I) and (GI) in C(K) spaces and in some
other classical spaces. In Corollary 5.4, one of the main results of our paper,
we prove that under a topological condition on K (satisfied for example by
all zero-dimensional compact spaces and hence also by all scattered compact
spaces), the space C(K) satisfies (I) if and only if every nonempty Gδ-subset of
K has nonempty interior. As for property (GI), its characterization for C(K)
spaces is much simpler: C(K) has property (GI) if and only if K is finite (see
Proposition 5.1).

In Section 6, we present some results concerning relations between property
(GI), the ball generated property, nicely smoothness and some other geomet-
rical properties of the dual unit ball. Theorem 6.6 collects the main results
in this direction, and its proof relies on the techniques introduced in [5, 4].
As a corollary, we obtain for example that a Banach space X has property
(GI), and hence property (I), whenever X is Fréchet smooth or X has the
Mazur intersection property or X is a polyhedral Banach space. Moreover,
at the end of the section we study the problem of finding an equivalent norm
on an Asplund space satisfying property (I). It turns out that the situation
is analogous to that of the Mazur intersection property, and it depends on
set-theoretic axioms (cf. [13, 1]).

We point out that some of our results from Sections 5 and 6, are in some
sense inspired by the paper [11] that contains results about a sequential version
of the ball generated property, the so-called property (P), some of which are
formally similar to our results about property (I). Despite this, the relation
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between these two properties is not completely clear. It follows from Theo-
rem 6.6 that in separable Banach spaces property (I) implies (P), however we
do not know whether this implication holds for general Banach spaces (see
Problem 8.4).

We conclude the paper with a section devoted to the study of a property
called by us the union property (U). This property is defined in a similar way
as property (I), by considering the (pointwise) infimum, instead of the supre-
mum, of monotone sequences of equivalent norms. Similarly to property (I),
property (U) can be reformulated using closed unit balls (see Definition 7.1).
Proposition 7.2 provides several dual characterizations of property (U). As a
corollary we obtain that if X has (U) then X is a Grothendieck space (Corol-
lary 7.5); however the converse is not true (cf. Theorem 7.6). Proposition 7.4
characterizes property (U) in terms of intermediate envelope as well as of the
so-called 1-Grothendieck property (a quantitative version of the Grothendieck
property, introduced in [2]). Combining our characterization and the results
in [14], we obtain that `∞ has property (U). Moreover, by a characterization
of reflexivity in terms of property (U), we provide an alternative proof of a
result of O.F.K. Kalenda contained in [15] (see Remark 8.6).

2. Notations and preliminaries

In what follows, all (normed) linear spaces are real, and all topological spaces
are Hausdorff. If not otherwise specified, the topological notions, like closure,
interior etcetera, in a normed linear space are intended in the norm topology.

If X = (X, ‖ · ‖) is a normed linear space then X∗ = (X∗, ‖ · ‖) is its dual
Banach space (equipped with the standard dual norm); BX , UX and SX are
the closed unit ball, the open unit ball and the unit sphere of X, respectively.
The distance of a point x ∈ X from a nonempty set A ⊂ X is defined as
d(x,A) := inf{‖x − a‖ : a ∈ A}. As usual, X will sometimes be considered
as a subspace of its second dual X∗∗. With this in mind, given x ∈ X and
x∗ ∈ X∗ we can write indifferently x∗x or xx∗ to denote the value of x∗ at x.

The polar of a set A ⊂ X is the set A◦ := {x∗ ∈ X∗ : supx∗(A) ≤ 1}.
For B ⊂ X∗, in addition to its polar B◦ ⊂ X∗∗ we can consider also the
prepolar ◦B = {x ∈ X : supx(B) ≤ 1} = B◦ ∩ X. It is obvious that these
polar operations are inverse monotone with respect to the inclusion. Moreover,
A◦ = (convA)◦, and ◦B = ◦(convw

∗
B). The following fact is well known.

Fact 2.1. Let A ⊂ X and B ⊂ X∗ be convex sets containing the origin.

(a) ◦(A◦) = A, (◦B)◦ = B
w∗

, (A◦)◦ = A
w∗

(w∗-closure in X∗∗).
(b) A,A◦, B, ◦B is bounded if and only if the origin is an interior point of

A◦, A, ◦B,B
w∗

, respectively.
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The set B is said to be 1-norming if ‖x‖ = supx(B) for each x ∈ X. It is easy
to see that:

B is 1-norming ⇐⇒ convw
∗
B = BX∗ ⇐⇒ B ⊂ BX∗ ,

◦B = BX .

We shall also need some simple auxiliary facts. The first one is quite stan-
dard; we give here a proof for the sake of completeness.

Lemma 2.2. Let X be a normed linear space, and let Aα (α ∈ I) be bounded,
closed, convex sets in X, all containing the origin.

(a)
[⋃

α∈I Aα
]◦

=
⋂
α∈I A

◦
α .

(b) If 0 ∈ int
(⋂

α∈I Aα
)
, then

(⋂
α∈I Aα

)◦
= convw

∗(⋃
α∈I A

◦
α

)
.

Proof.
(a) x∗ ∈ [

⋃
αAα]◦ if and only if 1 ≥ supx∗ (

⋃
αAα) = supα supx∗(Aα), and

this holds if and only if x∗ ∈
⋂
α∈I A

◦
α.

(b) For each β ∈ I, A◦β ⊂ (
⋂
αAα)◦ (by inverse monotonicity of the polar),

and hence

(2) convw
∗(⋃

α∈I A
◦
α

)
⊂
(⋂

α∈I Aα
)◦
.

By Fact 2.1, the right-hand side of (2) is bounded, and the left-hand side
contains 0 in its interior and is w∗-compact. Assume that the inclusion in (2)
is strict. By the Hahn-Banach separation theorem for the w∗-topology, there
exists x ∈ X \ {0} such that

(3) 1 = sup x
(
convw

∗(⋃
α∈I A

◦
α

))
= supx

(⋃
α∈I A

◦
α

)
< supx

((⋂
α∈I Aα

)◦)
.

The inequality in (3) implies that x /∈ ◦ [(
⋂
αAα)◦] =

⋂
αAα. On the other

hand, the equalities in (3) together with (a) above give

x ∈ ◦ (
⋃
αA
◦
α) = (

⋃
αA
◦
α)◦ ∩X

=
⋂
αA
◦◦
α ∩X =

⋂
α
◦(A◦α) =

⋂
αAα.

This contradiction completes the proof. �

Fact 2.3. Let K1, . . . Kn be compact convex sets in a (Hausdorff) topological
vector space. Then the sets conv(K1∪· · ·∪Kn) and K1 + . . .+Kn are compact,
and hence closed. (This is well known.)

Fact 2.4. Let C be a convex set in a normed linear space, and intC 6= ∅.
Then int(C) = intC. (See [16, (4.6)].)

Notation 2.5. Given sets E,E1, E2 . . . in a normed linear space, we shall use
the following, quite intuitive notation:

(a) En ↗ E means that the sequence {En} is increasing and its union is E;
(b) En↗E means that the sequence {En} is increasing and the closure of its

union is E;
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(c) En ↘ E means that the sequence {En} is decreasing and its intersection
is E.

Lemma 2.6. Let X be a normed linear space. Suppose that {Cn} is an in-
creasing sequence of convex subsets of BX such that 0 ∈ int C1. Then the
following are equivalent.

(i) Cn↗BX ;
(ii)

⋃
n∈NCn ⊃ UX ;

(iii) C◦n ↘ BX∗.

Proof. Let us denote C :=
⋃
nCn. The implication (ii) ⇒ (i) is obvious. To

prove that (i) ⇒ (iii), we can use Lemma 2.2: BX∗ = (BX)◦ = C◦ =
⋂
nC
◦
n.

Finally, assume (iii). Then UX = intBX = int(C) = intC, where the last
equality holds by Fact 2.4. �

Definition 2.7. Let K be a w∗-compact convex subset of a dual Banach
space X∗ and E ⊂ K, we say that the set E (I)-generates K iff the following
condition holds:

if E ⊂
⋃∞

1 Cn where the sets Cn ⊂ K are w∗-compact and convex, then
K = conv(

⋃∞
1 Cn) (norm-closure!).

It is easy to see, that the set E (I)-generates K if the set K coincides with the
so-called intermediate envelope of E, i.e., the set given by

(I)-env(E) :=
⋂{ ⋃

n∈N

conv w∗En : En ↗ E
}
.

This notion was introduced by V.P. Fonf and J. Lindenstrauss in [8] and stud-
ied by several authors (see, e.g., [2, 14, 15, 18] and the references therein). Let
us recall the following so-called Boundary Theorem (for a relatively simple
proof, see [18, Theorem 2]).

