CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 4 April 2019
Accepted 6 May 2019

Edited by B. Therrien, University of Neuchâtel, Switzerland

Keywords: crystal structure; pirfenidone; active pharmaceutical ingredient (API); idiopathic pulmonary fibrosis (IPF); hydrogen bonding.

CCDC reference: 1914224

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of pirfenidone (5-methyl-1-phenyl-1H-pyridin-2-one): an active pharmaceutical ingredient (API)

Mauro Barbero, ${ }^{\text {a,b }}$ Matteo Mossotti, ${ }^{\text {b }}$ Angelo Sironi, ${ }^{\text {c }}$ Giovanni Battista Giovenzana ${ }^{\mathrm{a}}$ and Valentina Colombo ${ }^{\mathrm{c} *}$

${ }^{\text {a }}$ Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, I-28100, Novara, Italy,
${ }^{\mathbf{b}}$ R\&D Division, PROCOS S.p.A., Via G. Matteotti 249, 28062 Cameri (Novara), Italy, and ${ }^{\text {c }}$ Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy. *Correspondence e-mail: valentina.colombo@unimi.it

The crystal structure of pirfenidone, $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}$ [alternative name: 5-methyl-1-phenylpyridin-2(1H)-one], an active pharmaceutical ingredient (API) approved in Europe and Japan for the treatment of Idiopathic pulmonary fibrosis (IPF), is reported here for the first time. It was crystallized from toluene by the temperature gradient technique, and crystallizes in the chiral monoclinic space group $P 2_{1}$. The phenyl and pyridone rings are inclined to each other by $50.30(11)^{\circ}$. In the crystal, molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the same acceptor atom, forming undulating layers lying parallel to the $a b$ plane.

1. Chemical context

Idiopathic Pulmonary Fibrosis (IPF) is a lung disease characterized by cough, scars and dyspnea that leads to progressive and irreversible loss of lung function. Pirfenidone (systematic name: 5-methyl-1-phenyl-1 H -pyridin-2-one) has been approved in Japan since 2008 (Pirespa ${ }^{\circledR}$) and in Europe since 2011 (Esbriet ${ }^{\circledR}$) for the treatment of IPF, even if its mechanism of action has not been completely elucidated (Richeldi et al., 2011). Different synthetic approaches have been reported, mainly relying on N-arylation reactions of 5-methyl-2-pyridone (Liu et al., 2009; Crifar et al., 2014; Jung et al., 2016; Falb et al., 2017). Pirfenidone has been known since 1974 (Gadekar, 1974) and its antifibrotic properties were described in 1990 (Margolin, 1990). Nevertheless, despite its formulation as oral tablets, no information on the solid-state structure of this compound has been reported to date. In the present study, we report and analyse the crystal structure of pirfenidone.

OPEN \odot ACCESS

Figure 1
A view of the molecular structure of pirfenidone with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

The molecular structure of pirfenidone is shown in Fig. 1. This axially chiral molecule crystallizes in the monoclinic space group $P 2_{1}$, with one molecule in a general position. The molecule is far from planar with the phenyl (C7-C12) and pyridinone ($\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5$) rings subtending a dihedral angle of $50.30(11)^{\circ}$.

Figure 2
A view along the a axis of the crystal packing of pirfenidone. The C$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (see Table 1) are shown as dashed lines.

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C8-H8...O1 $1^{\text {i }}$	0.93	2.33	3.203 (3)	156
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 1^{\text {ii }}$	0.93	2.46	3.310 (3)	152

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+2, y-\frac{1}{2},-z+2$.

3. Supramolecular features

In the crystal, molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the same acceptor atom (Table 1), forming an undulating network, enclosing $R_{4}^{3}(20)$ ring motifs, and lying parallel to the $a b$ plane (Figs. 2 and 3). The $R_{4}^{3}(20)$ ring motifs are clearly visible in Fig. 3. There are no other significant intermolecular contacts present according to the analysis of the crystal structure using PLATON (Spek, 2009).

4. Database Survey

A search of the Cambridge Structural Database (CSD, Version 5.40, February 2019; Groom et al., 2016) for 1-phenylpyridin-2(1H)-ones, excluding structures with ring atoms being included in further cyclic moieties, gave 40 hits (see supporting information file S 1). Only six of these compounds involve an unsubstituted phenyl ring as in the title compound. When considering compounds with no substituent in position-6 of the pyridinone ring (on atom C 5 in the title compound; Fig. 1) only three structures fit this extra criteria, viz. S-ethyl 2-oxo-1-phenyl-1,2-dihydro-3-pyridinecarbothioate (CSD refcode NOLBIA; Liu et al., 2008), monoclinic space group $P 2_{1}$, 4-chloro-6-oxo-1-phenyl-1,6-dihydropyridine-3carbaldehyde (QIWFIM; Xiang et al., 2008), monoclinic space group $P 2_{1} / c$, and methyl 5-benzoyl-2-oxo-1-phenyl-1,2-di-hydropyridine-4-carboxylate (TEMKIH; Shao et al., 2012), orthorhombic space group Pna_{1} with two independent molecules in the asymmetric unit. In these three compounds, the phenyl ring is inclined to the pyridone ring by ca $65.50,64.66$ and $55.83 / 57.12^{\circ}$, respectively. This dihedral angle in the title compound, pirfenidone, is $50.30(11)^{\circ}$. In the other three

