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Abstract In this paper we introduce and study a new feature-preserving nonlinear nonlocal diffusion equation
for denoising signals. The proposed partial differential equation is based on a novel diffusivity coefficient that
uses a nonlocal automatically detected parameter related to the local bounded variation and the local oscillating
pattern of the noisy input signal. We provide a mathematical analysis of the existence of the solution in the
two dimensional case, but easily extensible to the one-dimensional model. Finally, we show some numerical
experiments, which demonstrate the effectiveness of the new approach.
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1 Introduction

Nonlinear partial differential equations (PDEs) can be used in the analysis and processing of digital images
or image sequences, for example to filter out the noise, to produce higher quality image, to extract features
and shapes (see e.g. [2,4,3,18,19] and the references herein). Perhaps, the main application of PDEs based
methods in this field is smoothing and restoration of images. From the mathematical point of view, the input
(gray scale) image can be modeled by a real function u0(x), u0 : Ω →R, where Ω ⊂Rd , represents the spatial
domain. Typically this domain Ω is rectangular and d = 1, 2, 3. The function u0 is considered as an initial
data for a suitable evolution equation with some kind of boundary conditions (usually homogeneous Neumann
boundary conditions).

The simplest PDE method for smoothing images is based on linear diffusion process. The starting point is
the simple observation that the so called Gauss function, with σ > 0 and where | · | is the Euclidean norm,

Gσ (x) =
1

(2πσ2)d/2 e−|x|
2/(2σ2)
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is related to the fundamental solution of the linear diffusion (heat) equation. Then, it has been possible to
reinterpret the classic smoothing operation of the convolution of an image with Gσ , with a given standard
deviation σ , by solving the linear diffusion equation for a corresponding time t = σ2/2 with initial condition
given by the original image. For example, when d = 2, it is a classic result that for any bounded, continuous.
and integrable u0(x), x ∈ R2, the linear diffusion equation on the whole space (here 4 denotes the Laplacian
operator),

∂u
∂ t

=4u, u(x,0) = u0(x)

possesses the following solution

u(x, t) =


u0(x), t = 0

(G√2t ∗u0)(x), t > 0

where the convolution product (g∗ f )(x) between the functions f and g is defined as

(g∗ f )(x) =
∫
R2

g(x− y) f (y)dy.

We point out that for different time (variance) t we obtain different levels of smoothing: this defines a scale-
space for the image [12,20]. That is, we get copies of the image at different scales. Note, of course, that any
scale t can be obtained from a scale τ , where τ < t, as well as from the original images, this is usually denoted
as the causality criteria for scale-spaces [2]. The solution of the above linear diffusion equation is unique,
provided we restrict ourselves to functions satisfying some suitable grow conditions. Moreover, it depends
continuously on the initial image u0, and it fulfills the maximum/minimum principle

inf
x∈R2

u0(x)≤ u(x, t)≤ sup
x∈R2

u0(x) on R2× [0,∞).

In order to apply it to images processing we also need to consider appropriate boundary conditions: usually
homogeneous Neumann conditions are used.

The flow produced by the linear diffusion equation is also denoted as isotropic diffusion, as it is diffusing
the information equally in all directions. Then, the gray values of the initial image will spread, and, in the end,
a uniform image, equal to the average of the initial gray values, is obtained. Although this property is good for
local reducing noise (averaging is optimal for additive noise), this filtering operation also destroys the image
content, that is, the boundaries of the objects and the subregions present in the image (the edges). This means
that the Gaussian smoothing does not only smooth noise, but also blurs important features and it makes them
harder to identify. Furthermore, linear diffusion filtering dislocates edges when moving from finer to coarser
scales (see e.g. [20]). So, structures that are identified at a coarse scale do not give the right location and have
to be traced back to the original image. Moreover, some smoothing properties of Gaussian scale-space do not
carry over from the one-dimensional case to higher dimensions: it is generally not true that the number of local
extrema, which are related to edges, is non-increasing. As suggested by Hummel [10] the linear diffusion is
not the only PDE that can be used to enhance an image and that, in order to keep the scale-space property, we
need only to make sure that the corresponding flow holds the maximum principle. Many approaches have been
taken in the literature to implement this idea replacing the linear equation with a nonlinear PDE that does not
diffuse the image in a uniform way: these flows are normally denoted as anisotropic diffusion. In particular,
the diffusion coefficient is locally adapted, becoming negligible as object boundaries are approached. Noise
is efficiently removed and object contours are strongly enhanced [19]. There is a vast literature concerning
nonlinear anisotropic diffusions with application to image processing, which dates back to the seminal paper
by Perona and Malik, who, in [16], consider a discrete version of the following equation

∂u
∂ t −∇ · (g(|∇u|)∇u) = 0, in ΩT = (0,T )×Ω ,

u(x,0) = u0(x) on Ω

∂u
∂n (x, t) = 0, on Γ × (0,T ),
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where Γ = ∂Ω , the image domain Ω ⊂ R2 is an open regular set (typically a rectangle), n denotes the unit
outer normal to its boundary Γ , and u(x, t) denotes the (scalar) image analysed at time (scale) t and point x.
The initial condition u0(x) is, as in the linear case, the original image. In order to reduce smoothing at edges,
the diffusivity g is chosen as a decreasing function of the “edge detector” |∇u| (for a vector V = (V1,V2) ∈R2,
|V |2 =V 2

1 +V 2
2 ). A typical choice is,

g(s) =
1

1+(s/λ )2 , s≥ 0, λ > 0.

Catté, Lions, Morel and Coll [8] showed that the continuous Perona-Malik model is ill posed, and hence very
close pictures can produce divergent solutions and therefore very different edges. This is caused by the fact that
the diffusivity g leads to flux s ·g(s) decreasing for some s and the scheme may work locally like the inverse
heat equation which is known to be ill posed. This possible misbehavior surely represents a severe drawback
of the Perona-Malik model when applied to data affected by noise. However, discrete implementations work
as a regularization factor by introducing implicit diffusion into the model, and the filter is usually observed to
be stable (with staircasing effect as the only observable instability). Then, in the continuous settings, a new
model has been proposed [8] with the only modification of replacing the gradient ∇u in the diffusivity by
its spatial regularization (Gσ ∗∇u), which is obtained by smoothing the argument by a convolution with a
C∞ kernel Gσ . Typically Gσ is a Gaussian function and σ determines the scale beyond which regularization
occurs. The equation will now diffuse if and only if the gradient is estimated to be small. We point out that the
spatial regularization leads to processes where the solution converges to a constant steady state. Then, in order
to get nontrivial results, we have to specify a stopping time T . Sometimes it is attempted to circumvent this
task by adding an additional reaction term, which keeps the steady state solution close to the original image
u0, for example

