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This paper reviews recent developments in physics-based synthesis of piano. The paper considers the main components of the
instrument, that is, the hammer, the string, and the soundboard. Modeling techniques are discussed for each of these elements, to-
gether with implementation strategies. Attention is focused on numerical issues, and each implementation technique is described
in light of its efficiency and accuracy properties. As the structured audio coding approach is gaining popularity, the authors argue
that the physical modeling approach will have relevant applications in the field of multimedia communication.
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1. INTRODUCTION

Sounds produced by acoustic musical instruments can be
described at the signal level, where only the time evolution
of the acoustic pressure is considered and no assumptions
on the generation mechanism are made. Alternatively, source
models, which are based on a physical description of the
sound production processes [1, 2], can be developed.

Physics-based synthesis algorithms provide semantic
sound representations since the control parameters have a
straightforward physical interpretation in terms of masses,

springs, dimensions, and so on. Consequently, modification
of the parameters leads in general to meaningful results and
allows more intuitive interaction between the user and the
virtual instrument. The importance of sound as a primary
vehicle of information is being more and more recognized in
the multimedia community. Particularly, source models of
sounding objects (not necessarily musical instruments) are
being explored due to their high degree of interactivity and
the ease in synchronizing audio and visual synthesis [3].

The physical modeling approach also has potential appli-
cations in structured audio coding [4, 5], a coding scheme
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where, in addition to the parameters, the decoding algo-
rithm is transmitted to the user as well. The structured audio
orchestral language (SAOL) became a part of the MPEG-4
standard, thus it is widely available for multimedia applica-
tions. Known problems in using physical models for coding
purposes are primarily concerned with parameter estima-
tion. Since physical models describe specific classes of instru-
ments, automatic estimation of the model parameters from
an audio signal is not a straightforward task: the model struc-
ture which is best suited for the audio signal has to be chosen
before actual parameter estimation. On the other hand, once
the model structure is determined, a small set of parameters
can describe a specific sound. Casey [6] and Serafin et al. [7]
address these issues.

In this paper, we review some of the strategies and al-
gorithms of physical modeling, and their applications to pi-
ano simulation. The piano is a particularly interesting instru-
ment, both for its prominence in western music and for its
complex structure [8]. Also, its control mechanism is simple
(it basically reduces to key velocity), and physical control de-
vices (MIDI keyboards) are widely available, which is not the
case for other instruments. The source-based approach can
be useful not only for synthesis purposes but also for gaining
a better insight into the behavior of the instruments. How-
ever, as we are interested in efficient algorithms, the features
modeled are only those considered to have audible effects.
In general, there is a trade-off between the accuracy and the
simplicity of the description. The optimal solution may vary
depending on the needs of the user.

The models described here are all based on digital waveg-
uides. The waveguide paradigm has been found to be the
most appropriate for real-time synthesis of a wide range of
musical instruments [9, 10, 11]. As early as in 1987, Gar-
nett [12] presented a physical waveguide piano model. In his
model, a semiphysical lumped hammer is connected to a dig-
ital waveguide string and the soundboard is modeled by a set
of waveguides, all connected to the same termination.

In 1995, Smith and Van Duyne [13, 14] presented a
model based on commuted synthesis. In their approach, the
soundboard response is stored in an excitation table and
fed into a digital waveguide string model. The hammer is
modeled as a linear filter whose parameters depend on the
hammer-string collision velocity. The hammer filter param-
eters have to be precalculated and stored for all notes and
hammer velocities. This precalculation can be avoided by
running an auxiliary string model connected to a nonlinear
hammer model in parallel, and, based on the force response
of the auxiliary model, designing the hammer filters in real
time [15].

The original motivation for commuted synthesis was to
avoid the high-order filter which is needed for high qual-
ity soundboard modeling. As low-complexity methods have
been developed for soundboard modeling (see Section 5),
the advantages of the commuted piano with respect to the
direct modeling approach described here are reduced. Also,
due to the lack in physical description, some effects, such as
the restrike (ribattuto) of the same string, cannot be precisely
modeled with the commuted approach. Describing the com-

muted synthesis in detail is beyond the scope of this paper,
although we would like to mention that it is a comparable
alternative to the techniques described here.