Figure 3
A view along the c axis of the crystal packing of pirfenidone. The $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (see Table 1) are shown as dashed lines.

Table 2
Experimental details.
Crystal data
Chemical
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
β (${ }^{\circ}$)
$V\left(\mathrm{~A}^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\min }, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure

Absolute structure parameter

$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}$

185.22

Monoclinic, $P 2_{1}$ 293
6.2525 (8), 7.797 (1), 10.2810 (13)
104.744 (2)
484.70 (11)

2
Mo $K \alpha$
0.08
$0.50 \times 0.45 \times 0.05$

Bruker SMART APEX CCD
Multi-scan (SADABS; Bruker, 2010)
0.692, 0.746

4547, 2128, 1879
0.019
0.643
$0.037,0.095,1.04$
2128
127
1
H -atom parameters constrained
$0.11,-0.20$
Flack x determined using 762 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$
(Parsons et al., 2013)
0.3 (4)

Computer programs: APEX2 and SAINT (Bruker, 2010), SHELXT2017 (Sheldrick, 2015a), SHELXL2017 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
compounds [AQIKIV (Gorobets et al., 2010), BAFPUV (Dyachenko et al., 2011) and WEDCEP (Allais et al., 2012) see supporting information file S 1] with a substituent in position-6 of the pyridinone ring the corresponding dihedral angle varies from ca 73.02 to 89.28° as a result of steric hindrance.

5. Synthesis and crystallization

Pirfenidone was obtained in $>99.5 \%$ purity according to the method published previously (Mossotti et al., 2018). Single crystals were grown in the following way: approximately 100 mg of pirfenidone in 2 mL of toluene was heated until complete dissolution. The flask with this solution was then closed and kept at 273-278 K. Well-formed colourless crystals of pirfenidone were obtained after 1 week. The melting point of this crystal form, determined by DSC analysis (heating rate $10 \mathrm{~K} \mathrm{~min}^{-1}$), is 383 K . This crystallization procedure must be performed in order to grow single crystals suitable for X-ray diffraction analysis and not with the aim of increasing the purity of the product. It is worth nothing that the industrial process is already optimized for the isolation of a pure API ($>99.5 \%$) and a further crystallization step is not needed to improve its purity. We performed several other crystallization trials in order to search for other possible forms of pirfeni-
done; however, each crystallization attempt gave rise to the same crystal form.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were included in calculated positions and treated as riding: $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}-$ methyl $)$ and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms.

Acknowledgements

VC gratefully acknowledges Professor H. Stoeckli-Evans for her helpful and valuable suggestions.

Funding information

Funding for this research was provided by: Università degli Studi di Milano (grant No. PSR2018_DIP_005_COLOMBO_VALENTINA to Valentina Colombo).

References

Allais, C., Baslé, O., Grassot, J.-M., Fontaine, M., Anguille, S., Rodriguez, J. \& Constantieux, T. (2012). Adv. Synth. Catal. 354, 2084-2088.
Bruker (2010). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Crifar, C., Petiot, P., Ahmad, T. \& Gagnon, A. (2014). Chem. Eur. J. 20, 2755-2760.
Dyachenko, V. D., Butyukova, O. S., Dyachenko, A. D. \& Shishkin, O. V. (2011). Zh. Obshch. Khim. 81, 857-868.

Falb, E., Ulanenko, K., Tor, A., Gottesfeld, R., Weitman, M., Afri, M., Gottlieb, H. \& Hassner, A. (2017). Green Chem. 19, 5046-5053.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gadekar, S. M. (1974). Patent DE 2362958.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Jung, S.-H., Sung, D.-B., Park, C.-H. \& Kim, W.-S. (2016). J. Org. Chem. 81, 7717-7724.
Liu, J., Liang, D., Wang, M. \& Liu, Q. (2008). Synthesis, pp. 3633-3638.
Liu, K. K.-C., Sakya, S. M., O'Donnell, C. J. \& Li, J. (2009). Mini Rev. Med. Chem. 9, 1655-1675.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Margolin, S. B. C. O. T. (1990). Patent EP 0383591.
Mossotti, M., Barozza, A., Roletto, J. \& Paissoni, P. (2018). Patent US 2018319747.

Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Richeldi, L., Yasothan, U. \& Kirkpatrick, P. (2011). Nat. Rev. Drug Discov. 10, 489-490.
Shao, Y., Yao, W., Liu, J., Zhu, K. \& Li, Y. (2012). Synthesis, 44, 33013306.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Gorobets, N. Yu., Tkachova, V. P., Tkachov, R. P., Dyachenko, O. D., Rusanov, E. B. \& Dyachenko, V. D. (2010). ARKIVOC, 11, 254264.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Xiang, D., Wang, K., Liang, Y., Zhou, G. \& Dong, D. (2008). Org. Lett. 10, 345-348.

supporting information

Acta Cryst. (2019). E75, 984-986 [https://doi.org/10.1107/S2056989019006418]
Crystal structure of pirfenidone (5-methyl-1-phenyl-1H-pyridin-2-one): an active pharmaceutical ingredient (API)

Mauro Barbero, Matteo Mossotti, Angelo Sironi, Giovanni Battista Giovenzana and Valentina

 Colombo
Computing details

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

5-Methyl-1-phenylpyridin-2(1H)-one

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}$
$M_{r}=185.22$
Monoclinic, $P 2_{1}$
$a=6.2525$ (8) \AA
$b=7.797$ (1) \AA
$c=10.2810(13) \AA$
$\beta=104.744$ (2) ${ }^{\circ}$
$V=484.70(11) \AA^{3}$
$Z=2$
$F(000)=196$

Data collection

Bruker SMART APEX CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
$T_{\text {min }}=0.692, T_{\text {max }}=0.746$
4547 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.095$
$S=1.04$
2128 reflections
127 parameters
$D_{\mathrm{x}}=1.269 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 375 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2547 reflections
$\theta=3.3-27.2^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate, colourless
$0.50 \times 0.45 \times 0.05 \mathrm{~mm}$

2128 independent reflections
1879 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=27.2^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-8 \rightarrow 8$
$k=-9 \rightarrow 10$
$l=-13 \rightarrow 13$

1 restraint

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0528 P)^{2}+0.0476 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.11 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}
\end{aligned}
$$

Absolute structure: Flack x determined using 762 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)

Absolute structure parameter: 0.3 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
N1	$0.7599(2)$	$0.5275(2)$	$0.62509(16)$	$0.0382(4)$
O1	$1.0951(2)$	$0.6634(3)$	$0.69330(17)$	$0.0602(5)$
C1	$0.9386(3)$	$0.6188(3)$	$0.6002(2)$	$0.0437(5)$
C5	$0.5769(3)$	$0.4849(3)$	$0.5233(2)$	$0.0395(5)$
H5	0.460421	0.428046	0.545647	0.047^{*}
C7	$0.7635(3)$	$0.4782(3)$	$0.76141(19)$	$0.0401(5)$
C4	$0.5595(3)$	$0.5219(3)$	$0.3929(2)$	$0.0430(5)$
C12	$0.9445(4)$	$0.3913(3)$	$0.8390(2)$	$0.0497(5)$
H12	1.066616	0.368712	0.805687	0.060^{*}
C8	$0.5830(3)$	$0.5134(3)$	$0.8108(2)$	$0.0481(5)$
H8	0.462114	0.572084	0.758231	0.058^{*}
C6	$0.3599(4)$	$0.4732(3)$	$0.2835(2)$	$0.0579(6)$
H6A	0.400128	0.387266	0.227127	0.087^{*}
H6B	0.304346	0.572565	0.230447	0.087^{*}
H6C	0.247695	0.428652	0.322817	0.087^{*}
C11	$0.9409(5)$	$0.3383(3)$	$0.9672(2)$	$0.0616(7)$
H11	1.061057	0.278817	1.019737	0.074^{*}
C3	$0.7416(4)$	$0.6079(3)$	$0.3637(2)$	$0.0527(6)$
H3	0.737708	0.633055	0.274701	0.063^{*}
C2	$0.9189(4)$	$0.6537(3)$	$0.4608(2)$	$0.0540(6)$
H2	1.033979	0.710617	0.436893	0.065^{*}
C9	$0.5836(4)$	$0.4604(4)$	$0.9395(2)$	$0.0623(7)$
H9	0.462501	0.484254	0.973553	0.075^{*}
C10	$0.7616(5)$	$0.3728(4)$	$1.0174(2)$	$0.0649(7)$
H10	0.760634	0.337171	1.103577	0.078^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0355(8)$	$0.0426(9)$	$0.0362(8)$	$0.0009(8)$	$0.0084(7)$	$0.0007(7)$
O1	$0.0399(8)$	$0.0725(11)$	$0.0631(11)$	$-0.0111(8)$	$0.0038(7)$	$-0.0046(9)$
C1	$0.0368(10)$	$0.0430(12)$	$0.0524(12)$	$0.0007(9)$	$0.0134(9)$	$-0.0023(10)$
C5	$0.0380(9)$	$0.0395(11)$	$0.0398(10)$	$-0.0026(9)$	$0.0078(8)$	$0.0011(9)$
C7	$0.0411(10)$	$0.0397(11)$	$0.0362(10)$	$-0.0013(8)$	$0.0034(8)$	$0.0002(8)$