∂u
∂ t
−∇ · (g(|∇Gσ ∗u|)∇u) = f (u0−u),

where f is a Lipshitz continuous, non decreasing function such that f (0) = 0. During the last years, many
other nonlinear parabolic equations have been proposed as an image analysis model. The common theme in
this proliferation of models is the following, one attempts to fix one intrinsic diffusion direction and tunes
the diffusion using the size of the gradient or the value of an estimate of the gradient. A few of the proposed
models are even systems of PDEs, for example there exist reaction diffusion systems which have been applied
to image restoration and which are connected to Perona-Malik idea or based on Turing’s pattern formation
model [19].
From the numerical point of view the approaches seen above for denoising images can be considered as a
suitable spatial averaging of nearby values. However, although this method removes noise it creates blur.
In order to improve their effectiveness neighborhood filters have recently been considered. These last filters
perform an average of neighboring values of a signal, but only under the condition that these values are close
enough to the one of the original in restoration. An example of this type of algorithm in a continuous form is
the following [6],

uF(x) =
1

c(x)

∫
Bρ (x)

u(y)e−
|u(y)−u(x)|2

h2 dy, c(x) =
∫

Bρ (x)
e−
|u(y)−u(x)|2

h2 dy,

where uF is the filtered signal, x, y ∈Ω , Ω ⊂R2 is an open and bounded set, c(x) is the normalization factor,
and Bρ(x)⊂Ω is a ball of center x and radius ρ . Based on the ratio ρ/h this model get back to Gaussian fil-
tering, or behaves as the Perona-Malik equation, or the intensity of the filtering tends to zero and the signal is
hardly modified [6]. We point out that it has been observed that this method unfortunately could create shocks
and staircasing effects. An evolution of the neighborhood filters is the non-local means (NLM) filter which
averages similar values of the image according to their intensity distance [5]. The similarity between values is
made robust with respect to the noise level by using region comparison rather than single values comparison.
Moreover, the pattern redundancy is not restricted to be local (therefore, non-local). Then the values far from
actual one being filtered are not penalized due to their distance to the current value. This approach is based on
the redundancy of most natural images: for every small patch in a natural image one can find several similar
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patches in the same image. In particular the algorithm makes use of the information encoded in the whole im-
age. When modifying a value in the signal, the algorithm first computes the similarity between a fixed window
centered on it and the windows centered on the other values in the whole signal, then it takes the similarity as
a weight to adjust this value. Even if the NLM method has shown remarkable results, its efficiency is low due
to windows matching.

In this paper we propose a new anisotropic diffusion equation introducing a nonlocal diffusive coefficient
that takes into account the “monotonicity” and the oscillating pattern of the image. In other words, a high
modulus of the gradient may lead to a small diffusion if the function is, for instance, locally monotone. Al-
though the method proposed here considers some aspects of the methods described above, it represents a new
approach and it does not fall within any of the previous frameworks.

1.1 A motivating 1D model

At present, the best view of the activity of a neural circuit is provided by multiple-electrode extracellular
recording technologies, which allow us to simultaneously measure spike trains from up to a few hundred
neurons in one or more brain areas during each trial. While the resulting data provide an extensive picture
of neural spiking, their use in characterizing the fine timescale dynamics of a neural circuit is complicated
by at least two factors. First, captured extracellular action potentials provide only an occasional view of the
process from which they are generated, forcing us to interpolate the evolution of the circuit between the spikes.
Second, the circuit activity may evolve quite differently on different trials that are otherwise experimentally
identical. Experimental measurements are noisy. For neural recordings, the noise may arise from a multitude
of sources, both intrinsic and extrinsic to the nervous system. Operationally, supposing that recorded data
are composed of two parts, signal of interest and other processes unrelated to the experimental conditions.
it is a challenge to preserve the essential signal features, such as suitable structures related to the neuronal
activity, during the smoothing process. In Figure 1 we show an example of a noised signal of a neuron,

Fig. 1 5s simulated membrane potential signals of a network of 20 neurons randomly connected (firing rate = 5Hz). In black,
original signal of a neuron. White gaussian noise was added to the signals (gray). Blue: signal after denoising (Perona-Malik).
Red: signal after denoising (new algorithm). Note that the event occurred between t = 0.296 and t = 0.297 is completely removed
after Perona-Malik smoothing

where a white gaussian noise has been superposed to the original signal. These data were obtained from a
simulation of potentials in a small neural network of cerebellar granule cell [1]. The peak in the central part
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represents the firing of a neuron, it is of interest to reconstruct the behavior of the potential near this peak for
the neurophysiological significance of the signal. Similar signals will be considered in the section dedicated
to numerical tests. The method proposed in this paper is compared with the classic Perona-Malik algorithm.
We point out that the diffusivity in the Perona-Malik model, or similar approaches, depends locally on the
modulus of the gradient of the function. Instead, we introduce a nonlocal diffusive coefficient that takes into
account of the “monotonicity” of the signal. In other words, a high modulus of the gradient may lead to a small
diffusion if the function is also locally monotone. Motivated by this fact, we have developed the new approach
presented in this paper. More precisely, the diffusion coefficient in a point x is based on the behavior of the

Fig. 2 Example of a nonlocal signal. The signal and the noise have the same total variation and the same modulus of the gradient.
The global increment observed on Q is instead very different

function f in a interval x+Q = (x− q,x+ q), where Q = (−q,+q), see Figure 2. Analytically, we compute
the ratio between the variation | f (x+q)− f (x−q)| and the total variation

∫
Q |∇ f (s+ x)|ds of the function in

x+Q. A ratio close to 1 will imply a tiny noise in the signal, while a ratio close to 0 is related to a highly
noised signal. As shown in Figure 2, a pure signal and a noised one may have the same total variation and the
same modulus of gradient. Therefore, Perona-Malik like methods (and total variation based methods) treat the
signals in the same way.
More precisely, for the one dimensional spatial case, let u : [a,b]→ R a real function defined on a bounded
interval [a,b], and a subinterval [c,d]⊂ [a,b]. We define the local variation LV[c,d](u) of u on the interval [c,d]
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the value

LV[c,d](u) = |u(d)−u(c)|.