As part of a collaboration between the University of
Padova and Generalmusic, Borin et al. [16] presented a
complete real-time piano model in 1997. The hammer was
treated as a lumped model, with a mass connected in paral-
lel to a nonlinear spring, and the strings were simulated us-
ing digital waveguides, all connected to a single-lumped load.
Bank [17] introduced in 2000 a similar physical model, based
on the same functional blocks, but with slightly different im-
plementation. An alternative approach was used for the solu-
tion of the hammer differential equation. Independent string
models were used without any coupling, and the influence
of the soundboard on decay times was taken into account
by using high-order loss filters. The use of feedback delay
networks was suggested for modeling the radiation of the
soundboard.

This paper addresses the design of each component of
a piano model (i.e., hammer, string, and soundboard). Dis-
cussion is carried on with particular emphasis on real-time
applications, where the time complexity of algorithms plays
a key role. Perceptual issues are also addressed since a precise
knowledge of what is relevant to the human ear can drive
the accuracy level of the design. Section 2 deals with general
aspects of piano acoustics. In Section 3, the hammer is dis-
cussed and numerical techniques are presented to overcome
the computability problems in the nonlinear discretized sys-
tem. Section 4 is devoted to string modeling, where the prob-
lems of parameter estimation are also addressed. Finally,
Section 5 deals with the soundboard, where various alterna-
tive techniques are described and the use of the multirate ap-
proach is proposed.

2. ACOUSTICS AND MODEL STRUCTURE

Piano sounds are the final product of a complex synthesis
process which involves the entire instrument body. As a result
of this complexity, each piano note exhibits its unique sound
features and nuances, especially in high quality instruments.
Moreover, just varying the impact force on a single key al-
lows the player to explore a rich dynamic space. Accounting
for such dynamic variations in a wavetable-based synthesizer
is not trivial: dynamic postprocessing filters which shape the
spectrum according to key velocity can be designed, but find-
ing a satisfactory mapping from velocity to filter response is
far from being an easy task. Alternatively, a physical model,
which mimics as closely as possible the acoustics of the in-
strument, can be developed.

The general structure of the piano is displayed in
Figure 1a: an iron frame is attached to the upper part of the
wooden case and the strings are extended upon this in a di-
rection nearly perpendicular to the keyboard. The keyboard-
side end of the string is connected to the tuning pins on the
pin block, while the other end, passing the bridge, is attached
to the hitch-pin rail of the frame. The bridge is a thin wooden
bar that transmits the string vibration to the soundboard,
which is located under the frame.
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Figure 1: General structures: (a) schematic representation of the
instrument and (b) model structure.

Since the physical modeling approach tries to simulate
the structure of the instrument rather than the sound itself,
the blocks in the piano model resemble the parts of a real pi-
ano. The structure is displayed in Figure 1b. The first model
block is the excitation, the hammer strike. Its output prop-
agates to the string, which determines the fundamental fre-
quency of the tone. The quasiperiodic output signal is fil-
tered through a postprocessing block, covering the radiation
effects of the soundboard. Figure 1b shows that the hammer-
string interaction is bidirectional since the hammer force de-
pends on the string displacement [8]. On the other hand,
there is no feedback from the radiator to the string. Feed-
back and coupling effects on the bridge and the soundboard
are taken into account in the string block. The model differs
from a real piano in the fact that the two functions of the
soundboard, namely, to provide a terminating impedance to
the strings and to radiate sound, are located in separate parts
of the model. As a result, it is possible to treat radiation as a
linear filtering operation.

3. THE HAMMER

We will first discuss the physical aspects of the hammer-
string interaction, then concentrate on various modeling ap-
proaches and implementation issues.