Theorem 2.8 (Boundary Theorem). Let X be a Banach space, K ⊂ X∗ a
w∗-compact convex set, and B ⊂ K a boundary for K (that is, for each x ∈ X
there exists b∗ ∈ B such that xb∗ = supx(K)). Then B (I)-generates K.

Notice that the above theorem can be reformulated in the following form:
if the boundary B is covered by a countable union of w∗-compact convex sets,
then K is contained in the norm-closed convex hull of that union.

We shall need the following result concerning the intermediate envelope of
a norm-separable set (see [14, Remark 1.1(ii)] or [8, Proposition 2.2(a)]).

Lemma 2.9. Let X be a Banach space and let E ⊂ X∗. If E is norm-separable
then

(I)-env(E) = conv (E).
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3. Intersection properties

Let X be a normed linear space. By an equivalent ball in X we mean a set
B ⊂ X that coincides with the closed unit ball of an equivalent norm on X.
Clearly, such sets are exactly the closed, bounded, symmetric convex sets with
nonempty interior. Let us denote by EB(X) the set of all equivalent balls in
X.

Definition 3.1. We shall say that a normed linear space X :

(a) has property (I) if

(4) {Bn}n∈N ⊂ EB(X),
⋂
nBn = BX ⇒

⋂
nB

◦◦
n = BX∗∗ .

(b) has property (GI) if

(5) {Bα}α∈I ⊂ EB(X),
⋂
αBα = BX ⇒

⋂
αB

◦◦
α = BX∗∗ .

(“(I)” comes from “intersection”; “(GI)” comes from “general intersection”.)

Observation 3.2. It is easy to verify that X has property (I) if and only if
the implication (4) holds for all equi-bounded sequences {Bn}, if and only if
(4) holds for all decreasing sequences {Bn}. (It suffices to consider the sets
Cn :=

⋂
k≤nBk.)

And analogously, X has property (GI) if and only if (5) holds for all equi-
bounded families {Bα}. (Fix some α0 ∈ I, and consider Cα := Bα ∩Bα0 .)

Now we are ready to state some dual characterizations of properties (I) and
(GI).

Proposition 3.3. For a normed linear space X the following assertions are
equivalent.

(i) X has property (I).
(ii) For each sequence {Dn} ⊂ EB(X∗) such that each Dn is w∗-compact and

the set D := conv(
⋃
nDn) is 1-norming, one has D = BX∗.

(iii) For each sequence {Dn} of w∗-compact equivalent balls in X∗ such that
Dn ↗ D and D is 1-norming, one has D = BX∗.

(iv) For each sequence {Cn} of w∗-compact, symmetric, convex sets in X∗

such that Cn ↗ C and C is 1-norming, one has C = BX∗.
(v) For each symmetric 1-norming E ⊂ X∗ one has (I)-env(E) = BX∗ (see

Definition 2.7 and the text after it).

Proof. Several times without mentioning it, we shall use Lemma 2.2 and basic
properties of polars.
(i) ⇒ (ii). Let {Dn} be as in (ii). Put Bn := ◦Dn (n ∈ N), and observe that
B◦n = Dn and Bn ∈ EB(X). Moreover,⋂

nBn = ◦ [(
⋂
nBn)◦] = ◦ [convw

∗
(
⋃
nB

◦
n)
]

= ◦[D
w∗

] = ◦BX∗ = BX .
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By (i), we have
⋂
nB

◦◦
n = BX∗∗ . Consequently,

D = ◦(D◦) = ◦ (
⋂
nD

◦
n) = ◦ (

⋂
nB

◦◦
n ) = ◦BX∗∗ = BX∗ .

(ii)⇒ (i). Let {Bn} be as in Definition 3.1(a). Then the sets Dn := B◦n are w∗-
compact elements of EB(X∗), and convw

∗
(
⋃
nDn) = (

⋂
nBn)◦ = BX∗ . Since

D := conv(
⋃
nDn) is 1-norming, we have by (ii) that D = BX∗ . Consequently,⋂

nB
◦◦
n =

⋂
nD

◦
n = D◦ = (BX∗)

◦ = BX∗∗ .

The equivalence (i) ⇔ (iii) follows by the same proof, taking into account
Observation 3.2.
(iii)⇒ (iv). Let {Cn} be as in (iv). We have to show that C = BX∗ . Suppose
on the contrary that there exist ε > 0 and x∗ ∈ BX∗ such that d(x∗, C) > 2ε.
Let us consider the w∗-compact equivalent balls

Dn := (Cn + εBX∗) ∩BX∗ , n ∈ N.

The set D :=
⋃
nDn is clearly 1-norming, hence by (iii) x∗ ∈ D. Since

x∗ ∈ D ⊂ C + 2εBX∗ ,

we get a contradiction.
(iv)⇒ (v). Let E ⊂ X∗ be symmetric and 1-norming, and assume that E ⊂ C
where Cn ↗ C and the sets Cn ⊂ BX∗ (n ∈ N) are w∗-compact and convex.
Symmetry of E and monotony of {Cn} easily imply that Cn ∩ (−Cn) ↗ C.
Since C is clearly 1-norming, we have by (iv) that BX∗ = C ⊂ (I)-env(E) ⊂
BX∗ , and (v) follows.
Finally, the implication (v)⇒ (iii) follows directly from definitions. �

Proposition 3.4. For a normed linear space X the following assertions are
equivalent.

(i) X has property (GI).
(ii) For each 1-norming D ∈ EB(X∗) one has D = BX∗.

(iii) For each 1-norming symmetric set E ⊂ X∗ one has conv E = BX∗.
(iv) For each 1-norming set E ⊂ X∗ one has conv E = BX∗.
(v) For each F ∈ X∗∗ \BX∗∗ one has conv(BX∗∗ ∪ {±F}) ∩X 6= BX .

(vi) For each F ∈ X∗∗ \BX∗∗ one has conv(BX∗∗ ∪ {F}) ∩X 6= BX .

Proof. Like in the previous proof, Lemma 2.2 will be widely used. We are
going to prove the following implications:

(i)⇒ (ii)⇒ (v)⇒ (vi)⇒ (iv)⇒ (iii)⇒ (i).

(i) ⇒ (ii). Let D be as in (ii), and let r ∈ (0, 1) be such that rBX∗ ⊂ D.
For x∗ ∈ D, put

Ax∗ = ◦{±x∗} ∩ 1
r
BX = ◦[− x∗, x∗] ∩ 1

r
BX ,
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(where [−x∗, x∗] denotes the segment conv{±x∗}), and notice that BX ⊂ Ax∗ ,
and A◦x∗ = convw

∗
([−x∗, x∗] ∪ rBX∗) = conv([−x∗, x∗] ∪ rBX∗) by Fact 2.3.

Hence⋂
x∗∈D Ax∗ = ◦ [(⋂x∗∈D Ax∗)

◦] = ◦ [convw
∗
(
⋃
x∗∈D A

◦
x∗)
]

= ◦D = BX .

By (i),
⋂
x∗∈D A

◦◦
x∗ = BX∗∗ . Therefore

D = ◦(D◦) = ◦ [(⋃x∗∈D A
◦
x∗)
◦] = ◦ [⋂

x∗∈D A
◦◦
x∗

]
= BX∗ .

(ii)⇒ (v). Let F ∈ X∗∗ \BX∗∗ . Since ‖F‖ > 1, the set D := ◦{±F} ∩BX∗

is an equivalent ball in X∗ and is properly contained in BX∗ . By (ii), D is not
1-norming, and hence

BX 6= ◦D = D◦ ∩X = convw
∗
({±F}∪BX∗∗) ∩X = conv({±F}∪BX∗∗) ∩X.

(v) ⇒ (vi). Let F ∈ X∗∗ \ BX∗∗ and conv({±F} ∪ BX∗∗) ∩ X % BX . If
F ∈ X, the inequality in (vi) is obvious. So let F /∈ X. Fix some x ∈
conv({±F} ∪BX∗∗) ∩X with ‖x‖ > 1. Then we can write

x = (α− β)F + γG,

where α, β, γ ≥ 0, α+β+γ = 1, and G ∈ BX∗∗ . Necessarily α 6= β and γ > 0.
First, let α > β. Then α− β + γ > γ, and we can write

x = (α− β + γ)

[
α− β

α− β + γ
F +

γ

α− β + γ
G

]
.