We also define the total local variation TV[c,d](u) of u on the interval [c,d] as follows

TV[c,d](u) = sup
P

nP−1

∑
i=0
|u(xi+1)−u(xi)|

where P = {P = {x0, . . . ,xnP}|P is a partition of [c,d]} is the set of all possible finite partition of the interval
[c,d]. It is easy to prove that if the function u is a monotone function on the interval [c,d], then LV[c,d](u) =
TV[c,d](u). While, if the function u is not monotone, LV[c,d](u)< TV[c,d](u). For the 1D signal, as the membrane
potential of a neuron, where the independent variable has the dimension of a time, it is convenient to select
instead of a symmetric window Q an asymmetric interval of a given length δ . Let ε ∈R+ be a suitably “small
number” and let δ ∈ R+ a positive number. We define the ratio,

Rδ ,u =
LV[x,x+δ ](u)

ε +TV[x,x+δ ](u)
(1)

If the parameter δ is chosen appropriately we can distinguish between oscillations caused by noise and by
electrophysiological stimuli (in the following EPSP) contained in a range of amplitude δ . In the case of the
membrane potential of a neuron the oscillations due to the noise and to EPSP occur on different time scales:
it is possible to choose a value δ such that in a range of amplitude δ there is at least a full oscillation due to
noise, but not to a complete EPSP. Then, there is an oscillation, the signal is not monotone and it is expected
that the ratio Rδ ,u is much less than one because LV[x,x+δ ](u)<< TV[x,x+δ ](u). On the contrary, if in the same
time interval there is an EPSP, the ratio Rδ ,u becomes close to one.

As in the Perona-Malik model, we adapt the diffusive coefficient by using the above ratio Rδ ,u. For small
values of the latter we have to reduce the noise, while for values close to 1, the upper bound of Rδ ,u, we have
to preserve the signal variation (as the edges in the image). The resulting non-local equation is the following,

∂u
∂ t
− ∂

∂x

(
g

(
LV[x,x+δ ](u)

ε +TV[x,x+δ ](u)

)
∂u
∂x

)
= 0, (2)

where the function g has the same properties as in the Perona-Malik model and δ > 0. If u is a differentiable
function and u′ is integrable, the total variation can be written as,

TV[x,x+δ ](u) =
∫ x+δ

x
|u′(s)|ds,

and the non linear diffusion equation (2) can be stated as

∂u
∂ t
− ∂

∂x

g


∣∣∣∫ x+δ

x u′(s)ds
∣∣∣

ε +
∫ x+δ

x |u′(s)|ds

 ∂u
∂x

= 0.

for a function u(x, t), x ∈ (a,b), t > 0. As initial condition we take the original signal u0 but with some
regularization obtained with a standard smoothing filter, e.g. a Gaussian filter, and we assume homogeneous
Neumann condition at the boundary, that is ∂u/∂x = 0 for x = a,b and t > 0.
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1.2 The multidimensional case

In order to apply the new model to a multidimensional signal, in particular in the two-dimensional case (a
gray level digital image), we have to generalize the ratio Rδ ,u, see (1). We must therefore consider the role
of local oscillations and their relation to any noise. In the classic model u+ n, images are assumed to be a
sum of two components u(x) and n(x). The first component u(x) is aimed at modeling the objects which are
present in the given image. This u(x) component should provide a good approximation to the image, while
the n(x) term is responsible for the noise. In the basic decompositions u+ n the u component is obtained
through a low-pass filtering and the n component by a high-pass filtering. Then this n component is obviously
oscillating. But u is modeling the objects that are contained in an image. These objects have edges, which also
contain high frequencies. Then u(x) and v(x) should be coupled by some constraints. In the ideal case, the
u(x) component should remain untouched while the v(x) might disappear. In some model the u component is
assumed to belong to a specific ball of a functional Banach space B. Typically in image processing, we want to
detect objects (planar sub-domains) delimited by contours (edges). In this model, the function u(x) is assumed
to be smooth in each planar domain with jump discontinuities across the boundaries. In any case we want to
avoid to break an image into too many pieces and the penalty for a domain decomposition of a given image
will be the sum of the lengths of the edges. But these lengths appear in the BV norm of u(x). Moreover,the
BV norm of a function u(x) can be defined as the total mass of the distributional gradient of u: the L1 norm of
the gradient of the restriction of u to the interior of the domains (for a discussion about the functional space
model see e.g. [14]). Therefore a possible extension of the one-dimensional approach to the two-dimensional
case involves the behavior of the BV norm of u in appropriate subregions. We point out that this is not the only
strategy to extend the model to the two-dimensional case.
Let A⊆Rd and u : Ω→R an integrable function smooth function, the total variation TV (u) (or BV seminorm),
can be computed as [21]

TV (u) =
∫

A
|∇u(x)|dx

where ∇u is the gradient of u. Here, we consider the anisotropic total variation,

TVa(u) =
∫

A
|∇u(x)|1 dx

considering the l1 norm, |v|1 = |v1|+ |v2|+ . . .+ |vd |, instead of the Euclidean norm. The usual total variation
TV (u) is invariant to rotations of the domain, but anisotropic TVa is not. However, the latter allows for other
approaches that do not apply with the usual TV , for example the graph-cuts algorithm [9]. Moreover, using
the norm l1 the scalar case is reduced to the one-dimensional model (2): this allows to theoretically treat both
cases, 1D and 2D within the same framework. For the local variation term, the numerator of the ratio Rδ ,u,
we have to compute the variation of the function u in a region A by taking into account the flux of u at the
boundary ∂A of the same set A. Following the definition of the BV−seminorm [21], and the choice we propose
the definition,

LVA(u) = sup{
∫

A
∇u(x)∇h(x)dx, |∇h(x)|1 ≤ 1 ∀x,h harmonic on A}.

In the above definition, due to the properties of the test function h, we have∫
A

∇u∇hdx =
∫

∂A
u∇h ·nA ds−

∫
A

udiv(∇h)dx

where div is the divergence operator, nA denotes the unit outer normal to ∂A, and the last integral is equal to
zero because h is harmonic. Then ∫

A
∇u∇hdx =

∫
∂A

u∇h ·nA ds,

and the supremum for the LVA(u) is taken considering all the possible orientations of the vector ∇h with respect
to nA. Returning to the one-dimensional case, for A = [c,d], we obtain,

LVA(u) = sup{(u(c)−u(d)), (−u(c)+u(d))}= |u(d)−u(c)|.
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The remainder of this paper is organized as follows. In Section 2, we provide the mathematical analysis of
the new non-linear and non-local diffusion equation in the two dimensional spatial case. Instead of analyzing
only the one-dimensional case we consider the mathematical problem of the existence of the solution in the
two dimensional case. It is straightforward to adapt the analysis to the one-dimensional model. On the other
hand we will consider the application of our approach in the case of digital images with a comparison with
other methods in a future paper. In particular, we show the existence of a solution for the model by using a
suitable semidiscrete scheme under reasonable hypotheses for applications in image processing. In Section 3
we show some numerical experiments for one-dimensional signals.

Notation

In that follows, Ω ⊂ R2 denotes a open bounded domain with Lipschitz continuous boundary Γ = ∂Ω , and
ΩT = Ω × (0,T ), with T > 0. We denote by Hk(Ω), k is a positive integer, the Sobolev space of all func-
tion u defined in Ω such that u and its distributional derivatives of order k all belong to L2(Ω). Let Ds the
distributional derivatives, Hk is a Hilbert space for the norm,

‖u‖k = ‖u‖Hk =

(
∑
|s|≤k

∫
Ω

|Dsu(x)|2 dx

)1/2

, ‖u‖0 = ‖u‖L2 .