3.1. Hammer-string interaction

As a first approximation, the piano hammer can be consid-
ered a lumped mass connected to a nonlinear spring, which
is described by the equation

F(t) = −mh
d2yh(t)
dt2

, (1)

where F(t) is the interaction force and yh(t) is the hammer
displacement. The hammer mass is represented by mh. Ex-
periments on real instruments have shown (see, e.g., [18, 19,
20]) that the hammer-string contact can be described by the
following formula:

Table 1: Sample values for hammer parameters for three different
notes, taken from [19, 20]. The hammer mass mh is given in kg.

C2 C4 C6

p 2.3 2.5 3
k 4.0× 108 4.5× 109 1.0× 1012

mh 4.9× 10−3 2.97× 10−3 2.2× 10−3

F(t) = f
(
∆y(t)

) =


k∆y(t)p, ∆y(t) > 0,

0, ∆y(t) ≤ 0,
(2)

where ∆y(t) = yh(t) − ys(t) is the compression of the ham-
mer felt, ys(t) is the string position, k is the hammer stiff-
ness coefficient, and p is the stiffness exponent. The condi-
tion ∆y(t) > 0 corresponds to the hammer-string contact,
while the condition ∆y(t) ≤ 0 indicates that the hammer
is not touching the string. Equations (1) and (2) result in a
nonlinear differential system of equations for yh(t). Due to
the nonlinearity, the tone spectrum varies dynamically with
hammer velocity. Typical values of hammer parameters can
be found in [19, 20]. Example values are listed in Table 1.

However, (2) is not fully satisfactory in that real piano
hammers exhibit hysteretic behavior. That is, contact forces
during compression and during decompression are different,
and a one-to-one law between compression and force does
not correspond to reality. A general description of the hys-
teresis effect of piano felts was provided by Stulov [21]. The
idea, coming from the general theory of mechanics of solids,
is that the stiffness k of the spring in (2) has to be replaced
by a time-dependent operator which introduces memory in
the nonlinear interaction. Thus, the first part of (2) (when
∆y(t) > 0) is replaced by

F(t) = f
(
∆y(t)

) = k
[
1− hr(t)

]∗ [∆y(t)p
]
, (3)

where hr(t) = (ε/τ)e−t/τ is a relaxation function that accounts
for the “memory” of the material and the ∗ operator repre-
sents convolution.

Previous studies [22] have shown that a good fit to real
data can be obtained by implementing hr as a first-order low-
pass filter. It has to be noted that informal listening tests in-
dicate that taking into account the hysteresis in the hammer
model does not improve the sound quality significantly.

3.2. Implementation approaches

The hammer models described in Section 3.1 can be dis-
cretized and coupled to the string in order to provide a full
physical description. However, there is a mutual dependence
between (2) and (1), that is, the hammer position yh(n) at
discrete time instant n should be known for computing the
force F(n), and vice versa. The same problem arises when
(3) is used instead of (2). This implicit relationship can be
made explicit by assuming that F(n) ≈ F(n− 1), thus insert-
ing a fictitious delay element in a delay-free path. Although
this approximation has been extensively used in the literature
(see, e.g., [19, 20]), it is a potential source of instability.
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The theory of wave digital filters addresses the problem of
noncomputable loops in terms of wave variables. Every com-
ponent of a circuit is described as a scattering element with
a reference impedance, and delay-free loops between com-
ponents are treated by “adapting” reference impedances. Van
Duyne et al. [23] presented a “wave digital hammer” model,
where wave variables are used. More severe computability
problems can arise when simulating nonlinear dynamic ex-
citers since the linear equations used to describe the system
dynamics are tightly coupled with a nonlinear map. Borin
et al. [24] have recently proposed a general strategy named
“K method” for solving noncomputable loops in a wide class
of nonlinear systems. The method is fully described in [24]
along with some application examples. Here, only the basic
principles are outlined.

