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A quantitative study of discrete-time simulations for a single reed physical model is presented. It is
shown that when the continuous-time model is discretized, a delay-free path is generated in the
computation. A general solution is proposed to this problem, that amounts to operating a geometrical
transformation on the equations. The transformed equations are discretized using four different
numerical methods. Stability properties of each method are assessed through analysis in the
frequency domain. By comparing the discrete and continuous frequency responses, it is studied how
the physical parameters are mapped by each method into the discrete-time domain. Time-domain
simulations are developed by coupling the four digital reeds to an idealized bore model. Quantitative
analysis of the simulations shows that the discrete-time systems produced by the four methods have
significantly different behaviors, even when high sampling rates are used. As a result of this study,
a general scheme for accurate and efficient time-domain simulations of the single reed model is
proposed. ©2002 Acoustical Society of AmericdDOI: 10.1121/1.1467674

PACS numbers: 43.75.H4\DP]

I. INTRODUCTION single reed instrument. Due to its compactness and the low
number of parameters, this reed model can be efficiently
used for sound synthesis purpoées.

A more accurate model takes into account other me-
chanical properties of the reed, namely its mass and the dis-
sipation due to internal losses and air friction. In a first ap-

zgﬁﬁ ' it:feascosq[ztsgsgfnr(;ﬁ;égeréf‘:r?ggt?g a;sd ttrrt];:(cri?eer)d " proximation, these elements are incorporated in the model by
P y " _describing the reed as a damped second-order osciti&for.

'I_'he resonator can be descnl_aed through its reflection funC‘T’his linear mechanical system is coupled with the nonlinear
tion (see Schumachbr In this case, the pressure wave

_ . . . . _ fluid dynamical equation. For clarity, in the following this
p (t) reflected from the bore is obtained as time convolutlonmodel is referred to as thgynamicreed model.

of the reflection function with the incoming pressure wave In order to develop numerical simulations for the dy-

Numerical simulations are commonly used by musical
acousticians for investigating experimentally the functioning
of single reed wind instruments® A widely accepted ap-
proach divides the instrument into two main functional

ST, . . ~_equation, solving this loop is not trivial, unless one resorts to
dissipation phenomena, are taken into account by insertin d 9 P

L . : . (ﬁeranve solvers. Second, a numerical technique has to be
filtering elements in and between sections. Waveguide mod- . .

: . . ..~ chosen that preserves with reasonable accuracy the main
els are particularly accurate and efficient for simple cylindri-

cal geometries, such as an idealized clarinet bore properties of the physical system.
. ' . ' Concerning the first problem, many authgsse Gazen-
The airflow through the reed slit can be related to the 9 b y @

reed obenina and pressure throuah a nonlinear equation dg(_al et al3) compute the discrete-time equations by inserting
P Y P 9 q fictitious delay in the delay-free path. However, the nu-

rived from the Bemoullilaw.In the simplest approximation, merical error introduced in this way can lead to instability,

the reed is assumed to move in phase with the driving pres- ! .
. . . . . o iall low sampling r . Anderson an Oy
sure and is described only in terms of its stiffness. This Isespeca y at low sampling rates. Anderson and Spowye

. N N roved analytically that the insertion of a delay element in a
sometimes referred to as theasistaticapproximatiorf Us- P y y y

. . L . . dynamical system deteriorates its stability properties. The
ing this approximation, the exciter can be described as a ) : . o

. Second problem, i.e., the choice of an accurate discretization
nonlinear map that relates flow and pressure at the bore e

n- . . . .
LTI technique, is often neglected in the literature, and the equa-
2 ' y
tranc_e(se_e Mclntyrc_aet al.). Despite its S|mpI|C|ty, such_a tions are usually discretized using simple methésisch as
guasistatic model is able to capture the basic nonline

mechanisms that generate self-sustained oscillations inatrhe Euler method or the impulse invariant methatat in-
9 ffoduce noticeable numerical artifacts in the simulations.