Let V = H1, V ∗ stands for its dual space. We denote by Lp(0,T ;Hk(Ω)) the set of all functions u, such that,
for almost every t in (0,T ), u(t) belong to Hk(Ω), Lp(0,T ;Hk(Ω)) is a normed space for the norm

‖u‖Lp(0,T ;Hk(Ω)) =

(∫ T

0
‖u‖p

k dt
)1/p

p≥ 1 and k a positive integer. We denote by (·, ·), the scalar product in L2(Ω).

2 Analysis of the new nonlocal and nonlinear equation, 2D case

In this section we will consider the two-dimensional spatial case and we will prove the existence of a vari-
ational solution of the corresponding non-local diffusion equation. From the discussion in the subsections
(1.1)-(1.2), given U ∈ L2(0,T ;V ) and Q = (−q1,+q1)× (−q2,+q2) (the local window), we can define the
ratio coefficient R as the function

RQ,U (x, t) =


sup{∫Q ∇U(x+y,t)∇h(y)dy, |∇h(x)|1≤1 ∀x,h harmonic on Q}∫

x+Q |∇U(y,t)|1dy ,

if
∫

x+Q |∇U(y, t)|1dy > 0;
0, otherwise;

where | · |1 is the l1 norm in R2. It is easy to verify that the function RQ,U (x, t) is measurable, and 0≤ RQ,U ≤ 1.
Moreover, note that

∫
x+Q |∇U(y, t)|1dy is continuous in x since U ∈ L2(0,T ;V ).

Let g : [0,+∞)−→R be a Lipschitz continuous nonincreasing function such that g(0) = 1, g(s)> 0, ∀s≥
0, g(1) = ε > 0. It follows that 1≥ g(RQ,U (x, t))≥ ε .

Let Q be the window that is used in the definition of the diffusive coefficient RQ,u. We assume that

Assumption 1 inf
x∈Ω

|Ω ∩{x+Q/3}|
|{x+Q/3}|

= qΩ > 0, (3)

where if A is a measurable set, let |A| be the Lebesque measure of A.
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The smoothing process of the image uI is obtained by the solution u(x, t) of the following non-linear,
non-local diffusion equation,

∂u
∂ t −div(g(RQ,u(x, t))∇u) = 0, in ΩT ;
∂u
∂n = 0, on Γ × (0,T );
u(x,0) = u0(x) ∈V ;

(4)

with homogeneous Neumann boundary conditions for the normal derivative ∂u
∂n , and initial data u0 ∈V which

is a smoother version of the original image uI .

Remark 1 We point out that the initial data is more regular with respect to classical parabolic theory but we
need to ensure the well-posedness of the diffusion coefficients RQ,u. In the numerical approximation of the
equation (4) we obtain a suitable initial data from the original signal uI by using a convolutional operator with
a Gaussian filter.

2.1 Rothe method and a priori estimates

In order to prove the existence of a solution u∈ L2(0,T ;V )
⋂

C0(0,T ;L2) we consider the so called Rothe-type
approximation [11] of (4) which consists in using time discretization to approximate the evolution problem by
a sequence of elliptic ones. To show the convergence of such a process, a common approach is to follow the
following steps:

1. for each approximate problem, prove the existence of a solution, and derive a-priori estimates satisfied by
any solution;

2. then use compactness arguments to show (up to the extraction of a subsequence) the existence of a limit;
3. Finally, prove that the previous limit satisfies the original problem.

Let 0 = t0 < t1 < .. . < tN = T denote the time discretization with ti+1 = ti +τ , where τ is the time step. Let ui
be the solution of linear equation,

ui−ui−1

τ
−div

(
g(RQ,ui−1(x, t))∇ui

)
= 0, (5)

with u0 = u(x,0), and homogeneous Neumann boundary conditions. Let δui = (ui− ui−1)/τ the backward
difference at time ti, we understand the solution of (5) in the variational sense, i.e., we look for ui ∈ V , for
i = 1, . . . ,N satisfies the identity

(δui,v)+
(
g(RQ,ui−1)∇ui,∇v

)
= 0, ∀v ∈V, (6)

where u0 ∈V is given. By introducing the bilinear form aτ,w, on V ×V ,

aτ,w = (u,v)+ τaw(u,v), aw(u,v) = (g(RQ,w)∇u,∇v), (7)

for a given w ∈V , we can rewrite the previous identity as,

aτ,ui−1(ui,v) = (ui−1,v), ∀v ∈V. (8)

The term aw(u,v) in (7) is weakly coercive, i.e., there exist two constants c1 > 0 and c2 > 0 such that

aw(u,u)+ c2‖u‖2
0 ≥ c1‖u‖2

1, ∀u ∈V. (9)

Furthermore, the form aτ,w is continuous and it verifies

aτ,w(u,u)≥ τc1‖u‖2
1 +(1− τc2)‖u‖2

0,
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then it is V−elliptic if τc2 ≤ 1. Under this coercivity condition, the existence and the uniqueness of ui ∈ V ,
i = 1, . . . ,N from (6) is guaranteed by the Lax-Milgram Theorem [17]. Now, we introduce the so-called Rothe
function

u(N)(t) = ui−1 +(t− ti−1)δui, for ti−1 ≤ t ≤ ti, i = 1, . . . ,N (10)
which we consider as a linear piecewise approximation of the problem (4). Together with u(N) we consider the
step function

ū(N)(t) = ui, for ti−1 < t ≤ ti, i = 1, . . . ,N (11)
with ū(N)(0) = u0. In that follows C denotes the generic positive constant.

Lemma 1 Let ui, i = 1, . . . ,N, be the solution of problem (8), then

max
1≤i≤N

‖ui‖0 ≤C, (12)

hold uniformly for N, and ū(N)(t), u(N)(t) ∈ L∞(0,T ;L2).

Proof First we test (6) at time tk+1 by v = τuk+1 and sum over k = 0, . . . , p ≥ 1, we obtain (let us define
auk(u,v) = ak(u,v)),

p

∑
k=0

(uk+1−uk,uk+1)+ τ

p

∑
k=0

ak(uk+1,uk+1) = 0, p = 1, . . .(n−1).