Let us denote by H the term in square brackets, and notice that H belongs
to conv({F} ∪ BX∗∗) ∩X and satisfies ‖H‖ = 1

α−β+γ
‖x‖ ≥ ‖x‖ > 1; thus the

inequality in (vi) is satisfied. Finally, if α < β then we can proceed in the
same way by considering −x instead of x.

(vi) ⇒ (iv). Let E be as in (iv), D = convE, and assume that D 6= BX∗ .
By the Hahn-Banach separation theorem, there exists F ∈ X∗∗ such that

1 = supF (D) < supF (BX∗) = ‖F‖.
It follows that D ⊂ ◦{F} ∩BX∗ , and hence

BX = ◦D = D◦ ∩X ⊃ (◦{F} ∩BX∗)
◦ ∩X = conv({F} ∪BX∗∗) ∩X 6= BX ,

which is a contradiction.

(iv) ⇒ (iii) is obvious. It remains to show that (iii) ⇒ (i). Let {Bα}α ⊂
EB(X) be such that

⋂
αBα = BX . Then BX∗ = (

⋂
αBα)◦ = convw

∗
(
⋃
αB

◦
α).

This implies that the set C := conv(
⋃
αB

◦
α) is 1-norming. By (iii), we have

C = BX∗ , and hence
⋂
αB

◦◦
α = C◦ = BX∗∗ .

�

The following simple corollary shows that we can always restrict ourselves
to Banach spaces.
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Corollary 3.5. Let X be a normed linear space and X̂ its completion, and let
I denote one of properties (I) and (GI). Then X has I if and only if X̂ has
I.

Proof. This follows from the dual characterizations in Propositions 3.3 and 3.4
via the fact that X̂∗ can be identified with X∗, and the w∗-topologies σ(X∗, X)

and σ(X∗, X̂) coincide on the dual ball BX∗ . �

It is obvious that property (GI) implies property (I). The next theorem
shows that the two properties are equivalent for some classes of Banach spaces.
However, this equivalence is false for general Banach spaces, as we shall see in
Section 5.

Theorem 3.6. Let X be a Banach space with property (I). Suppose that at
least one of the following conditions is satisfied:

(i) (BX∗ , w
∗) is hereditarily separable (e.g., X is separable);

(ii) X is w∗-sequentially dense in X∗∗.

Then X has property (GI). Moreover, if (i) is satisfied then X∗ is separable.

Proof. Let us prove that if X has property (I) and satisfies (i) then X has
property (GI) and X∗ is separable. Let us consider a symmetric 1-norming set
D ⊂ BX∗ , since (BX∗ , w

∗) is hereditarily separable, there exists a symmetric
countable w∗-dense subset B ⊂ D. Clearly B is 1-norming, and by Proposi-
tion 3.3(v) we have (I)-env(B) = BX∗ . Since B is countable, by Lemma 2.9
we have (I)-env(B) = conv (B) and hence

conv (D) ⊂ BX∗ = (I)-env(B) = conv (B) ⊂ conv (D).

In particular, we have conv (B) = conv (D) = BX∗ . By the arbitrariness of
D and by Proposition 3.4(iii), X has property (GI). Moreover, since a set D
as above always exists and B is countable, X∗ is separable.

Now let X be w∗-sequentially dense in its bidual, and assume that X fails
(GI). There exists a 1-norming D ∈ EB(X∗) which is strictly contained in
BX∗ . By the Hahn-Banach separation theorem, there exists F ∈ X∗∗ such that
1 = supF (D) < supF (BX∗) = ‖F‖. The set E := {x∗ ∈ BX∗ : |F (x∗)| ≤ 1}
is 1-norming since it contains D, however E 6= BX∗ . By our assumption, there

exists a sequence {xk} ⊂ X \ BX∗∗ = X \ BX such that xk
w∗→ F in X∗∗. The

w∗-compact sets

Dn :=
⋂
k≥n

{x∗ ∈ BX∗ : |x∗xk| ≤ 1} , n ∈ N,

form an increasing sequence in EB(X∗). Since the set E0 := {x∗ ∈ BX∗ :
|F (x∗)| < 1} is clearly norm dense in E, and E0 ⊂

⋃
nDn ⊂ E, the set

C :=
⋃
nDn is 1-norming and satisfies C = E 6= BX∗ . Thus X fails (I). �
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4. Characterizations of reflexivity via properties (I), (GI)

Theorem 4.1. For a Banach space X, the following assertions are equivalent:

(i) X is reflexive;
(ii) X is a dual space and has property (GI);

(iii) every equivalent norm on X has property (GI);
(iv) every equivalent norm on X has property (I).

Proof. The implications (i)⇒
[
(ii), (iii), (iv)

]
and (iii)⇒ (iv) are obvious.

(ii) ⇒ (i). Assume that X = Y ∗. Then BY is a 1-norming subset of
Y ∗∗ = X∗. Proposition 3.4 implies that BY = BY ∗∗ , and hence Y is reflexive.

(iv) ⇒ (i). Assume that X is not reflexive, and fix some 0 < δ < 1
2
. By

a well-known James’ result (see [17, Theorem 1.13.4]), there exist sequences
{y∗n} ⊂ SX∗ and {yk} ⊂ SX such that

(6) y∗nyk

{
= 0 for n > k,

≥ 1− δ for n ≤ k.

Let y∗ ∈ BX∗ be a w∗-cluster point of {y∗n}n. Then we have

(7) y∗yk = 0 , k ∈ N.
Consider the w∗-closed (convex) sets

Dn :=
{
x∗ ∈ 4BX∗ : |x∗yj| ≤ δ for all j ≥ n

}
, n ∈ N.

These sets form an equi-bounded increasing sequence in EB(X∗). If we denote

D :=
⋃
nDn, then D

w∗

is the dual unit ball of an equivalent norm ||| · ||| on X,
for which D is 1-norming. Let F be a w∗-cluster point of {yk}k in X∗∗. Notice
that supF (Dn) ≤ δ for each n, and hence supF (D) ≤ δ. We have for each
n ≥ 1 that

1− δ ≤ F (y∗n) ≤ 1.

Denote z∗n := y∗1 − y∗n (n ≥ 2). Then (6) implies that |z∗nyk| ≤ δ whenever
2 ≤ n ≤ k, and hence {z∗n}∞2 ⊂ D. Moreover, u∗ := y∗1 − y∗ is a w∗-cluster

point of {z∗n}, and so it belongs to D
w∗

= B(X,|||·|||)∗ . On the other hand, since
F (y∗) = 0 by (7), we obtain F (u∗) = F (y∗1) ≥ 1 − δ > δ ≥ supF (D), and
hence u∗ /∈ D. By Proposition 3.3, (X, ||| · |||) fails to have (I). �

Theorem 4.2. For a Banach space X, the following assertions are equivalent:

(i) X is separable and reflexive;
(ii) X is the dual of a separable Banach space, and satisfies (I).

Proof. Only the implication (ii) ⇒ (i) requires a proof. Let X = Y ∗ with Y
separable and assume that X has property (I). By Proposition 3.3(v), we have
(I)-env(BY ) = BY ∗∗ . Since Y is separable, (I)-env(BY ) = BY by Lemma 2.9.
Then Y is moreover reflexive, and hence (i) is satisfied. �
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It is not clear to us whether a nonreflexive dual space can have property (I)
(see Problem 8.3).

5. C(K) spaces, and some other classical spaces

Given a compact (Hausdorff) topological space K, by C(K) we mean the
Banach space of all real-valued continuous functions on K, equipped with the
supremum norm ‖ · ‖∞. As usual, every point k ∈ K is then identifiable with
the corresponding Dirac measure (or the evaluation functional) δk ∈ C(K)∗.
Using this identification, the topology of K coincides with the w∗-topology of
C(K)∗ (restricted to K ⊂ C(K)∗). We shall often consider K as a subset of
C(K)∗ without mentioning this.

Let us recall that a compact space K is scattered if every its nonempty
subset has an isolated point. The space K is zero-dimensional if the family
of its clopen sets is a base for the topology of K. It is well-known (see [7,
Theorem 6.2.10]) that this is equivalent to say that K is totally disconnected,
that is, each of its nonempty connected subsets is a singleton. Hence every
compact scattered space is zero-dimensional.

A pseudo-base of a topological space T is a family of nonempty open sets
such that every nonempty open subset of T contains a member of the family.
Every base is clearly a pseudo-base, but not vice-versa in general.

If K is finite, then C(K) is finite-dimensional (hence reflexive), and therefore
C(K) clearly has properties (GI) and (I). The next proposition shows that no
other C(K) spaces satisfy property (GI).

Proposition 5.1. Let K be an infinite compact space. Then C(K) fails prop-
erty (GI). In particular, if K is metrizable then C(K) fails to have (I).