In this paper, an accurate and efficient discretization
3Electronic mail: avanzini@dei.unipd.it scheme fqr the dynamic rleed model is Qeveloped. The delay-
YElectronic mail: rocchesso@sci.univr.it free loop in the computational scheme is solved by means of
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TABLE |. Variables and constants in the reed model.

Quantity Symbol Value
Sampling period Ts (s
Sampling rate Fs Hz)
Frequency of the continuous-time system w, (rad/9
Frequency of the discretized systems Wy (rad/y
Reed opening h (m)
Reed equil. opening ho 0.4103m
Reed displacement Ve (m)
Reed equil. displ. Yo (m)
Maximum allowed displ. Ym (m) . . )
Reed mass/area Ly 0.0231 kg/r FIG. 1. Schematic representation of the reed—mouthpiece system.
Effective flow surface S 1.46 104 m?
Reed resonance freq. or 23250 rad/s time domains. The transforms of the continuous and discrete-
Reed damping Gr 3000 s* time signals are written, respectively, ¥és) andX(z)
Amplitude parameter A 0.079 7 nm/(N?Rg) 9 ’ P Y )
Mouth pressure Pm (Pa
Mouthpiece pressure P (Pa Il. THE PHYSICAL MODEL
Pressure drop Ap (Pa
Mouthpiece vol. flow u (m%/s) A. Exciter
B 3

@Z\\',Vet?rzoplfdgmz zl;tthe bore ;; ;”;g% 133 kg/rhs The dynamic model described below relies on the fol-
Speed of sound c 347 mis lowing assumptions: under normal playing conditions, oscil-
Length of the bore L (m) lations occur mainly in the vertical direction, therefore a
Bell cutoff freq. feo 1-10° Hz single degree of freedotti.e., the reed tip vertical displace-
Er' wave from the bore p. (Pa mend can be reasonably assumed; the reed resonances are

r. wave to the bore p (Pa

well above the main frequency component of the driving

pressure; therefore, only the effect of the first reed resonance

needs to be modeled; the reed dimensions are small with

the so-calledk method recently proposed by Boriet al?®  respect to typical wavelengths in the resonator; thus, pressure

The method operates a geometric transformation on the noman be thought of as constant along the reed internal surface.

linearity, in such a way that the delay-free path can be comSee Fig. 1.

puted without introducing fictitious delays in the discrete- Consequently, many authdrs’ approximate the reed as

time equations. a harmonic oscillator, driven by the pressure diop=p,,
Given a general solution to noncomputability problems,—p across the slit. When the reed be@ts., when it strikes

four different numerical methods are used for discretizing thehe mouthpiecean inelastic collision occurs:

mechanical differential equations. The so-obtained “digital .. . 2 _

reeds” are analyzed in th?a frequency domain and comgared Ye()+ 0¥ () + orly (1) —yol =Ap(t)/ e,

to the continuous-time system. Then, the digital reeds are it Vi <VYm,

connected to a waveguide model of an ideal cylindrical bore, ] . (1)
and the resulting systems are compared in the time domain  Yr(D)=Ym and y,()=0, if y,=yp

through numerical simulations. The total airflowu at the mouthpiece is the sum of two

The choice of the discretization method is usually con-components. The first one is given by the flapthrough the
sidered to be noncritical when simulations are run at highs|it. The second component is produced by the reed motion
sampling rates. However, the results presented here shoghd depends on the reed velocity. This component is as-
that this choice does affect the behavior of the numericakumed to beS,y,, whereS, is the effective surface associ-

models noticeably, even at a sampling rate of several tens @fted with the flow. Hence, the total flowis given by
kHz (e.g., 44.1 kHz Among the considered techniques, the

1-step weighted samplaethod is found to be the most suit- u(t) =ur(t)+ Sy (). )
able choice for discretizing the dynamic reed model. ThisThe flow u; through the slit is related to the pressure drop
method accurately preserves the properties of the physicalp and to the opening via the nonlinear equation
fgzlt_etirrr:{eaggplltiiall(t)i\évn?mputatlonal costs make it suitable for Ap=F(u; h)==A-sgriup)|uj|“/h?. 3)