Whichever the discretization method is, the hammer
compression ∆y(n) at time n can be written as

∆y(n) = p(n) + KF(n), (4)

where p(n) is the linear combination of past values of the
variables (namely, yh, ys, and F) and K is a coefficient whose
value depends on the numerical method in use. The inter-
action force F(n) at discrete time instant n, computed either
by (2) or (3), is therefore described by the implicit relation
F(n) = f (p(n) + KF(n)). The K method uses the implicit
function theorem to solve the following implicit relation:

F = f (p + KF)
Kmeth.�−→ F = h(p). (5)

The new nonlinear map h defines F as a function of p,
hence instantaneous dependencies across the nonlinearity
are dropped. The function h can be precomputed and stored
in a lookup table for efficient implementation.

Bank [25] presented a simpler but less general method
for avoiding artifacts caused by fictitious delay insertion. The
idea is that the stability of the discretized hammer model
with a fictitious delay can always be maintained by choos-
ing a sufficiently large sampling rate fs if the corresponding
continuous-time system is stable. As fs → ∞, the discrete-
time system will behave as the original differential equation.
Doubling the sampling rate of the whole string model would
double the computation time as well. However, if only the
hammer model operates at double rate, the computational
complexity is raised only by a negligible amount. Therefore,
in the proposed solution, the hammer operates at twice sam-
pling rate of the string. Data is downsampled using sim-
ple averaging and upsampled using linear interpolation. The
multirate hammer has been found to result in well-behaving
force signals at a low-computational cost. As the hammer
model is a nonlinear dynamic system, the stability bounds
are not trivial to derive in a closed form. In practice, stability
is maintained up to an impact velocity ten times higher than
the point where the straightforward approach (e.g., used in
[19, 20]) turns unstable.

Figure 2 shows a typical force signal in a hammer-string
contact. The overall contact duration is around 2 ms and
the pulses in the signal are produced by reflections of force
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Figure 2: Time evolution of the interaction force for note C5

(522 Hz) with fs = 44.1 kHz, and hammer velocity v = 5 m/s, com-
puted by inserting a fictitious delay element (solid line), with the
K method (dashed line), and with the multirate hammer (dotted
line).

waves at string terminations. The K method and the multi-
rate hammer produce very similar force signals. On the other
hand, inserting a fictitious delay element drives the system
towards instability (the spikes are progressively amplified).
In general, the multirate method provide results comparable
to the K method for hammer parameters realistic for pianos,
while it does not require that precomputed lookup tables be
stored. On the other hand, when low-sampling rates (e.g.,
fs = 11.025 kHz) or extreme hammer parameters are used
(i.e., k is ten times the value listed in Table 1), the system sta-
bility cannot be maintained by upsampling by a factor of 2.
In such cases, the K method is the appropriate solution.

The computational approaches presented in this section
are applicable to a wide class of mechanical interactions be-
tween physical objects [26].

4. THE STRING

Many different approaches have been presented in the litera-
ture for string modeling. Since we are considering techniques
suitable for real-time applications, only the digital waveguide
[9, 10, 11] is described here in detail. This method is based
on the time-domain solution of the one-dimensional wave
equation. The velocity distribution of the string v(x, t) can
be seen as the sum of two traveling waves:

v(x, t) = v+(x − ct) + v−(x + ct), (6)

where x denotes the spatial coordinate, t is time, c is the prop-
agation speed, and v+ and v− are the traveling wave compo-
nents.

Spatial and time-domain sampling of (6) results in a sim-
ple delay-line representation. Nonideal, lossy, and stiff strings
can also be modeled by the method. If linearity and time in-
variance of the string are assumed, all the distributed losses
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Figure 3: Digital waveguide model of a string with one polariza-
tion.

and dispersion can be consolidated to one end of the digi-
tal waveguide [9, 10, 11]. In the case of one polarization of
a piano string, the system takes the form shown in Figure 3,
where M represents the length of the string in spatial sam-
pling intervals, Min denotes the position of the force input,
and Hr(z) refers to the reflection filter. This structure is ca-
pable of generating a set of quasiharmonic, exponentially de-
caying sinusoids. Note that the four delay lines of Figure 3
can be simplified to a two-delay line structure for more effi-
cient implementation [13].