Proof. Let p be an accumulation point of K, and consider the 1-norming set
E := {±k : k ∈ K, k 6= p} in C(K)∗. We claim that p /∈ convE. To show
this, take an arbitrary x∗ ∈ convE. Then we can write x∗ =

∑m
i=1(αi − βi)ki,

where ki ∈ K \ {p}, αi, βi ≥ 0, and
∑m

i=1(αi +βi) = 1. There exists x ∈ BC(K)

such that x(p) = 1, and x(ki) = 0 for each i = 1, . . . ,m. Then ‖p − x∗‖ ≥
|x(p − x∗)| = 1. This shows that d(p, convE) ≥ 1. Now the first statement
holds by Proposition 3.4. The second statement follows from Theorem 3.6
since C(K) is separable. �

Now, let us study property (I) for C(K) spaces. We shall see that the
situation is quite different from that of (GI), and this will provide examples of
spaces having (I) but not (GI).

Given a compact space K, let K ′ denote the set of its accumulation points,
and let Gδ(K) be the set of its Gδ-points (i.e., points k ∈ K such that the
singleton {k} is a countable intersection of open sets).
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We shall need the following simple lemma.

Lemma 5.2. Let V be a nonempty clopen subset of a compact space K, and
ϕ := 1V the characteristic function of V . Then ϕ ∈ SC(K), and the face

F := {x∗ ∈ BC(K)∗ : ϕx∗ = 1}
of BC(K)∗ is strongly exposed by ϕ in the following sense:

∀ε > 0, ∃δ > 0, ∀x∗ ∈ BC(K)∗ ,
(
ϕx∗ > 1− δ ⇒ d(x∗, F ) < ε

)
.

Moreover, extF = V .

Proof. It is obvious that ϕ is continuous on K, and ‖ϕ‖∞ = 1. Since it is
well known that extBC(K)∗ = K ∪ (−K), and since F is an extremal set for
BC(K)∗ , we have that extF = (extBC(K)∗) ∩ F = V . Let us show that F is a
strongly exposed face of BC(K)∗ . Let 0 < δ < 1 and x∗ ∈ BC(K)∗ be such that
ϕx∗ > 1− δ. Denoting W := K \ V , we have (by the Krein-Milman theorem)

x∗ ∈ convw
∗
(±K) = conv

[
F ∪ convw

∗
(W ∪ (−K))

]
,

and hence we can write x∗ = (1 − λ)u∗ + λz∗ where 0 ≤ λ ≤ 1, u∗ ∈ F , and
z∗ ∈ convw

∗
(W ∪ (−K)). Since ϕz∗ ≤ 0, we obtain that 1− δ < ϕx∗ ≤ 1− λ,

and hence λ ≤ δ. Consequently, d(x∗, F ) ≤ ‖x∗ − u∗‖ = λ‖z∗ − u∗‖ ≤ 2δ. We
are done. �

Theorem 5.3. Let K be a compact space.

(a) If C(K) has property (I), then every nonempty Gδ-subset of K has non-
empty interior. In particular, K ′ ∩Gδ(K) = ∅.

(b) If every nonempty Gδ-subset of K contains a nonempty clopen set, then
C(K) has property (I).

Proof. (a) Assume that K contains a nonempty Gδ-set with empty interior.
Then its complement L is a proper, dense Fσ-subset of K. Let us write L =⋃
n∈NKn $ K, where {Kn} is an increasing sequence of closed sets in K. Then

the sets
Cn := convw

∗
[Kn ∪ (−Kn)] , n ∈ N,

are w∗-compact, form an increasing sequence, and the set C :=
⋃
nCn is

1-norming. However, for any p ∈ K \L, the same type of proof as in Proposi-
tion 5.1 shows that p ∈ BC(K)∗ \ C. Thus C(K) fails to have (I) by Proposi-
tion 3.3. The last statement is now obvious.

(b) Let {Dn} ⊂ EB(C(K)∗) be an increasing sequence of w∗-compact sets
such that D :=

⋃
nDn is 1-norming. By Proposition 3.3, it suffices to show

that D = BC(K)∗ .

First, assume there exists k0 ∈ K \ D. Fix ε > 0 so that d(k0, D) > 2ε.
Then for each n there exists xn ∈ SC(K) such that

(8) xn(k0) > maxxn(Dn) + 2ε.
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Since the sets Un := {k ∈ K \Dn : |xn(k) − xn(k0)| < ε} are open neighbor-
hoods of k0 in K, the Gδ-set U :=

⋂
n∈N Un contains a nonempty clopen set V .

By Lemma 5.2, the characteristic function ϕ := 1V ∈ SC(K) strongly exposes
the face F := ϕ−1(1) ∩ BC(K)∗ of BC(K)∗ . Consider the corresponding δ > 0
for “our” ε by that lemma. Since D is w∗-dense in BC(K)∗ , there exist m ∈ N
and d∗ ∈ Dm with ϕ(d∗) > 1 − δ. Fix u∗ ∈ F with ‖d∗ − u∗‖ < ε. Since the
function y∗ 7→ |xmy∗ − xm(k0)| is convex and w∗-continuous on C(K)∗, and
less or equal to ε on V = extF , we must have |xmu∗ − xm(k0)| ≤ ε by the
Krein-Milman theorem. But then we obtain

xm(k0) ≤ xmu
∗ + ε < xmd

∗ + 2ε ≤ maxxm(Dm) + 2ε,

a contradiction with (8).
So we must have K ⊂ D. Let α > 0. The boundary B = K ∪ (−K) for

BC(K)∗ is contained in D + αBC(K)∗ =
⋃∞

1 (Dn + αBC(K)∗). By the Boundary
Theorem (Theorem 2.8 and the text after it),

BC(K)∗ ⊂ conv
[⋃

n(Dn + αBC(K)∗)
]
⊂ D + 2αBC(K)∗ .

Since α > 0 was arbitrary, we conclude that D = BC(K)∗ . We are done. �

Corollary 5.4. For a compact space K, let us consider the following three
conditions:

(i) C(K) has property (I);
(ii) every nonempty Gδ-set in K has nonempty interior;

(iii) K ′ ∩Gδ(K) = ∅.
Now the following assertions hold.

(a) If nonempty clopen sets form a pseudo-base for K (e.g., if K is zero-di-
mensional), then (i) and (ii) are equivalent and imply (iii).

(b) If either K is scattered or K ′ is first countable in itself (e.g., metrizable)
and has empty interior in K, then the three properties (i), (ii), (iii) are
equivalent.

Proof. (a) This follows immediately from Theorem 5.3.
(b) In both cases, the isolated singletons form a pseudo-base for K, and

hence the equivalence (i)⇔ (ii) follows from (a). Since (ii)⇒ (iii) is obvious,
it remains to show the reverse implication. So assume that K satisfies (iii).
Let ∅ 6= V =

⋂
Vn where each Vn is open in K.

If K is scattered, V has an isolated point v. There exists an open neigh-
boorhood U of v such that {v} = V ∩ U =

⋂
n(Vn ∩ U). Since v is a Gδ-point

of K, it is an isolated point of K. But then v ∈ intV .
Now let K ′ be first countable in itself with empty interior in K. If V has

an isolated point, we proceed as in the first case. If not, then V = V ′ ⊂ K ′.
Fix some v ∈ V . Since K ′ is first countable, v ∈ Gδ(V ) and hence there exist
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open subsets Gn ⊂ K (n ∈ N) such that {v} = (
⋂
nGn) ∩ V =

⋂
n(Gn ∩ Vn).

It follows that v ∈ Gδ(K) but this contradicts (iii). �

Now, let us have a look at some other nonreflexive classical spaces. We shall
need the following lemmas.

Lemma 5.5. Let X, Y be Banach spaces. If X fails to have (I) then also the
direct sums X ⊕∞ Y and X ⊕1 Y fail to have (I).

Proof. First, let Z = X ⊕∞ Y . Let {Bn} ⊂ EB(X) be a decreasing sequence
such that

⋂
nBn = BX but

⋂
nB

◦◦
n 6= BX∗∗ . Since Z∗ = X∗ ⊕1 Y

∗, Z∗∗ =
X∗∗ ⊕∞ Y ∗∗, and the w∗-topology on Z∗∗ corresponds to the product of the
w∗-topologies of X∗∗ and Y ∗∗, the sets En := Bn × BY (n ∈ N) belong to
EB(Z) and satisfy

⋂
nEn = BX×BY = BZ while

⋂
nE

◦◦
n = (

⋂
nB

◦◦
n )×BY ∗∗ 6=

BX∗∗ ×BY ∗∗ = BZ∗∗ . Thus X ⊕∞ Y fails to have (I).
Now, let Z = X ⊕1 Y . One can proceed in a similar way by using the dual

characterization from Proposition 3.3, working in Z∗ = X∗⊕∞Y ∗. The details
are left to the reader as an easy exercise. �

Remark 5.6. A similar statement holds true also for X ⊕p Y (however, we
shall not use this fact):

Let X, Y be Banach spaces. If X fails to have (I) then also the direct sum
Z = X ⊕p Y (1 < p <∞) fails to have (I).