Section Il describes the dynamic reed model. NumericaWith the valuea=2, Eq.(3) is the Bernoulli equation for an
techniques are discussed in Sec. Ill. The frequency analysideal fluid in the static regime. Using experiments on real
presented in Sec. IV compares the digital reeds with thénstruments, Backdisound empirically a value foe differ-
continuous-time system. Finally, Sec. V discusses results otent from the theoretical one, namefy=3/2. Backus sug-
tained from time-domain simulations. gested that this discrepancy could be due to the particular

Notation and symbolsTable | summarizes the symbols shape of the slit. More recently, Hirschbeegall® ques-
used throughout the paper. The parameter values are takéioned the validity of Backus' experiments. These authors
from SchumachetEach time-varying variableis written as  developed a flow model that uses the standard Bernoulli
x(t) andx(n), respectively, in the continuous and discrete-equation(with a=2).
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In order to account for air inertance the telkipu; must

be ad_ded to the right-hand s_ide of E®) _(Me being the Wz“: U= pml| x= l:]f , )
effective mass through the slitThe inclusion of this term p-
complicates the model, since the computationuefis re-
quired. According to many authof$;* the effect ofM, is ~ and
generally small and this additional term can be neglected. 0 1 0 0 0 0
In summary, the dynamic reed model adopted in thisA:{ 2 , ={ 2 » =y } 9
work is fully described by the set of equatiofi, (2), (3). —or 0 o 0 0 K
0 —-S 0 1izg —2/Z, {_1/20}
11 o) ~[o o o) [ 0]
B. Resonator (10
The acoustical bore can be described by means of predhe beating condition in Ed1) turns into
sure wavesp~, which by de.flnmon a+re r(ilated to pres+sure w=0, if h=0. (11)
and airflow via the equationp=p*+p~ and u=(p
—p)/Z,y. If cylindrical geometry is assumed an_d boundaryA_ Solving the delay-free loop
losses are neglected, then the pressure ypaveoming from
the mouthpiece propagates freely with speeduntil it When the first equation in syste() is discretized, the
reaches the open end, terminated by the bell. The bell acts atructure of the resulting difference equation is found to be
a low-pass filter, reflecting low-frequency components inside w(n)=(n)+cAp(n). (12)

the bore and radiating high-frequency components. Typical _ _ o
values for the cutoff frequencfy, of the bell are between 1 The vectorw(n) is a linear combination of all the terms that
and 1.5 kHz. The pressure wape reflected from the bore are computable at time[namely,u(n) and past values of,

to the mouthpiece is thus given by u, andAp], while the vectorc weights the dependence wf
B N on Ap(n). Explicit expressions for botfv(n) andc depend
P7(s)=—Rc(s)exp(—s 2L/c)P"(s). (4)  on the numerical method actually used. The remaining equa-
R.(s) is the low-pass transfer function of the bell. The termtions in systen(7) can thus be written as
exp(=s 2L/c) accounts for the delayl2c in the trip along Xx(n)=%X(n)+kAp(n),
the bore. AP(M=F(X(n) +KAp(n)), 9

The waveguide model simulates the propagation with _ _ _
two delay lines. The lengtm, of each line is chosen in such Wherek=(Dc+f). The vectorX(n) =DW(n)+Eu(n) does

a way thatm,_cT.=L. In the discrete domain the delay term N0t depend om\p(n) and is therefore computable at each
exp(—s2L/c) is therefore replaced by 2™. The low-pass _step.. !n the ;econd equatigh3), the term_Ap(n) d_epends
bell filter is designed with standard techniqd@sirst an ana-  Implicitly on itself. In order to compute this equation, tke

log filter is designed using a fourth-order Butterworth real-methodis usec’ This method uses the implicit mapping
ization; then, a digital equivalerRy(z) is obtained with theorem t.o operate a geometric transformau.on on the nonlin-
usual methods from digital signal processing, such as th§a' functionF, and turns the second equatiel8) into an
bilinear transformation explicit dependence