By using the identity 2(u− v,u) = (u− v,u− v)+(u,u)− (v,v), we have
p

∑
k=0
‖uk+1−uk‖2

0 +‖up+1‖2
0−‖u0‖2

0 +2τ

p

∑
k=0

ak(uk+1,uk+1) = 0,

Then, from (9),
p

∑
k=0
‖uk+1−uk‖2

0 +‖up+1‖2
0−‖u0‖2

0 +2τc1

p

∑
k=0
‖uk+1‖2

1−2τc2

p

∑
k=0
‖uk+1‖2

0 ≤ 0,

which can be rewritten as follows
p

∑
k=0
‖uk+1−uk‖2

0 +‖up+1‖2
0 +2τc1

p

∑
k=0
‖uk+1‖2

1 ≤ 2τc2

p

∑
k=0
‖uk+1‖2

0 +‖u0‖2
0,

that is

sp+1 ≤ ‖u0‖2
0 +2τc2

p

∑
k=1
‖uk‖2

1,

where

sp =
p−1

∑
k=0
‖uk+1−uk‖2

0 +
1
2
‖up‖2

0 +2τc1

p−1

∑
k=0
‖uk+1‖2

1.

By the inequality 2sp ≥ ‖up‖2
0 and by the definition of sp the following estimate is obtained

sp+1 ≤ ‖u0‖2
0 +4τc2

p

∑
k=1

sk.

Applying the discrete Gronwall lemma we have the following inequalities,

sp ≤ ‖u0‖2
0 (1+4τc2)

p−1 for p = 1, . . . ,N.

Then
sp ≤ ‖u0‖2

0 (1+4τc2)
N = ‖u0‖2

0 (1+4τc2)
T/τ for p = 1, . . . ,N.

The function τ → (1+4τc1)
T/τ is bounded for τ ∈ (0,+∞), then, for a suitable constant C̄,

max
p

‖up‖2
0

2
≤max

p
sp ≤ ‖u0‖2

0C̄ =C, (13)

which leads to the a-priori estimates in (12).
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Lemma 2 The estimates

τ

N

∑
k=1
‖∇uk‖2

0 ≤C,
N

∑
k=1
‖uk−uk−1‖2

0 ≤C (14)

hold uniformly with respect to N. Furthermore, there is a constant C such that

max
0≤t≤T

‖u(N)(t)‖2
0 +

∫ T

0
‖ū(N)(t)‖2

1dt ≤C‖u0‖2
0, (15)

∫ T

0
‖ū(N)(t)−u(N)(t)‖2

0dt ≤Cτ‖u0‖2
0, (16)

where u(N)(t) and ū(N)(t) are, respectively, the Rothe function, see (10), and the step function, see (11).

Proof The estimates followed by the upper bound obtained in the Lemma 1, see (13),

p

∑
k=0
‖uk+1−uk‖2

0 +
1
2
‖up+1‖2

0 +2τc1

p

∑
k=0
‖uk+1‖2

1 ≤C‖u0‖2
0, (17)

and from the properties of the bilinear form ak(u,v).
We have

max
0≤t≤T

‖u(N)(t)‖2
0 = max

0≤n≤N
‖un‖2

0 and
∫ T

0
‖ū(N)(t)‖2

1dt = τ

N

∑
n=1
‖un‖2

1,

and, from (13),

max
0≤t≤T

‖u(N)(t)‖2
0 +

∫ T

0
‖ū(N)(t)‖2

1dt ≤C‖u0‖2
0.

Now, ∫ T

0
‖ū(N)(t)−u(N)(t)‖2

0dt = τ

N−1

∑
n=0

∫ 1

0
‖ū(N)((n+ s)τ)−u(N)((n+ s)τ)‖2

0ds =

=τ

N−1

∑
n=0

∫ 1

0
(1− s)2‖un+1−un‖2

0ds =
τ

3

N−1

∑
n=0
‖un+1−un‖2

0.

Using the inequality (17) we can state∫ T

0
‖ū(N)(t)−u(N)(t)‖2

0dt ≤ τC‖u0‖2
0.

2.2 Compactness and passage to the limit

Lemma 3 There exists u ∈ L2(0,T ;V ) such that (in the sense of subsequences)

ū(N) ⇀ u in L2(0,T ;V );

u(N) ⇀ u in L2(0,T ;V ).

Proof From the estimates of Lemma 2 we can deduce

‖u(N)‖L∞(0,T ;L2)+‖ū(N)‖L∞(0,T ;V ) ≤C
‖ū(N)−u(N)‖L2(0,T ;L2) ≤C

√
τ.

(18)

It follows that, at least for a subsequence,

u(N) ∗⇀ u in L∞(0,T ;L2)

ū(N) ⇀ z in L2(0,T ;V ).
(19)
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But, the (18) imply that
ū(N)−u(N) → 0 in L2(0,T ;L2),

then z = u in (19) and
ū(N) ⇀ u in L2(0,T ;V ). (20)

We recall that ΩT = Ω × (0,T ), the estimates (12) and (14) imply the equicontinuity of the Rothe approxima-
tion u(N), together with the step function u(N).

Lemma 4 There exists u ∈ L2(0,T ;V ) with ∂u/∂ t ∈ L2(0,T ;V ∗) such that (in the sense of subsequences)

u(N)→ u, u(N)→ u in L2(ΩT );

∂u(N)

∂ t
⇀

∂u
∂ t

in L2(0,T ;V ∗).

Proof Let s ∈ (0,T ), we consider the time translate variation of the approximation u(N)(t),

Js =
∫ T−s

0
‖u(N)(t + s)−u(N)(t)‖2

0dt.

There exists an integer k such that kτ ≤ s≤ (k+1)τ , then, by the definition of the step function u(N),

Js = τ

N−k

∑
l=0
‖ul+k−ul‖2

0.

From the Lemma 1 and 2 it follows that
Js ≤Ckτ,

for a suitable constant C, and the time translate estimate,∫ T−s

0
‖u(N)(t + s)−u(N)(t)‖2

0dt ≤C(s+ τ). (21)

By using again the estimates (12), (14), and the definition of the step approximation u(N), it is easy to show
that ∫ T

0
‖u(N)(t)‖2

1dt ≤Cu. (22)

Given a vector ξ ∈ R2, let Ωξ = {x ∈ Ω : x+ ξ ∈ Ω} and Ωξ ,T = Ωξ × (0,T ). From the inequality (22) we
have the following space translate estimate,∫

Ωξ ,T

‖u(N)(x+ξ , t)−u(N)(x, t)‖2
0 dxdt ≤Cξ |ξ |2, for |ξ | sufficiently small. (23)

Due to the time and translate estimates, respectively (21) and (23), the set {u(N)}N is compact in L2(ΩT )
because of Kolmogorov’s relative compactness criterion [7,13]. The, we can conclude u(N) −→ u in L2(ΩT )
(and also pointwise in ΩT ),and u ∈ L2(0,T ;V ). From the definition of u(N) and u(N), and from Lemma 2 it
follows the estimate ∫ T

0
‖u(N)(t)−u(N)(t)‖2

0dt ≤ Cd

N
,

then u(N) −→ u in L2(ΩT ).
Observing that ∂u(N)/∂ t = (ui−ui−1)/τ , for t ∈ (ti−1, ti), we can compute∥∥∥∂u(N)

∂ t

∥∥∥
∗
= sup

v∈V, ‖v‖≤1
|((ui−ui−1)/τ,v)| .