Accurate design of the reflection filter plays a key
role for creating realistic sounds. To simplify the design,
Hr(z) is usually split into three separate parts: Hr(z) =
−Hl(z)Hd(z)Hf d(z), where Hl(z) accounts for the losses,
Hd(z) for the dispersion due to stiffness, and Hf d(z) for fine-
tuning the fundamental frequency. Using allpass filters Hd(z)
for simulating dispersion ensures that the decay times of the
partials are controlled by the loss filter Hl(z) only. The slight
phase difference caused by the loss filter is negligible com-
pared to the phase response of the dispersion filter. In this
way, the loss filter and the dispersion filter can be treated as
orthogonal with respect to design.

The string needs to be fine tuned because delay lines can
implement only an integer phase delay and this provides too
low resolution for the fundamental frequencies. Fine tuning
can be incorporated in the dispersion filter design or, alter-
natively, a separate fractional delay filter Hf d(z) can be used
in series with the delay line. Smith and Jaffe [9, 27] suggested
to use a first-order allpass filter for this purpose. Välimäki
et al. [28] proposed an implementation based on low-order
Lagrange interpolation filters. Laakso et al. [29] provided an
exhaustive overview on this topic.

4.1. Loss filter design

First, the partial envelopes of the recorded note have to be
calculated. This can be done by sinusoidal peak tracking
with short time Fourier transform implementation [28] or
by heterodyne filtering [30]. A robust way of calculating de-
cay times is fitting a line by linear regression on the logarithm
of the amplitude envelopes [28]. The magnitude specifica-
tion gk for the loss filter can be computed as follows:

gk =
∣∣Hl

(
e j(2π fk/ fs)

)∣∣ = e−k/ fkτk , (7)

where fk and τk are the frequency and the decay time of the
kth partial, and fs is the sampling rate. Fitting a filter to the gk

coefficients is not trivial since the error in the decay times is a
nonlinear function of the filter magnitude error. If the mag-
nitude response exceeds unity, the digital waveguide loop be-
comes unstable. To overcome this problem, Välimäki et al.
[28, 30] suggested the use of a one-pole loop filter whose
transfer function is

H1p(z) = g
1 + a1

1 + a1z−1
. (8)

The advantage of this filter is that stability constraints for the
waveguide loop, namely, a1 < 0 and 0 < g < 1, are rela-
tively simple. As for the design, Välimäki et al. [28, 30] used
a simple algorithm for minimizing the magnitude error in
the mean squares sense. However, the overall decay time of
the synthesized tone did not always coincide with the origi-
nal one.

As a general solution for loss filter design, Smith [9] sug-
gested to minimize the error of decay times of the partials
rather than the error of the filter magnitude response. This
assures that the overall decay time of the note is preserved
and the stability of the feedback loop is maintained. More-
over, optimization with respect to decay times is perceptu-
ally more meaningful. The methods described hereafter are
all based on this idea.

Bank [17] developed a simple and robust method for
one-pole loop filter design. The approximate analytical for-
mulas for decay times τk of a digital waveguide with a one-
pole filter are as follows:

τk ≈ 1
c1 + c3ϑ

2
k

, (9)

where c1 and c3 are computed from the parameters of the
one-pole filter of (8):

c1 = f0(1− g), c3 = − f0
a1

2
(
a1 + 1

)2 , (10)

where f0 is the fundamental frequency and ϑk = 2π fk/ fs is
the digital frequency of the kth partial in radians. Equation
(9) shows that the decay rate σk = 1/τk is a second-order
polynomial of frequency ϑk with even order terms. This sim-
plifies the filter design since c1 and c3 are easily determined
by polynomial regression from the prescribed decay times. A
weighting function of wk = τ4

k has to be used to minimize the
error with respect to τk. Parameters g and a1 of the one-pole
loop filter are easily computed via the inverse of (10) from
coefficients c1 and c3.