Let us sketch a proof. Suppose that X fails to have (I). By Proposition 3.3(iv),
there exists a sequence {Cn} of w∗-compact, symmetric, convex sets in X∗ such
that Cn ↗ C with C 1-norming, and C 6= BX∗ . For n ∈ N, let us consider the
set En ⊂ Z∗ = X∗ ⊕q Y ∗ (p, q conjugate indices) given by

En = {(x∗, y∗) ∈ Cn ×BY ∗ : ‖x∗‖q + ‖y∗‖q ≤ 1}.
Then, it is not difficult to see that {En} is a sequence of w∗-compact, sym-
metric, convex sets in Z∗ such that En ↗ E with E 1-norming, and

E = {(x∗, y∗) ∈ C ×BY ∗ : ‖x∗‖q + ‖y∗‖q ≤ 1} 6= BZ∗ .

Hence, by Proposition 3.3(iv), Z fails to have (I).

Lemma 5.7. `∗∞ = `1 ⊕1 c
⊥
0 .

Proof. The proof follows easily by [12, III Proposition 1.2 and III Example 1.4].
However, for the sake of completeness, we include a direct proof for this fact.

Let us consider
F = F |c0 + F − F |c0 ∈ `∗∞,

and define
H := F |c0 ∈ `1, G := F − F |c0 ∈ c⊥0 .

Let us prove that ‖F‖ = ‖H‖+ ‖G‖. Let ε > 0 and let x ∈ B`∞ be such that
Gx ≥ ‖G‖−ε. Since H ∈ `1, there exists n ∈ N such that

∑∞
k=n+1 |H(k)| ≤ ε.
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Let us define y ∈ B`∞ as follows: y(k) = x(k), if k > n; y(k) = sign[H(k)], if
k ≤ n. Since G ∈ c⊥0 , Gx = Gy and hence

‖F‖ ≥ Hy+Gy ≥
∑n

k=1 |H(k)|+
∑∞

k=n+1H(k)y(k)+‖G‖−ε ≥ ‖H‖+‖G‖−3ε.

By the arbitrariness of ε > 0, we have ‖F‖ ≥ ‖H‖+‖G‖. The other inequality
is obvious. �

If Γ is an infinite set (always considered in the discrete topology), we denote
by Γ∞ the Alexandroff one-point compactification of Γ, and by βΓ the Stone-
Čech compactification of Γ.

Proposition 5.8. Let Γ be an infinite set.

(a) `∞(Γ) fails to have (I).
(b) c0(Γ) has property (GI), and hence also (I).
(c) c(Γ) := C(Γ∞) has property (I) if and only if Γ is uncountable.
(d) The quotient space `∞(Γ)/c0(Γ) has property (I).
(e) `1(Γ) fails to have (I).
(f) `∞(Γ)∗ fails to have (I).

Proof.
(a) First, consider Γ = N. It is is well-known that `∞ := `∞(N) is isometric

to C(βN), and βN is zero-dimensional. Moreover, the remainder βN \ N =⋂
n∈N(βN \ {n}) is a nonempty Gδ-set with empty interior. By Theorem 5.3,

`∞(N) fails to have (I). Now, let Γ be uncountable. Then `∞(Γ) is clearly
isometric to `∞ ⊕∞ `∞(Γ). The previous case and Lemma 5.5 imply that
`∞(Γ) fails to have (I).

(b) Let D ⊂ c0(Γ)∗ = `1(Γ) be a 1-norming equivalent ball. It is an
easy exercise to show that then D contains all w∗-strongly exposed points
of B`1(Γ), and hence all basic vectors e∗γ (γ ∈ Γ). It follows that D contains
also conv{±e∗γ : γ ∈ Γ} = B`1(Γ). Apply Proposition 3.4.

(c) For Γ uncountable, apply Theorem 5.3. For Γ countable, observe that
c(Γ) is separable, and apply Proposition 5.1.

(d) It is well-known that our quotient space is isometric to C(βΓ \ Γ). The
rest follows from Corollary 5.4(a) and from the fact that βΓ \ Γ is a zero-
dimensional compact space in which every nonempty Gδ-set has nonempty
interior (for a proof of this last property for Γ = N see [21, Corollary 27]; the
same proof works for Γ uncountable, too).

(e) If Γ = N, the space `1 := `1(N) is separable but its dual `∞ is not.
By Theorem 3.6, `1 fails to have (I). For Γ uncountable, the space `1(Γ) is
isometric to the direct sum `1 ⊕1 `1(Γ). Apply Lemma 5.5.

(f) By (e), `1 does not have property (I). By Lemma 5.7 and Lemma 5.5,
`∗∞ does not have property (I). �
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6. Property (GI) and geometry of the dual unit ball

Let us recall that the ball topology of a Banach space X is the coarsest (not
necessarily Hausdorff) topology bX so that every closed ball is bX-closed. This
topology was introduced by H.H. Corson and J. Lindenstrauss [6] and studied
by several authors (see, e.g., [10, 5, 4]). We say that X has the ball generated
property, (BGP) for short, if every closed bounded convex set is bX-closed.

It is known (see [10, Theorem 8.3]) that if X has the (BGP) then X is nicely
smooth (has property (N), for short), that is, its dual X∗ has no proper closed
subspace Y whose unit ball BY ⊂ BX∗ would be 1-norming for X.

It is also well known [11] that X has the (BGP) if and only if the restriction
of every element of X∗ to the unit ball BX is bX-continuous. The following
sequential version of the (BGP) was introduced and studied in [11].

Definition 6.1 ([11]). A Banach space X has property (P) if the restriction
of every bounded linear functional to BX is bX-sequentially continuous.

It is clear that if X has the (BGP) then X has property (P); however, the
converse implication is false in general Banach spaces (see [11]).

Given a nonempty set K ⊂ X∗, a w∗-slice of K is a set of the form

S(K, x, α) = {x∗ ∈ K : xx∗ > supx(K)− α},

where α > 0 and x ∈ X \ {0} is bounded above on K. Let us recall the
following definitions.

Definition 6.2. Let K be a nonempty subset of X∗. A functional x∗ ∈ K is
said to be:

(i) a w∗-strongly exposed point of K if there exists a nonzero x ∈ X such
that xx∗ = supx(K) and for each norm neighbourhood V of x∗ there
exists α > 0 such that S(K, x, α) ⊂ V . We denote by w∗-str exp (K)
the set of all w∗-strongly exposed points of K.

(ii) a w∗-denting point (a w∗-w-denting point, respectively) of K if for each
neighbourhood V of x∗ in the norm topology (in the weak topology,
respectively) there exists a w∗-slice S of K such that x∗ ∈ S ⊂ V . We
denote by w∗-dent (K) the set of all w∗-denting points of K, and by
w∗-w-dent (K) the set of all w∗-w-denting points of K.

(iii) a w∗-point of continuity (a w∗-w-point of continuity, respectively) of
K if for each neighbourhood V of x∗ in the norm topology (in the
weak topology, respectively) there exists a neighbourhood W of x∗ in
the w∗-topology such that W ∩K ⊂ V . We denote by w∗-pc (K) the
set of all w∗-point of continuity of K, and by w∗-w-pc (K) the set of
all w∗-w-points of continuity of K.
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The next theorem collects some results, concerning the (BGP) and related
properties, contained in [5, Theorem 7], [4, Corollary 4] and [11, Proposi-
tion 2.3].

Theorem 6.3. Let X be a Banach space. Let us consider the following con-
ditions.

(a) span
(
w∗-str exp (BX∗)

)
= X∗.

(b) span
(
w∗-dent (BX∗)

)
= X∗.

(c) span
(
w∗-pc (BX∗)

)
= X∗.

(d) X has the (BGP).
(e) X has property (N).
(f) X has property (P).

Then the following implications hold.

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e)
⇓

(f)

Moreover:

• if X is Asplund then we have (e)⇒ (a);
• let X be separable; then all the above conditions are equivalent, and if

any of them is satisfied then X is Asplund.