Then, the following estimate holds uniformly for N,∫ T

0

∥∥∥∂u(N)

∂ t

∥∥∥2

∗
dt ≤C∗,

and we can deduce the weak convergence of the time derivative of the Rothe approximations u(N).
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Lemma 5 With the notation of Lemma 4,

u(N)→ u, ū(N)→ u in L2(0,T ;V );

Proof Now we shall prove the L2(0,T ;V ) convergence of u(N) to u (which belongs to the space L2(0,T ;V )).
So, let us test (6) by v = u(N)−u and integrate it over the time interval (0,T ) by using the partition from the
subinterval (ti−1, ti),

N

∑
i

∫ ti

ti−1

[
((ui−ui−1)/τ,ui−u)+

(
g(RQ,ui−1)∇ui,∇ui−∇u

)]
dt = 0. (24)

From the definition of the Rothe function u(N) we observe that for t ∈ [ti−1, ti],

∂u(N)

∂ t
=

ui−ui−1

τ
= δi.

Moreover, see Lemma 4, ∂u(N)/∂ t ⇀ ∂u/∂ t, then, in the limit N→ ∞,∫ ti

0
<

∂u(N)

∂ t
,u > dt →

∫ ti

0
<

∂u
∂ t

,u > dt, (25)

and from the integration by part formula,∫ ti

0
<

∂u(N)

∂ t
,u > dt → 1

2
‖u(ti)‖2

0−
1
2
‖u0‖2

0. (26)

In order to get an estimate for the backward difference δi we consider the variational equation (6) with v =
(ui−ui−1), adding for i = 1,2, . . . ,N, using (9) and assuming 2τc2 ≤ 1, we state

1
τ

N

∑
i=1
‖ui−ui−1‖2

0 ≤C‖u0‖2
0. (27)

Moreover, using a discrete analog of Leibniz’ product rule we have
N

∑
i=1

(ui−ui−1,ui) =
1
2
‖uN‖2

0−
1
2
‖u0‖2

0 +
1
2

N

∑
i=1
‖ui−ui−1‖2

0. (28)

From the Lemma 4, the identity (28), and the inequality (27) we deduce that

lim
N→∞

N

∑
i

∫ ti

ti−1

((ui−ui−1)/τ,ui−u)dt = 0. (29)

We recall that 1≥ g(RQ,ui−1)≥ g(1) = ε , then we obtain

ε

∫ T

0
‖∇u(N)−∇u‖2

0dt ≤
N

∑
i

∫ ti

ti−1

(
g(RQ,ui−1)(∇ui−∇u),∇ui−∇u

)
dt.

From (24), and the above inequality, we have

ε

∫ T

0
‖∇u(N)−∇u‖2

0 dt +
N

∑
i

∫ ti

ti−1

(
g(RQ,ui−1)∇u,∇ui−∇u

)
dt

≤
N

∑
i

∫ ti

ti−1

((ui−ui−1)/τ,u−ui)dt.

Now, from the (29), the weak convergence as in Lemma 3, we can find a vanishing sequence {CN}, CN ∈
R, limN→∞ CN = 0 such that

ε

∫ T

0
|∇u(N)−∇u|2dt ≤CN ,

which implies ū(N)→ u in L2(0,T ;V ). Using Lemma 2 it is also possible to prove the convergence u(N)→ u
in L2(0,T ;V ).
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2.3 Existence of a variational solution

In order to prove that the limit u is a variational solution of (4) we have to consider the property of the stability
of the kernel g(RQ,u) with respect a variation in the space V . First, we introduce some results from the measure
theory.

Lemma 6 (Vitali covering) Let ∪n
i=1xi +Q/3 be a finite cover of a set Ω̃ ⊆ Ω . Then there exists a finite

sub-cover ∪m
j=1{x j +Q} such that {x j +Q/3, j = 1, . . . ,m} are disjoint.

Corollary 1 Let Ω̃ ⊆Ω . Then there exists x0, . . . ,xN0 ∈ Ω̃ such that Ω̃ ⊆ ∪N0
j=1{x j +Q} and N0 ≤ 32|Ω |

|Q|qΩ
.

Proof Denote by Ω̂ the closure of Ω̃ in Ω . Take the open cover of Ω̂ made by C = {x+Q/3,x ∈ Ω̃}. Since
Ω is compact, then Ω̂ is compact and hence there exists a finite cover of Ω̂ made by {∪n

i=1{xi +Q/3}}. By
the Vitali covering Lemma, there exists a finite sub-cover ∪N0

j=1{x j +Q} such that {x j +Q/3, j = 1, . . . ,N0}
are disjoint. Moreover,

|Ω | ≥ |Ω ∩ (∪N0
j=1{x j +Q/3})|=

N0

∑
j=1
|Ω ∩{x j +Q/3})| ≥ qΩ N0

|Q|
32 ,

the last inequality being a consequence of (3), and since |{x j +Q/3}|= |Q/3|= |Q|/32.

The following result shows the stability of the kernel g(RQ,u) when the limiting function is not locally
constant.

Lemma 7 The function RQ,U (x, t) is continuous at U ∈V on the set{
(x, t) :

∫
x+Q
|∇U(y, t)|1dy > 0

}
.

Proof Denote by

NU (x, t) = sup
{∫

Q
∇U(x+ y, t)∇h(y)dy, |∇h(x)|1 ≤ 1 ∀x,h harmonic in Q

}
,

DU (x, t) =
∫

x+Q
|∇U(y, t)|1dy,

and by

|∇u|1 =
∣∣∣ ∂u
∂x1

∣∣∣+ ∣∣∣ ∂u
∂x2

∣∣∣, |∇u|2 =

√(
∂u
∂x1

)2
+
(

∂u
∂x2

)2
,

the seminorm | · |1 and, respectively, | · |2, then |∇u|1√
2
≤ |∇u|2 ≤ |∇u|1. Let Un→U in L2(0,T ;V ). By definition,

for a.e. t ∈ (0,T ), ∫
Ω

|∇U−∇Un|22 dy→ 0,

and hence

1
2 · |Ω |

(∫
Ω

|∇U−∇Un|1 dy
)2
≤
∫

Ω

( |∇U−∇Un|1√
2

)2
dy≤

∫
Ω

|∇U−∇Un|22 dy→ 0. (30)

As a direct consequence,

DUn(x, t)→ DU (x, t)> 0, for a.e. (x, t) :
∫

x+Q
|∇U(y, t)|1dy > 0. (31)
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For what concerns NU , if |∇h(x)|1 ≤ 1 then we get |∇h(x)|∞ ≤ 1. Then∣∣∣∫
Q