—1 Ap(n)=F(X(n)+kAp(n)),

Fa1/ 5

Rd(z) - RC( 2 K method

.y . o = Ap(n)=F(X(n)). (14)
Summarizing, the digital bore model takes the incoming P . Xt o
pressure wav@™ from the exciter, and reflects it as an out- 1herefore, at each time-stepthe vectorX(n) is computed

going pressure wavp~ given by first, thenAp(n) is obtained through the new nonlinear re-
o o s lation F. Although F(X) is not available in closed form in
P (2)=—R4(2)Z P (2). (6)  most cases, an implementation can still be obtained without
resorting to iterative solvers, by storing the multivariable
1. NUMERICAL TECHNIQUES function F as a set of precomputed tabiés.

The waveguide techniques outlined in Sec. |1 B provide
a model for the resonator in the discrete time-space domair3. Discretizing the equations

This section discusses the discrete-time approximation of the The K method provides a robust and general means to
dynamic reed model. Equation), (2), and(3) generate the 5 te the difference equatiofi) accurately. Given such

system a method, different discretization techniques for syst@m
W(t)=Aw(t)+Bu(t)+cAp(t), can be compared. _
x(t)=Dw(t)+ Eu(t) + fAp(t), 7) Typlpal ch0|9es in the literature are the Euler method
Ap(t)=F(x(1)), apd the. impulse invariant .method. However, both these tech-
niques introduce artifacts in the numerical systems. Gazengel
where et al® discuss the use of a fourth-order Runge—Kutta solver.
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This method, although very accurate when high samplingvherek=1,2. Therefore, the differential equation is turned
rates are used, turns out to be unstable atiQwMoreover, into a second-order and a third-order difference equation,
it has high computational costs, since four evaluations of theespectively, by the WS1 and the WS2 methods.

nonlinear functiorF(x(n)) are needed at each time step. Van Details about the computation of the matrices can be
Walstijn'® uses a hybrid backward-centered scheme that agfeund elsewheré’*° The matricesS{” and S{) are interpo-
proximates the first derivative with the backward Euler rulelation matrices that depend only on the orderof the
and the second derivative with a centered difference. Onenethod, while®(T,) is the exponential matrix defined from
advantage of this approach is that the vectoasdk in Eqs.  ®(t)=exp(At). Computation ofWW,, W, involves calcu-
(12) and(13) are both zero; therefore, no delay-free paths ardation of thek+1 integralsf ®(T,—t)-t' dt (for I=1---k
created in the discrete-time equations. However, at each time 1). Therefore, computation of the coefficients in the differ-
stepn the Newton—Raphson method is used for computingence equatior(16) requires computation of transcendental
iteratively the flowu(n), and nine iterations are typically functions.

required. If system(7) is time-invariant, then computation of ma-
The following techniques are used in the rest of thistrices ®(Ts), W,, and W,, can be performed off-line,
paper. while these matrices need to be updated at control rate when

time-varying control parameters are used. In this latter case

(i) 1- and 2-step Adams-Moulton methgédl, 2 from ) )
now on. These are linear multistep methods, Whose:[:h(iI \r/nVStththodnsd I:?ivei h|ghert Cr?t:nf)létrauv\?t? alkc]?srtsr thlatri1mthe
stability and accuracy properties are known from the methods, a S 1S a potential drawback for rea-time
applications. However, in the case of low-order methods

numerical analysis literaturé. o
y (k=1,2), only a small number of coefficients needs to be

(i)  1- and 2-step weighted sample meth@d&S1, 2 from
now on. These have been introduced recently by Wanupdated. Moreover, Wan and Schnefdahow that the com-

and Schneide’ They are designed for generic linear putational costs can be lowered usiad hoc techniques

systems, and are based on a polynomial interpolatioﬁe'g" the columns oWV can be computed iteratively
of the input.