(The fact that if X is separable with (e) or (f) then also X∗ is separable can be
shown as follows. By [11, Proposition 2.3 (2)], X has (N). Since (BX∗ , w

∗) is
compact and metrizable, it contains a dense countable set S, which is clearly
1-norming. By property (N), spanS = X∗ which is separable.)

In [4], D. Chen and B.-L. Lin proved the following characterization of the
ball generated property.

Proposition 6.4 ([4, Theorem 2]). Let X be a Banach space. Then X has
the (BGP) if and only if for each x∗0 ∈ X∗ and each open neighbourhood W of
x∗0 in the norm topology of X∗ there exist finitely many w∗-slices S1, . . . , Sn of
BX∗ such that if x∗i ∈ Si (i = 1, . . . , n) then

span({x∗i }ni=1) ∩W 6= ∅.

In view of the above proposition, we introduce the following definition.

Definition 6.5. Let X be a Banach space, we say that BX has the convex ball
generated property, (CBGP) for short, (the weak convex ball generated property,
(w-CBGP), respectively) if for each x∗0 ∈ SX∗ and each open neighbourhood
W of x∗0 in the norm topology (in the weak topology, respectively) of BX∗

there exist finitely many w∗-slices S1, . . . , Sn of BX∗ such that if x∗i ∈ Si
(i = 1, . . . , n) then

conv ({x∗i }ni=1) ∩W 6= ∅.
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The next theorem shows the relations between properties (GI), (I) and other
properties related to the (BGP). In its proof, we use the techniques introduced
in [5, 4].

Theorem 6.6. Let X be a Banach space. Let us consider the following con-
ditions.

(i) conv
(
w∗-str exp (BX∗)

)
= BX∗.

(ii) conv
(
w∗-dent (BX∗)

)
= BX∗.

(ii′) conv
(
w∗-w-dent (BX∗)

)
= BX∗.

(iii) conv
(
w∗-pc (BX∗)

)
= BX∗.

(iii′) conv
(
w∗-w-pc (BX∗)

)
= BX∗.

(iv) X has property (CBGP).
(iv′) X has property (w-CBGP).

(v) X has property (GI).
(vi) X has property (I).

Let the conditions (a)-(f) be as in Theorem 6.3. Then the following implica-
tions hold.

(f)
⇑

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e)
⇑ ⇑ ⇑ ⇑
(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇑

⇓ ⇓ ⇓
(ii′) ⇒ (iii′) ⇒ (iv′) ⇒ (v) ⇒ (vi)

Moreover, if X is Asplund then we have (e)⇒ (a) and (v)⇒ (i), and if X is
separable then we have also (f)⇒ (a) and (vi)⇒ (i).

Proof. The following implications are either trivial or contained in Theorem 6.3,
except for the implication (v)⇒ (e) which follows easily from Proposition 3.4.

(f)
⇑

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e)
⇑ ⇑ ⇑ ⇑
(i) ⇒ (ii) ⇒ (iii) (iv) ⇑

⇓ ⇓ ⇓
(ii′) ⇒ (iii′) (iv′) (v) ⇒ (vi)

Let us prove that (iii′) ⇒ (iv′), the proof of (iii) ⇒ (iv) is similar. Let
x∗0 ∈ SX∗ and let W be an open neighbourhood of x∗0 in the w-topology of BX∗ .
Since conv

(
w∗-w-pc (BX∗)

)
= BX∗ , there exist x∗1, . . . , x

∗
n ∈ w∗-w-pc (BX∗)

and a1, . . . , an ∈ (0, 1) such that
∑n

i=1 ai = 1 and
∑n

i=1 aix
∗
i ∈ W . Let Wi
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(i = 1, . . . , n) be open neighbourhoods of x∗i in the w-topology of BX∗ such
that

∑n
i=1 aiWi ⊂ W . Since x∗1, . . . , x

∗
n ∈ w∗-w-pc (BX∗), we can and do as-

sume without any loss of generality that Wi (i = 1, . . . , n) are open neighbour-
hoods of x∗i in the w∗-topology of BX∗ . Now, fix i ∈ {1, . . . , n} and observe
that, by the Krein-Milman theorem, there exist x∗i,1, . . . , x

∗
i,ni
∈ extBX∗ and

ai,1, . . . , ai,ni
∈ (0, 1) such that

∑ni

j=1 ai,j = 1 and
∑ni

j=1 ai,jx
∗
i,j ∈ Wi. By the

Choquet lemma (see [3, Lemma 3.69]), there exist w∗-slices Si,1, . . . , Si,ni
of

BX∗ such that x∗i,j ∈ Si,j (j = 1, . . . , ni) and such that
∑ni

j=1 ai,jSi,j ⊂ Wi.
Then

n∑
i=1

ni∑
j=1

aiai,jSi,j ⊂ W

and the proof is concluded.
Let us prove that (iv′) ⇒ (v). Let D ⊂ BX∗ be a 1-norming closed convex

set and suppose on the contrary that there exists x∗0 ∈ SX∗ \D, and observe
that W = BX∗ \D is an open neighbourhood of x∗0 in the w-topology of BX∗ .
Then there exist S1, . . . , Sn w

∗-slices of BX∗ such that if x∗i ∈ Si (i = 1, . . . , n)
then

conv ({x∗i }ni=1) ∩W 6= ∅.
Since D is 1-norming, for each i = 1, . . . , n, there exists y∗i ∈ Si ∩ D. Then
conv ({y∗i }ni=1) ⊂ D and conv ({y∗i }ni=1)∩W 6= ∅, a contradiction and the proof
is concluded.

Now, let us assume that X is Asplund and prove that (v) ⇒ (i). Since X
is Asplund, the Frechét smooth points of SX are dense in SX , then it is easy
to see that the set w∗-str exp (BX∗) is 1-norming and hence that the set

D := conv
(
w∗-str exp (BX∗)

)
is 1-norming. By (v), D = BX∗ and the proof is concluded. The implication
(e)⇒ (a) is contained in Theorem 6.3.

Let X be separable. If (vi) holds then Theorem 3.6 implies that X is
Asplund and satisfies (v). By the already proved part on Asplund spaces,
X satisfies (i). Finally, the implication (f)⇒ (a) for X separable is contained
in Theorem 6.3. �

Let us recall that the duality mapping D of a Banach space X is the mul-
tivalued mapping D : SX → 2SX∗ , defined by D(x) = {x∗ ∈ SX∗ : x∗x = 1}
(6= ∅). The space X is said to have the Mazur intersection property if every
nonempty, closed, bounded, convex subset of X is the intersection of all closed
balls in which it is contained.

Corollary 6.7. Let X be a Banach space. Suppose that at least one of the
following conditions is satisfied

(i) X is Fréchet smooth.
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(ii) X has the Mazur intersection property.
(iii) X is a polyhedral Banach space.
(iv) The duality mapping D of X is norm-to-weak upper semicontinuous.

Then X has property (GI) (and hence property (I)).

Proof. Let us observe that, in each case, we have

conv
(
w∗-dent (BX∗)

)
= BX∗ .

This is easy to prove in the case (i), and for the cases (ii), (iii), (iv) it follows by
[9, Theorem 2.1], [20, Theorem 2] and the proof of [5, Corollary 8], respectively.
Now, the rest follows by Theorem 6.6. �

The following proposition shows that properties (BGP) and (GI) (as well as
properties (N) and (I)) do not coincide in general. Given a point k in a com-
pact topological space K, recall that δk ∈ C(K)∗ denotes the corresponding
evaluation functional.

Proposition 6.8. There exists a separable Banach space X, satisfying prop-
erty (N) (equivalently, by separability, the (BGP)), such that X does not have
property (I) (equivalently, by separability, property (GI)).

Proof. Let us consider the space X = c = C([1, ω]) with the supremum norm
(ω is the first infinite ordinal). Let F = {±δn+δω; n ∈ N}∪{2δω}. It is easy to
see that the formula |||x||| := sup |x|(F ) = ‖x‖∞ + |x(ω)| defines an equivalent
norm on X, whose dual unit ball is the set C := convw

∗
(±F ) = conv(±F )

(where the last equality holds by Theorem 2.8 since ±F is a countable bound-
ary for C).

We claim that w∗-str expC = {±δn ± δω : n ∈ N} =: W . Indeed, on one

hand, F
w∗

= F ∪ {0}, thus, by Milman’s “converse” of the Krein-Milman
theorem, all extreme points of C belong to ±F ∪{0} and hence, since ±2δω 6∈
w∗-str exp (C), we have w∗-str exp (C) ⊂ W . On the other hand, it is easy to
see that ±δn ± δω ∈ W is strongly exposed by ±1{n} ± 1

2
1(n,ω] ∈ X.