∇U1(x+ y, t)∇h(y)dy−
∫

Q
∇U2(x+ y, t)∇h(y)dy

∣∣∣
≤
∫

Q |∇U1(x+ y, t)−∇U2(x+ y, t)∇h(y)|dy
≤ ‖∇U1(x+ ·, t)−∇U2(x+ ·, t)‖1 ‖∇h‖∞

≤
∫

x+Q |∇U1(y, t)−∇U2(y, t)|1 dy

and hence, for a.e. t,

∣∣∣sup
{∫

Q
∇U1(x+ y, t)∇h(y)dy, |∇h(x)|1 ≤ 1 ∀x,h harmonic in Q

}
− sup

{∫
Q

∇U2(x+ y, t)∇h(y)dy, |∇h(x)|1 ≤ 1 ∀x,h harmonic in Q
}∣∣∣

≤ sup
{∣∣∣∫

Q
∇U1(x+ y, t)∇h(y)dy−

∫
Q

∇U2(x+ y, t)∇h(y)dy
∣∣∣, |∇h(x)|1 ≤ 1 ∀x,h harmonic in Q

}
≤
∫

x+Q
|∇U1(y, t)−∇U2(y, t)|1 dy.

By (30), NUn(x, t)→ NU (x, t), which concludes the proof together with (31).

Remark. In the one-dimensional case the continuity of the function RQ,U (x, t) with respect to the U ∈ V is
much simpler. In fact, in this case, we have

NU (x, t) =
∣∣∣∣∫ x+δ

x
u′(s)ds

∣∣∣∣
DU (x, t) = ε +

∫ x+δ

x

∣∣u′(s)∣∣ds.

Lemma 8 Let un→ u in V . For any w ∈C1(Ω ;R) and t ∈ (0,T ),

lim
n→∞

(∫
Ω

g(RQ,un)∇un∇wdx−
∫

Ω

g(RQ,u)∇u∇wdx
)
= 0.

Proof Note that ∣∣∣∫
Ω

g(RQ,un)∇un∇wdx−
∫

Ω

g(RQ,u)∇u∇wdx
∣∣∣ (32)

≤
∫

Ω

|g(RQ,un)| |(∇un−∇u)∇w|dx+
∫

Ω

|g(RQ,un)−g(RQ,u)| |∇u∇w|dx.

For what concerns the RHS of (32), the first term vanishes as n goes to infinity since g is bounded. For the
second term of the RHS of (32), we get∫

Ω

|g(RQ,un) − g(RQ,u)| |∇u∇w|dx =
∫

Ω̃ ε

|g(RQ,un)−g(RQ,u)| |∇u∇w|dx

+
∫

Ω\Ω̃ ε

|g(RQ,un)−g(RQ,u)| |∇u∇w|dx (33)

where,

Ω̃
ε =

{
x :
∫

x+Q
|∇u(y)|1dy <

ε|Q|qΩ

g(0)K32|Ω |
≤ ε

g(0)KN0

}
,
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K is such that max(| ∂w
x1
|, | ∂w

x2
|) ≤ K, and N0 is defined in Corollary 1. The first term of the RHS of (33) is

uniformly bounded (in n) by ε: by Corollary 1∫
Ω̃ ε

|g(RQ,un) − g(RQ,u)| |∇u∇w|dy≤ g(0)K
∫

Ω̃ ε

|∇u(y)|1 dy

≤ g(0)K
∫
∪N0

j=1{x j+Q}
|∇u(y)|1 dy

≤ g(0)K
N0

∑
j=1

∫
x j+Q
|∇u(y)|1 dy

≤ g(0)KN0

∫
x j+Q
|∇u(y)|1 dy≤ ε.

The second term of the RHS of (33) vanishes as a consequence of the Dominated Convergence Theorem. In
fact, |g(RQ,un)−g(RQ,u)∇u∇w| ≤ g(0)|∇u∇w| ∈ L1; and g(RQ,un)→ g(RQ,u) on Ω \ Ω̃ ε by Lemma 7.

Now we prove that the limit u is a variational solution of (4).

Lemma 9 (Existence) For any u0 ∈V , there exists u ∈ L2(0,T ;V ) with ∂u
∂ t ∈ L2(0,T ;V ∗) such that u(x,0) =

u0(x) on Ω , ∂u
∂n = 0 on Γ × (0,T ) and

∫
Ω

∂u
∂ t

wdx =
∫

Ω

div(g(RQ,u)∇u)wdx, ∀w ∈C1
0(Ω).

Proof By Lemma 4 and Lemma 5, there exists a sequence u(N) such that

u(N)→ u in L2(0,T ;V ),
∂u(N)

∂ t
⇀

∂u
∂ t

in L2(0,T ;V ∗).

Let φ ∈C∞
c (0,T ) be a real-valued test function and w ∈C1

0(Ω). Taking v(x, t) = φ(t)w(x) as a test function
and integrating the result with respect to t, we find that

∫ T

0

(∫
Ω

∂u(N)

∂ t
v(x, t)dx+

∫
Ω

g(RQ,uN )∇u(N)
∇v(x, t)dx

)
dt = 0.

We take the limit of this equation as N→ ∞. Since the function t→ φ(t)w belongs to L2(0,T ;V ), we have

∫ T

0

∫
Ω

∂u(N)

∂ t
v(x, t)dxdt −→

∫ T

0

∫
Ω

∂u
∂ t

v(x, t)dxdt.

Moreover, Lemma 8 shows that∫ T

0

(∫
Ω

g(RQ,uN )∇u(N)
∇wdx

)
φ(t)dt→

∫ T

0

(∫
Ω

g(RQ,u)∇u∇wdx
)

φ(t)dt

It therefore follows that u satisfies∫ T

0
φ(t)

(∫
Ω

∂u(N)

∂ t
wdx+

∫
Ω

g(RQ,u)∇u∇wdx
)

dt = 0, ∀φ ∈C∞
c (0,T ),

and hence, for almost every t ∈ (0,T ),∫
Ω

∂u
∂ t

wdx =
∫

Ω

div(g(RQ,u)∇u)wdx, ∀w ∈C1
0(Ω).



A new nonlocal nonlinear diffusion equation for data analysis 17

3 Numerical experiments

We report here some numerical test for the one-dimensional case that is for 1D signal. We point out that a
digital signal/image is usually defined on a uniform subdivision of an interval or a rectangular domain. For the
one-dimensional case we consider a finite differences approach. In that follows we intend to show the good
properties of the new method while a comparison with other approaches and the numerical analysis, both for
1D and 2D cases, of the considered approximation will be considered in a future paper.