Higher-order methods are not used for two main reasdns: C- Properties of the methods
stability properties tend to deteriorate with increasing order,  Stability properties of an AM method are summarized

and(2) the computational costs become higher. by the shape of its region of absolute stabili§, (see
As Schneideet al.™* have pointed out, AM methods can Lamber.!® If the continuous-time eigenvalues, (I
be easily seen asto-z mappings in the complex plane =1,...N) of a stable,N-dimensional continuous system lie
1 insideR,, then the discretized system is stable. As far as the
1-z o S o .
(AM1) s=2F-——1, (159  bilinear transformation is concerned, it is known t#g is
1+z the whole left-halfs-plane. Therefore, continuous-time ei-
o genvalues\; with Re(\;)<0 are mapped into discrete-time
(AM2) s=12F (150  eigenvalues, with [p)|<1, and stability is preserved at any

5+8z 1-z7% . N ]
sampling rate. The AM2 method has worse stability proper

Note that the mappingl5a associated to the AM1 method ties, since its region of absolute stability is the finite subset
is the bilinear transformation. of the left-half s-plane shown in Fig. 2. This means that

Applying the AM methods to the first equation in system stability is preserved only at high sampling rates, so that the

(7) amounts to Laplace-transforming it and substituting eacf§i9envalues of the continuous system lie inside.
occurrence ofs with the corresponding mapping.5a or For the k-step WS methods, Wan and Schneider have
(15b. Therefore, the differential equation is turned into aSnown that the discrete-time elgekrj\ialues are the roots of the
second-order and a fourth-order difference equation, by thgharacteristic polynomialp(z) =z |2l = ®(Ty)|. There-
AM1 and the AM2 methods, respectively. If syste is  fore. continuous-time eigenvaluas map into discrete-time
time-invariant, then the AM methods provide a time- €i9€nvalues; through the relation
invariant discrete system. If some of the reed parameters are p,=exp(\|Ts). (17
varied over time, then the discrete system coefficients nee
to be updated at a suitable control rate.

Wan and Schneid&t have shown that thé&-step WS
method turns the first equation in systé into the differ-
ence equation

IC1! Re(\)) <0, then|p,|<1; therefore, stability is preserved at
any sampling rate. Note that the same relatibf) between
discrete- and continuous-time eigenvalues holds for the im-
pulse invariant method. Indeed, it can be verified that the WS
method withk=0 is completely equivalent to the impulse
u(n) invariant method.
w(n)=®(Tow(n—1)+W,S,® : Concerning accuracy, it is a general result that the k-step
u(n—k) AM method has ordek+ 1. This means that the methods
provide a global truncation error in time which has order
Ap(n) TE*L. For the WS methods, Wan and Schneider have given
+WApS<Akg : , (16 experimental results showing that a k-step method has order
Ap(n—Kk) k+1, the same as the corresponding AM method.
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When using AM and WS methodBl.(s) is turned into
a digital filter which is not a harmonic oscillator. Therefore,
the parameters,, u,, g, cannot be deduced from the co-
efficients of the discrete-time transfer functions. Instead, they
are extrapolated from the shape of the discrete-time fre-
quency responses. In particular, following Gazeneieal
the digital damping coefficient is defined in the following as
04=wg1— 0q2, Wherewy; 4, are the 3-dB cutoff frequencies
for the response of the discrete-time system.

- Im(s)

T

A. Adams—Moulton methods

Using the AM methods, the digital transfer functions
Haumi(2) and Hayo(2) are obtained by substitution of the
correspondings-to-z mapping[(15a), (15b)] in H¢(s). The
corresponding frequency responses are given by evaluation
atz=exp(wq/Fg). From Sec. IVHaw1(2) andH o (2) are

FIG. 2. Region of absolute stabilitiR , for the AM2 method. known to have order 2 and 4, respectively.