Hence, span
(
w∗-str exp (C)

)
= X∗ and

2δω ∈ C \ conv
(
w∗-str exp (C)

)
6= B(X,|||·|||)∗ .

By Theorem 6.3, implication (a)⇒ (e), the space (X, ||| · |||) has property (N).
Since X is Asplund, by Theorem 6.6, implication (v)⇒ (i), (X, ||| · |||) does not
satisfy property (GI). �

By Proposition 5.8, if Γ is an uncountable set then the space X = c(Γ) has
property (I). Then, by Proposition 5.8, X contains a 1-complemented sub-
space, namely c, that does not have property (I). Hence, property (I) passes
neither to subspaces nor to quotients. The next proposition shows that prop-
erty (I) is not hereditary even if we restrict ourselves to the class of separable
Banach spaces.
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Proposition 6.9. There exists a separable Banach space X satisfying property
(I) (equivalently, (GI)), and Y a 1-complemented subspace of X such that Y
does not have property (I) (equivalently, (GI)).

Proof. Consider the space X = C([1, ω]) with the supremum norm and denote
en = 1{n} ∈ C([1, ω]), n ∈ N. Then X = Re1 ⊕ C([2, ω]). Let F = {δn : n ≥
2} ∪ {δω ± δe1}. It is easy to see that C = conv (±F ) is a w∗-closed bounded
absolutely convex subset of X∗ with non empty interior, and hence there exists
an equivalent norm ||| · ||| on X, whose dual unit ball is C.

The points of F are w∗-strongly exposed for C. Indeed, it is easy to see
that δn is strongly exposed by en (n ≥ 2), and δω ± δe1 is strongly exposed by
1
2
(1[2,ω] ± e1). Now, let D ⊂ C be a 1-norming equivalent ball. Since D must

contain all w∗-strongly exposed points of C (as already observed in the proof
of Proposition 5.8(b)), we have ±F ⊂ D ⊂ C and hence D = C = B(X,|||·|||)∗ .
So (X, ||| · |||) has property (GI) by Proposition 3.4. However, Y = C([2, ω]) is
a 1-complemented subspace of X and, by Proposition 5.8(c), it does not have
property (GI) (observe that Y is isometric with c). �

It seems natural to ask whether every Asplund space admits an equivalent
norm with property (I). The next proposition and the subsequent comment
show that the situation for property (I) is analogous to that concerning the
Mazur intersection property, and the results obtained depend on set-theoretic
axioms (cf. [13, 1]).

The following proposition is an analogue of [11, Proposition 3.6]; we include
a proof for the sake of completeness.

Proposition 6.10. Assuming the continuum hypothesis, there exists a nonsep-
arable Asplund space, namely the Kunen space C(K), admitting no equivalent
norm with property (I).

Proof. If K is the Kunen compact then C(K) is a nonseparable Asplund space
since K is scattered [19, p. 1128]. Moreover, (C(K)∗, w∗) is known to be
hereditarily seprable (see e.g. [3, p. 638, Remark (ii)]). Now, Theorem 3.6
easily implies that C(K) fails (I), and this is indeed true for any equivalent
renorming of C(K). �

On the other hand, M. Bačák and P. Hájek [1] proved that, assuming the
Martin’s Maximum axiom (MM), every Asplund space X of density ω1 ad-
mits an equivalent norm with the Mazur intersection property (and hence, by
Corollary 6.7, it admits an equivalent norm with property (GI)).

7. Property (U), property (I∗), and Grothendieck spaces

Definition 7.1. Let X be a normed linear space.
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(i) We say that X has property (U) if for each sequence {Bn} of sets in
EB(X) such that Bn↗BX one has that B◦◦n ↗BX∗∗ .

(ii) We say that X∗ has property (I∗) if for each sequence {Dn} of w∗-
compact sets in EB(X∗) such that Dn↘BX∗ one has that D◦◦n ↘BX∗∗∗ .

Proposition 7.2. Let X be a normed linear space. Then the following asser-
tions are equivalent.

(i) X has property (U).
(ii) For each increasing sequence {Bn} in EB(X) such that

⋃
n∈NBn ⊃

UX , one has
⋃
n∈NB

◦◦
n ⊃ UX∗∗.

(iii) For each increasing sequence {Cn} of convex subsets of X such that⋃
n∈NCn ⊃ UX and eventually int Cn 6= ∅, one has

⋃
n∈NC

◦◦
n ⊃ UX∗∗.

(iv) X∗ has property (I∗).
(v) For each bounded sequence {x∗n} in X∗ whose all σ(X∗, X)-cluster

points are contained in BX∗, we have that all σ(X∗∗∗, X∗∗)-cluster
points (in X∗∗∗) of {x∗n} are contained in BX∗∗∗.

Moreover, if X is a Banach space then each of the above conditions is equiva-
lent to

(iii′) For each increasing sequence {Cn} of convex subsets of X such that⋃
n∈NCn ⊃ UX , one has

⋃
n∈NC

◦◦
n ⊃ UX∗∗.

Proof. (i)⇒ (ii). Let {Bn} be as in (ii). Then the sets B̃n = Bn∩BX have the
same properties and, moreover, they are all contained in BX . By Lemma 2.6,

we have B̃n↗BX , and hence also (B̃n)◦◦↗BX∗∗ by (i). Another application

of Lemma 2.6 gives that UX∗∗ ⊂
⋃
n∈N(B̃n)◦◦ ⊂

⋃
n∈NB

◦◦
n .

(ii) ⇒ (iii). Let {Cn} be as in (iii). We claim that 0 ∈ intCp for some
p ∈ N. Indeed, take some Cm with nonempty interior and a point 0 6= x ∈
intCm. There exists p ≥ m such that −x ∈ Cp, but then Cp contains the
convex set conv({−x} ∪Cm) whose interior contains 0, and our claim follows.
Thus we can (and do) assume that 0 ∈ int C1. By symmetry of UX and
monotonicity of {Cn}, the sets Bn = Cn∩ (−Cn) satisfy

⋃
n∈NBn ⊃ UX . Then

{Bn} is an increasing sequence in EB(X), and hence by (ii) we have that
UX∗∗ ⊂

⋃
n∈N(Bn)◦◦ =

⋃
n∈NB

◦◦
n ⊂

⋃
n∈NC

◦◦
n .

(iii)⇒ (iv). Let {Dn} be as in the definition of property (I∗), and for each
n ∈ N define Cn = ◦Dn. From Lemma 2.6 we obtain that BX ⊃

⋃
n∈NCn ⊃

UX . By (iii), one has BX∗∗ ⊃
⋃
n∈NC

◦◦
n ⊃ UX∗∗ . From Lemma 2.6 again, we

obtain that
⋂
n∈ND

◦◦
n =

⋂
n∈N(C◦◦n )◦ = BX∗∗∗ .

(iv) ⇒ (i). Let {Bn} be as in the definition of property (U) and, for each
n ∈ N, define Dn = B◦n. Then {Dn} is a sequence of w∗-compact sets in
EB(X∗). Moreover, by Lemma 2.6, Dn ↘ BX∗ . By property (I∗),

D◦◦n = (B◦◦n )◦ ↘ BX∗∗∗ .
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Then, by Lemma 2.6, B◦◦n ↗BX∗∗ .

(iv) ⇒ (v). Let {x∗n} ⊂ X∗ be a bounded sequence such that the set of all
σ(X∗, X)-cluster points of {x∗n} is contained in BX∗ . Let us define

Dn := conv
[
BX∗ ∪ conv σ(X∗,X){±x∗k : k ≥ n}

]
.

Then {Dn} is a sequence of w∗-compact sets in EB(X∗). It is easy to see
that Dn ↘ BX∗ . (Indeed, if this is not the case, there exists y ∈ SX such that
s := sup y(

⋂
nDn) > 1, and hence for each n ∈ N there exist kn ≥ n and a sign

θn ∈ {±1} such that y(θnx
∗
kn

) ≥ s; and this easily leads to a σ(X∗, X)-cluster
point x∗ of {x∗n} such that |yx∗| ≥ s, and hence ‖x∗‖ > 1.) So by property
(I∗), D◦◦n ↘ BX∗∗∗ . Let us observe that

D◦◦n = conv σ(X∗∗∗,X∗∗)[BX∗ ∪ {±x∗k : k ≥ n}],
and hence that the set of all σ(X∗∗∗, X∗∗)-cluster points of {x∗n} is contained
in
⋂
nD

◦◦
n = BX∗∗∗ .