3.1 1D problem

We approximate the 1D non linear diffusion equation (2), for x ∈ [0,L], t ∈ [0,T ], coupled with homogeneous
Neumann conditions for x = 0, x = L. We introduce the lattice of coordinates (ih,kτ) where h = L/N, N > 1
integer, 0 ≤ i ≤ N; τ = T/M, M > 1 integer, 0 ≤ k ≤ M. We denote uk

i an approximation of u(ih,kτ). For
simplicity in numerical tests we will choose the parameter δ (the length of the window for the non local
term) as δ = lh, where l ∈ N. We approximate the local variation LV[xi,xi+δ ]

(
uk
)

by LVi = |uk
i+l −uk

i |, and we
define TV k

i = ∑
l−1
j=0 |uk

i+ j+1−uk
i+ j| as a discretization of the total variation TV[xi,xi+δ ]

(
uk
)
. We also define the

following quantities (where g(s) is the edge-stopping function),

gk
i = g

(
LVi

ε +TVi

)
gk

i+ 1
2
=

gk
i +gk

i+1

2

∂xuk+1
i =

uk+1
i+1 −uk+1

i

h
φ

k
i+ 1

2
= gk

i+ 1
2
∂xuk+1

i

[∂x (g∂xu)]ki =
φ k

i+ 1
2
−φ k

i− 1
2

h

=
gk

i−1 +gk
i

2h2 uk+1
i−1 −

gk
i−1 +2gk

i +gk
i+1

2h2 uk+1
i +

gk
i +gk

i+1

2h2 uk+1
i+1

= β
k
i uk+1

i−1 −α
k
i uk+1

i + γ
k
i uk+1

i+1

Then we can state our semi-implicit numerical scheme

Uk+1−Uk

τ
= A

(
Uk
)

Uk+1

where Uk is the vector of the values uk
i , and the matrix A
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)

is defined as
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. . .
. . .
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Then at each time step we have to numerically solve the following linear system,(

I− τA
(

Uk
))

Uk+1 =Uk

Let B
(
Uk
)

the matrix
(
I− τA

(
uk
))

, it is easy to show that B is a strictly diagonally dominant matrix, and then
it is non singular.
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Fig. 3 On the left: 5s simulated membrane potential signals of a neuron (firing rate = 5Hz). On the right: Gaussian noise was
added to the original signal.

3.2 1D Test

In this section we present numerical experiments demonstrating some features of the model (2). The signals
considered here are biological signals related to simulations and experiments in neurophysiology [1,15]. In
Figure 3 we show a signal that represents the action potential (in milliVolt=mV) of a neuron within a small
neural network. Then, we added a Gaussian noise to the original signal and applied our method for the recon-
struction of the signal. The mesh size h ∼ 10−4 depends on the sampling rate of the potential and it cannot
change. The parameter ε has the same order of magnitude as h.
In Figure 4 we have reported the numerical results for different choices of the parameter δ ; (A) δ = 50h, (B)
δ = 20h, (C) δ = 10h, (D) δ = 5h. In these numerical test the final (pseudo-)time is T = 2. There are few and

Fig. 4 The reconstructed signal for different values of the parameter δ (window width in which to evaluate the relationship between
total and local variation).

negligible differences between the various reconstruction signals. The only difference concerns the height of
the peaks of the reconstructed signal, which are lower than the original signal.
In the second numerical test we considered different types of noise. In particular we added colored noise sig-
nal with a power spectral density of 1/| f |α over its entire frequency range. In Figure 5 we show a signal with
different noise: pink-noise (α = 1), red-noise or Brownian noise (α = 2), and the white noise or Gaussian
noise (α = 0). All these types of noise can appear in electrophysiological signals. In Figure 6 it is possible
to observe the reconstructed signals, for each test we fixed both the δ = 20h parameter and T = 2. The worst
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Fig. 5 A signal with different types of noise: pink-noise, red-noise, white-noise.

reconstruction seems to be in correspondence with the pink-noise but it must be emphasized that a more in
depth experimentation would be needed depending on the specific characteristics of the noise. Finally we con-

Fig. 6 Reconstructed signals in the presence of different types of noise: pink-noise, red-noise, white-noise.

sider a different signal that does not present too pronounced peaks. For this we have selected a row from a
digital image (which we can consider as a “typical row”, or a column, with different patterns and a Gaussian
noise). Figure 7 shows the behavior of the signal evolution for different final times T . The numerical solution
U seems to reach a steady state in which the monotonicity regions of the signal are preserved while the noise
level is reduced.

3.3 1D Application

In this numerical experiment we consider a recorded calcium imaging data from a 3D cultures of cortical
neurons. The sampling rate was 65Hz and the sampling time interval was about 8 seconds. The data was
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Fig. 7 Example of the numerical behavior of a row of a digital image: (A) the initial row, (B) the row after 100 iterations, (C) the
numerical result after 300 iterations, (D) the row at the final time (500 iterations).

collected in the Department of Neuroscience and Brain Technologies of the Fondazione Istituto Italiano di
Tecnologia. In Figure 8 we show a typical trace of the calcium signal together with different smoothed signals
at different time T . In the test we used τ = 0.1, δ = 20, and h = 1/65, the initial data U0 is obtained by the
convolution of the original signal with a Gaussian filter with σ = 0.01.

4 Conclusion

Image denoising/smoothing is one of basic issues in image processing. It plays a key preliminary step in many
computer based vision systems, but it is also a starting point towards more complex tasks. Since image noise
removal represents a relevant issue in various image analysis and computer vision problems, it is a challenge
to preserve the essential image features, such as edges and other sharp structures during the smoothing pro-
cess. The feature preserving image noise reduction still represents a challenging image processing task. In this
paper we propose a new method based on a nonlinear and nonlocal diffusion equation. The new approach has
already been successfully applied in the analysis of membrane potentials in a neural network [1], and for data
analysis of recorded calcium signals in a 3D culture cells [15]: these denoising experiments provided very
encouraging results. Here we focused on the mathematical analysis of the model and its numerical approxima-
tion. In particular, we provided an existence theorem for the variational solution for the 1D and 2D case and a
numerical scheme for the one-dimensional model.
We observe that the uniqueness of the solution of the novel equation remains an open problem for the 2D case
(while can be guaranteed for the 1D case). Also the analysis of suitable numerical schemes should be com-
pleted. We have already developed some preliminary results that will be reported in a forthcoming paper. In
particular, it is possible to show that the semi-implicit numerical scheme satisfies the same discrete scale-space
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Fig. 8 Reconstruction with the non linear, non local diffusion equation (2) of a Calcium trace. The original signal was obtained in
the IIT lab based in Genova (Italy). First line, on the left the original signal, on the right the solution for T = 300. Second line, on
the left the solution for T = 400, on the right the solution for T = 500. In all numerical experiments, δ = 20, τ = 0.1.

properties as for the Perona-Malik method. Finally, a more complete comparison with other methods has to be
done, but this goes beyond the aims of this paper.
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