The frequency responsebly; and Hay, of the
discretized systems are plotted in Fig. 3 for the cases
IV. THE DIGITAL REEDS Fs=22.05kHz and F;=44.1kHz. Responses obtained

This section is devoted to frequency analysis of the digi-With the Euler method are also plotted as a term of compari-
tal reeds obtained using AM and WS methods. Such analysiz®"- . _
permits comparison of the different discretization techniques, ' ne Euler method is seen to provide poor accuracy even

by studying how the physical parameters are mapped into that Fs=44.1 kHz. In particular, a noticeable numerical dissi-
discrete-time domain. pation is introduced, so that the resonance is heavily attenu-

Consider the transfer functidr(s) of the relative dis- at€d. Results for AM methods are in good agreement with
placementy, —y, versus the pressure drapp. From Eq. theoretical predictions. Both the magnitude and the phase

(1), this is seen to be the harmonic oscillator responses oH v, exhibit a known “frequency warping”
phenomenon: the induced map between the continuous
Y (S):i 1 _ (18 frequency w, and discrete frequencyy is (see Mitra!®
¢ Wy S°+g, s+ w? wg=2F arctanf; /2F;). High frequencies are thereby

The frequency response is given By(j ). A meaningful compressed, and this phenomenon becomes more noticeable
4 y resp giver Jwe). 9 as the sampling rate decreasesfat 22.05 kHz the reso-
comparison between the numerical methods amounts to ang o of H ay has shifted from the original value 23 250
: ) : .
Iyzmg hO.W they preserve this fre_quency response in th?ad/s to the value 21 300 radfse., from 3700 Hz to 3390
discrete-time domain. The study is performed for varlousHZ)
FS'_ Typical audio sampling rates=s=22.05 kHZ. an_d The AM2 method provides different results: there is no
F.=44.1 kHz are taken as reference values. Following ideas. .. . : :
3 o Significant warping, but the magnitude of the resonance is

developed by Gazengdt al,” the analysis is focused on o e _

. ) . amplified. The amplification is small &,=44.1 kHz, but
three physically meaningful parameters of the dynamlcbecomes unacceptable By=22.05 kHz (the peak magni-
model: the resonance frequeneay, the oscillator stiffness '

. 75 . . . _
(defined agH,(0)| 1= s, w?), and the damping coefficient tude is 4.710 °> m/Pa. This phenomenon is a direct conse

quence of stability properties. Indeed, it can be seen that,
9r- Tvpical values fore. lie in the high-frequency region using the values listed in Table I, the method becomes un-
yp T ' N y region, - iable atF ;=19 kHz. This explains the strong amplification
and this parameter is therefore considered to be noncritical N 4 the ophase distortion exhibited by at
helping self-sustained oscillations. Indeed, self-sustained 0% _ 5905 kgz AM2

cillations occur even when there is no resonance at all, as in® . .

A o . ! Both the methods preserve stiffnegthe equalities
the quasistatic approximatidqeee Sec. V B in the following _ B . L

. Ham1(0)=Haw2(0)=H¢(0) hold]. Finally, qualitative
However, as pointed out by Thompstithe reed resonance : o .
. L ) nalysis shows that both methods lead to a digital damping
has a role in adjusting pitch, loudness, and tone color, as we . .
4= wq1— wgp that is smaller than the physical one, and de-

as helping transitions to high regimes of oscillation, such a . . L
ping gh reg creases with decreasirkg,. For H,yy this is a consequence

the clarion register or the reed regirtffsqueaks”). Stiffness . ; .
. . . of frequency warping, which causes the resonance bandwidth
characterizes the reed response in the low-frequency regign

) ; . 0 reduce, and the quality factor to increase consequently.

and is therefore an important parameter, since the fundamelq- o e
—_— s . ! or Hayo this is due to the resonance amplification rather

tal frequency of the oscillation always lies in this region. )

. . o . "than to warping.

Concerning the damping coefficient, the relation

0,=w,/Q, holds for the harmonic oscillatof18), where

Q,=w,/(w;— w,) is the quality factor and, , are the 3-dB

cutoff frequencies. Therefore,g,=w;—w, for the The 1- and 2-step WS methods do not define-ta-z

continuous-time oscillatof18). mapping; therefore, the discrete-time transfer functions

B. Weighted sample methods
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cellent agreement witHl ., even at low sampling rates. Both
methods preserve the resonaneg without introducing
warping. Stiffness is preserved as well. Numerical dissipa-
tion is introduced, which is more significant for the 1-step
method. This can be noticed by observing that the digital
amplitude responses lie below the continuous one. Due to
this dissipation, the digital damping coefficiegy is larger
than the physical one and increases with decreasingfor
both Hys1(z) and Hyso(2). Phase responses are well pre-
served by both methods.