(v) ⇒ (iv). Let {Dn} be as in the definition of property (I∗), and suppose
on the contrary that there exists x∗∗∗ ∈

⋂
n∈ND

◦◦
n such that ‖x∗∗∗‖ > 1. Let

F ∈ UX∗∗ be such that Fx∗∗∗ > 1 and define

U := {y∗∗∗ ∈ X∗∗∗ : Fy∗∗∗ ≥ 1}.
Notice that U is a neighborhood of x∗∗∗ in the σ(X∗∗∗, X∗∗)-topology, and Dn is
σ(X∗∗∗, X∗∗)-dense inD◦◦n . Thus for each n ∈ N there exists x∗n ∈ Dn∩U . Since
U is σ(X∗∗∗, X∗∗)-closed there exists G ∈ U , a σ(X∗∗∗, X∗∗)-cluster point of
the sequence {x∗n}. Moreover, for each n ∈ N, Dn is σ(X∗, X)-closed and hence
the set of all σ(X∗, X)-cluster points of {x∗n} is contained in

⋂
n∈NDn = BX∗ .

Since U ∩BX∗∗∗ = ∅, we get a contradiction with (v).

To prove the last part of the proposition we have to show that the implication
(iii) ⇒ (iii′) holds for Banach spaces. If {Cn} is as in (iii’), by the Baire
category theorem we have that eventually int(Cn) 6= ∅. Since the sequence
{Cn} satisfies the assumptions of (iii), we conclude that UX∗∗ ⊂

⋃
n∈N(Cn)◦◦ =⋃

n∈NC
◦◦
n , and we are done. �

Corollary 7.3. Using the dual characterization from Theorem 7.2, we obtain
in the same way as in Corollary 3.5 that a normed linear space X has property
(U) if and only if its completion has (U). Therefore, when studying property
(U), we can restrict ourselves to Banach spaces.

Let us recall that a Banach space X is a Grothendieck space if each w∗-
convergent sequence in X∗ is w-convergent. A quantitative version of this
property was introduced in [2] by defining c-Grothendieck spaces for c ≥ 1. We
refer the reader to [2] for the definition and basic properties of such spaces.
Let us only remark that if X is c-Grothendieck for some c ≥ 1 then it is
Groethendieck (but not vice versa in general).
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The next proposition provides characterizations of property (U) via the
intermediate envelope (see Section 2) and the 1-Grothendieck property.

Proposition 7.4. Let X be a Banach space. The following are equivalent.

(i) X has property (U).
(ii) (I)-env(BX) = BX∗∗.
(iii) X is 1-Grothendieck.

Proof. (ii)⇒ (i). Suppose that (I)-env(BX) = BX∗∗ . Since the set E =
⋃
nBn

is convex and dense in BX , we obtain that BX = E ⊂ (I)-env(E) ⊂ BX∗∗ (see
[14, Remarks 1.1(i)]), and hence (I)-env(E) = BX∗∗ by [14, Remarks 1.1(iii)].

So E (I)-generates BX∗∗ which easily implies that BX∗∗ ⊂
⋃
nB

◦◦
n . Thus (i)

holds.

(i)⇒ (ii). Let {En} be a sequence of sets such that En ↗ BX . Let us define
Cn = convEn (n ∈ N). Since

⋃
nCn ⊃ UX and X has property (U), by (iii’)

in Proposition 7.2, one has
⋃
nC
◦◦
n ⊃ UX∗∗ . Since eventually C◦◦n = conv w∗En

(see Fact 2.1), we obtain ⋃
n conv w∗En = BX∗∗ .

Finally, the equivalence (ii)⇔ (iii) follows directly from [2, Proposition 2.2].
�

Corollary 7.5. Let X be a Banach space. If X has property (U) then X is a
Grothendieck space.

The next theorem provides a characterization of reflexivity via property (U).
Notice that it also implies that the vice versa in Corollary 7.5 is false in general
(however this follows also from [2]).

Theorem 7.6. For a Banach space X, the following assertions are equivalent.

(i) X is reflexive.
(ii) Every equivalent norm on X has property (U).

Proof. If X is reflexive then clearly it has property (U), let us prove the reverse
implication. Suppose that X is nonreflexive and fix some δ ∈ (0, 1/2). Then,
by [17, Theorem 1.13.4] there exist sequences {x∗n} ⊂ BX∗ and {xk} ⊂ BX

such that

x∗nxk

{
= 0 if n > k,

≥ 1− δ if n ≤ k.

Let x∗∗ ∈ BX∗∗ be a σ(X∗∗, X∗)-cluster points of {xk} and G ∈ BX∗∗∗ a
σ(X∗∗∗, X∗∗)-cluster point of {x∗n}. Let us observe that x∗∗x∗n ≥ 1−δ, whenever
n ∈ N, and hence that Gx∗∗ ≥ 1 − δ; moreover, for each k ∈ N, we have
Gxk = 0. For n ∈ N, let us consider the σ(X∗, X)-compact sets

Dn := {x∗ ∈ 2BX∗ : |x∗xk| ≤ 1, k = 1, . . . , n}.
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Clearly, we have

Dn ↘ D := {x∗ ∈ 2BX∗ : |x∗xk| ≤ 1, k ∈ N},
and D is the unit ball of an equivalent dual norm. Since Gxk = 0 for each
k ∈ N, we have that 2G ∈

⋂
n∈ND

◦◦
n .

Since x∗∗ is a σ(X∗∗, X∗)-cluster points of {xk}, we have x∗∗ ∈ D◦ and hence

sup 2G(D◦) ≥ 2G(x∗∗) ≥ 2(1− δ) > 1.

Then 2G 6∈ D◦◦ and hence X∗, endowed with the norm given by D, does not
have property (I∗). By Proposition 7.2, the proof is complete. �

In [14, 15], O.F.K. Kalenda studied intermediate envelopes of closed convex
sets. In particular, [14, Proposition 4.2] characterizes the C(K) spaces X
whose unit bidual ball BX∗∗ coincides with the intermediate envelope of the
unit ball BX . Moreover, [14, Example 4.1], shows that if X = `∞ then (I)-
env(BX) = BX∗∗ . By Proposition 7.4, we have the following result.

Proposition 7.7. `∞ has property (U).

If X is a Banach space and X∗ has property (I) then clearly X∗ has also
property (I∗) (equivalently, X has (U) – see Proposition 7.4), but in general
properties (I) and (I∗) for X∗ do not coincide: consider X = `∞ and see
Propositions 7.7 and 5.8(f).

It is moreover clear that property (U) does not pass to subspaces; indeed, we
can consider X = `∞ and any of its non-Grothendieck subspaces. However,
the following proposition shows that property (U) passes to quotients.

Proposition 7.8. Let X be a Banach space with property (U) and Y a closed
subspace of X. Then Z = X/Y has property (U).

Proof. This follows directly from [2, Lemma 3.3] and Proposition 7.4. �

By Propositions 7.7, 7.8 and 5.8, we also obtain the following corollary.

Corollary 7.9. X = `∞/c0 has properties (I) and (U).

8. A résumé, open problems, and a remark

In order to highlight connections among the main properties considered by
us, we summarize in the following theorem some of their characterizations.
While (a) is well-known and easy (see Section 2), the proofs of (b)–(d) are
contained in Sections 3 and 7. (As usual, “iff” stands for “if and only if”.)

Theorem 8.1. Let X be a Banach space.

(a) A set A ⊂ X∗ is 1-norming iff convw
∗
A = BX∗.



26 C.A. De Bernardi and L. Veselý

(b) X has property (I) iff for every symmetric 1-norming set A ⊂ X∗ one has
(I)-env(A) = BX∗.

(c) X has property (GI) iff for every (symmetric) 1-norming set A ⊂ X∗ one
has convA = BX∗.

(d) X has property (U) iff X∗ has property (I∗) iff (I)-env(BX) = BX∗ iff X
is 1-Grothendieck.

A few open problems follow.

Problem 8.2. Does `1(Γ) admit an equivalent norm with property (I) for some
uncountable set Γ?

Problem 8.3. Can a nonreflexive dual space X∗ have property (I)?

Problem 8.4. Does property (I) imply property (P)?

Problem 8.5. Suppose that X has property (I). Does there exist a separable
subspace Y of X with property (I)?

Remark 8.6. In view of Proposition 7.4, it is easy to see that Theorem 7.6
and [15, Theorem 2.2] are “equivalent”, in the sense that one can easily prove
any of the two statements by using the other one and Proposition 7.4. Hence,
the proof of Theorem 7.6, presented above, can be seen as an alternative proof
of [15, Theorem 2.2].
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