supporting information

C4	$0.0524(11)$	$0.0376(11)$	$0.0376(10)$	$-0.0009(10)$	$0.0087(9)$	$-0.0001(9)$
C12	$0.0496(12)$	$0.0478(12)$	$0.0459(12)$	$0.0081(10)$	$0.0017(10)$	$-0.0051(10)$
C8	$0.0395(10)$	$0.0602(13)$	$0.0435(11)$	$-0.0003(10)$	$0.0082(8)$	$0.0070(11)$
C6	$0.0705(15)$	$0.0570(15)$	$0.0399(11)$	$-0.0077(13)$	$0.0026(11)$	$-0.0004(11)$
C11	$0.0708(16)$	$0.0522(14)$	$0.0469(13)$	$0.0053(12)$	$-0.0126(12)$	$0.0046(11)$
C3	$0.0694(15)$	$0.0522(14)$	$0.0410(11)$	$-0.0091(11)$	$0.0224(11)$	$0.0002(10)$
C2	$0.0559(13)$	$0.0556(14)$	$0.0576(14)$	$-0.0113(12)$	$0.0276(11)$	$-0.0015(11)$
C9	$0.0595(14)$	$0.0851(19)$	$0.0450(13)$	$-0.0110(13)$	$0.0183(11)$	$0.0036(13)$
C10	$0.0826(19)$	$0.0688(17)$	$0.0378(12)$	$-0.0134(16)$	$0.0054(12)$	$0.0103(12)$

Geometric parameters ($\mathrm{A},{ }^{\circ}$)

N1-C5	1.381 (2)	C8-C9	1.386 (3)
N1-C1	1.402 (2)	C8-H8	0.9300
N1-C7	1.448 (3)	C6-H6A	0.9600
O1-C1	1.232 (3)	C6-H6B	0.9600
$\mathrm{C} 1-\mathrm{C} 2$	1.432 (3)	C6-H6C	0.9600
C5-C4	1.349 (3)	C11-C10	1.375 (4)
C5-H5	0.9300	C11-H11	0.9300
C7-C8	1.378 (3)	C3-C2	1.338 (3)
C7-C12	1.384 (3)	C3-H3	0.9300
C4-C3	1.417 (3)	C2-H2	0.9300
C4-C6	1.501 (3)	C9-C10	1.376 (4)
C12-C11	1.386 (4)	C9-H9	0.9300
C12-H12	0.9300	C10-H10	0.9300
C5-N1-C1	121.93 (17)	C4-C6-H6A	109.5
C5-N1-C7	118.39 (16)	C4-C6-H6B	109.5
C1-N1-C7	119.67 (16)	H6A-C6-H6B	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	120.88 (19)	C4-C6- H 6 C	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	124.9 (2)	H6A-C6-H6C	109.5
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	114.20 (18)	H6B-C6-H6C	109.5
C4-C5-N1	122.94 (19)	C10-C11-C12	120.7 (2)
C4-C5-H5	118.5	C10-C11-H11	119.7
N1-C5-H5	118.5	C12-C11-H11	119.7
C8-C7-C12	120.74 (19)	C2-C3-C4	121.7 (2)
C8-C7-N1	119.42 (17)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.1
C12-C7-N1	119.81 (19)	C4-C3-H3	119.1
C5-C4-C3	116.47 (19)	C3-C2-C1	122.6 (2)
C5-C4-C6	122.2 (2)	C3-C2-H2	118.7
C3-C4-C6	121.4 (2)	C1-C2-H2	118.7
C7-C12-C11	119.0 (2)	C10-C9-C8	120.6 (2)
C7-C12-H12	120.5	C10-C9-H9	119.7
C11-C12-H12	120.5	C8-C9-H9	119.7
C7-C8-C9	119.3 (2)	C11-C10-C9	119.7 (2)
C7-C8-H8	120.4	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	120.2
C9-C8-H8	120.4	C9-C10-H10	120.2

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8 — \mathrm{H} 8 \cdots 1^{\mathrm{i}}$	0.93	2.33	$3.203(3)$	156
$\mathrm{C} 10 — \mathrm{H} 10 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.46	$3.310(3)$	152

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+2, y-1 / 2,-z+2$.