Summarizing, the frequency analysis developed in this
section has shown that the WS methods better approximate
the reed frequency response than AM methods. It would ap-
pear that the WS methods are preferable. However, this con-
jecture is not confirmed from the time-domain analysis de-
veloped in the next section.

V. TIME-DOMAIN SIMULATIONS

In order to obtain time-domain simulations, each of the
four digital reeds is coupled to the same resonétor wave-
guide cylindrical bore described in Sec) tb form a com-
plete instrument. Comparisons of simulations lead to two
main results, which are not evident from the frequency
analysis of Sec. IV.

(i)  the systems can behave differently even at high sam-
pling rates, where the reed frequency responses are
indistinguishable;

(i)  both the 1-step methods approximate the continuous
system accurately, while the 2-step methods exhibit
artifacts.

A. Threshold pressure

A first simulation study concerns the threshold pressure
p:;, defined as the value of mouth pressure above which
stable oscillations take place. A rough estimate for the
threshold pressureptzhoma)f/& can be derived using the
quasistaticapproximation(see Hirschberget al® and Sec.

V B). With the values listed in Table I, the “quasistatic esti-
mate” is p,= 1664 Pa. However, as observed by Ke@fthis
value underestimates the trpe.

In this section such a quasistatic estimate is compared
with experimental results from simulations. First, a “dy-
namic estimate” is found by running simulations at very high
sampling rategup to 500 kH2. For such sampling rates, all
the systems are found to have the same threshold pressure,
p;=1802 Pa. This is therefore assumed to be the “true”
value. Then, simulations are run at lower sampling rates: the
measure@;, are given in Table II, from which some remarks
can be made.

(i) For all the digital reedsp, converges to the dynamic

Hws1(z) andHyysx(z) are not obtained by substitution. In-

stead, they are computed directly from the general equation

(16). From Sec. 1V, it can be seen thdtys:(z) andHysx(2)

have order 2 and 3, respectively. (i)
Results are summarized in Fig. 4. Responses obtained

with the Euler method are plotted as a term of comparison.
The discrete-time responsékys; and Hyys, show ex-
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estimate 1802 Pa as the sampling rate is increased.
The convergence of AM2 is not evident from Table II,
since it occurs aF¢>200 kHz.

The p; estimates obtained from both the 1-step meth-
ods exhibit robustness with respect to the sampling
rate. AtF ;=30 kHz, the deviation op; from the true
value is less than 1% for both AM1 and WS1.
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Consider the frequency responsélys, at Fq
=44.1 kHz: from Fig. 4, this is seen to be indistinguishable
from the original one. However, the estimatedis still no-
ticeably higher than the true value. An analogous remark
holds for AM2 with F4=100 kHz. Therefore, the 2-step
methods exhibit poor accuracy even when the reed response
is well approximated.

These results show that the discrete-time frequency re-
sponse does not provide sufficient information on the digital
reed when this is coupled with the nonlinearfitgu; ,h) and
with the bore. Due to the nonlinearity, the whole system
exhibits sensitive dependence on small deviations in the fre-
quency response.

B. Dynamic versus quasistatic

In this section, the dynamic model is compared with the
quasistaticreed approximation. This approximation provides
a simplified description of reed motion by exploiting the fol-
lowing: the reed resonance is noticeably higher than the
playing frequency of any playable note on the clarinet; there-
fore, the spectrum oAp is confined to the low-frequency
region, where it is reasonable to assume a flat reed response
(see Figs. 3, ¥ The responsél (j w.) is therefore approxi-
mated by the zero-frequency respods@(0)=1/(urwr2),
and in this approximation the reed moves in phase with the
pressure drop according to the relation

[y () —Yol=Hc(0)Ap(t). (19

Substituting Eq.(19) in Eq. (3), and recalling thah=y,,
—Y,, a few calculation steps yield

ur=A(ho—Ap/(p,w?))*? sgr(Ap)|Ap|?-. (20)

The properties of this memoryless model have been studied
by many authoré*62!

A first comparison between the quasistatic and the dy-
namic models amounts to plotting the corresponding phase
diagrams for the steady-state signalsand Ap. Figure 5
shows an example of such phase diagram, obtained from
numerical simulations with the WS1 method with a mouth
pressurep,,=2265 Pa. This value is the maximum value for
nonbeating conditions.

The phase diagram for the quasistatic model is simply
the plot of Eq.(20), while the dynamic model exhibits a
more interesting behaviou; and Ap move along a hyster-
etic path. This is due to the presence of memory in the equa-
tions: when the reed dynamics is taken into account, then
Egs. (19), (20) do not hold, andh and u; depend onAp
together with its derivatives. In other words, the attractor in
the dynamic reed model is not a curve in the plane, but
instead a closed orbit in a higher-dimensional phase space.

Another important difference in the behavior of quasi-
static and dynamic simulations concerns transitions to high

(i) The 2-step methods are less robust: even at high samegimes of oscillation. As Thompsthand Wilson and
pling frequencies, the threshold pressures for the corBeavers have pointed out, botl, andg, play a key role in
responding systems are far from the true value. Inhelping transition to the second regist@larion register.
particular, simulations with AM2 hardly reach steady- Experiments with artificial lips and real clarinets have shown
state oscillations foF <35 kHz. For this reason the that the clarion register can be produced without opening the
AM2 column in Table II provides results only for register hole, if the reed resonance matches a low harmonic

F>50 kHz.

of the playing frequency and the damping is small enough.
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TABLE II. Measured threshold pressures from time-domain simulations.

p: (P9

Fs (kH2) Q. Static AM1 WS1 AM2 WS2
20 1664 1816 1761 3346
25 1664 1808 1774 2842
30 1664 1807 1784 2554
35 1664 1807.5 1790 2365
40 1664 1807.5 1795 2233
45 1664 1804 1796 e 2136
50 1664 1804.5 1797 3781 2063
55 1664 1805 1798 3516 2008
60 1664 1805.5 1799 3278 1960
65 1664 1806 1799.5 3148 1932
70 1664 1803.5 1800 3026 1906
75 1664 1804 1800.5 2908 1881
80 1664 1804.5 1801 2841 1865
85 1664 1805 1801.5 2887 1848
90 1664 1803 1802 2737 1832
95 1664 1803.5 1802 2692 1816
100 1664 1803.5 1802 2643 1802

Moreover, extremely low damping causes the reed regimguency warping, affect the reed behavior in the digital do-
(“squeaks” to be produced. From a musical standpoint,main. It has been shown that 1-step methods, such as the
squeaks are often explained as a consequence of insufficielilinear transformation or the 1-step weighted sample
breathing, while the fundamental register comes in as moutimethod, can approximate the system with good accuracy
while keeping the computational costs low. Second, time-
All these effects are reproduced using the dynamiadomain simulations were obtained by coupling the single
model, while the quasistatic model does not provide controteed to a simple bore. These have shown that the analysis of
over such effects. Figure(® shows examples of transitions the reed frequency responses do not provide enough infor-
from numerical simulations with the WS1 method. The mation on the properties of the whole system due to nonlin-
clarion register is obtained by matching to the seventh ear coupling in the equations. Indeed, the discrete-time mod-

pressure is increased.

harmonic of the playing frequency and loweriggto 1400
s 1. In Fig. 6(b) the reed regime is achieved by giving a

value as low as 300 $. Squeaks are more easily obtained in
simulations by driving the reed with low blowing pressures.

VI. CONCLUSIONS

In this paper, a simulation scheme for the single reed
system was proposed, resulting in two conclusions. First,
analysis of the discrete-time frequency responses was per-
formed in order to study how theoretical properties of the
numerical methods, such as stability, accuracy, and fre-
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