In most cases, the one-pole loss filter yields good results.
Nevertheless, when precise rendering of the partial envelopes
is required, higher-order filters have to be used. However,
computing analytical formulas for the decay times with high-
order filters is a difficult task. A two-step procedure was sug-
gested by Erkut [31]; in this case, a high-order polynomial is
fit to the decay rates σk = 1/τk , which contains only terms
of even order. Then, a magnitude specification is calculated
from the decay rate curve defined by the polynomial, and this
magnitude response is used as a specification for minimum-
phase filter design.
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Another approach was proposed by Bank [17] who sug-
gested the transformation of the specification. As the goal is
to match decay times, the magnitude specification gk is trans-
formed into a form gk,tr = 1/(1− gk) which approximates τk,
and a transformed filter Htr(z) is designed for the new spec-
ification by least squares filter design. The loss filter Hl(z) is
then computed by the inverse transformHl(z) = 1−1/Htr(z).

Bank and Välimäki [32] presented a simpler method for
high-order filter design based on a special weighting func-
tion. The resulting decay times of the digital waveguide are
computed from the magnitude response ĝk = |H(e jϑk )| of
the loss filter by τ̂k = d(ĝk) = −1/( f0 ln ĝk). This function
is approximated by its first-order Taylor series around the
specification d(ĝk) ≈ d(gk) + d′(ĝk − gk). Accordingly, the
error with respect to decay times can be approximated by the
weighted mean square error

eWLS =
K∑

k=1

wk
(
Hl
(
e jϑk
)− gk

)2
,

wk = 1(
gk − 1

)4 .

(11)

The weighted error eWLS can be easily minimized by standard
filter design algorithms, and leads to a good match with re-
spect to decay times.

All of these techniques for high-order loss filter design
have been found to be robust in practice. Comparing them is
left for future work.

Borin et al. [16] have used a different approach for mod-
eling the decay time variations of the partials. In their im-
plementation, second-order FIR filters are used as loss filters
that are responsible for the general decay of the note. Small
variations of the decay times are modeled by connecting all
the string models to a common termination which is imple-
mented as a filter with a high number of resonances. This
also enables the simulation of the pedal effect since now all
the strings are coupled to each other (see Section 4.3). An
advantage of this method compared to high-order loop fil-
ters is the smaller computational complexity. On the other
hand, the partial envelopes of the different notes cannot be
controlled independently.

Although optimizing the loss filter with respect to de-
cay times has been found to give perceptually adequate re-
sults, we remark that the loss filter design can be helped via
perceptual studies. The audibility of the decay-time varia-
tions for the one-pole loss filter was studied by Tolonen and
Järveläinen [33]. The study states that relatively large devia-
tions (between −25% and +40%) in the overall decay time
of the note are not perceived by listeners. Unfortunately, the-
oretical results are not directly applicable for the design of
high-order loss filters as the tolerance for the decay time vari-
ations of single partials is not known.

4.2. Dispersion simulation

Dispersion is due to stiffness which causes piano strings
to deviate from ideal behavior. If the dispersive correction
term in the wave equation is small, its first-order effect is

to increase the wave propagation speed c( f ) with frequency.
This phenomenon causes string partials to become inhar-
monic. If the string parameters are known, then the fre-
quency of the kth stretched partial can be computed as

fk = k f0
√

1 + Bk2, (12)

where the value of the inharmonicity coefficient B depends
on the parameters of the string (see, e.g., [34]).

Phase delay specification Dd( fk) for the dispersion filter
Hd(z) can be computed from the partial frequencies:

Dd
(
fk
) = fsk

fk
−N −Dl

(
fk
)
, (13)

where N is the total length of the waveguide delay line and
Dl( fk) is the phase delay of the loss filter Hl(z). The phase
specification of the dispersion filter becomes φpre( fk) =
2π fkDd( fk)/ fs.

Van Duyne and Smith [35] proposed an efficient method
for simulating dispersion by cascading equal first-order all-
pass filters in the waveguide loop; however, the constraint of
using equal first-order sections is too severe and does not al-
low accurate tuning of inharmonicity.

Rocchesso and Scalcon [36] proposed a design method
based on [37]. Starting from a target phase response, l points
{ fk}k=1,...,l are chosen on the frequency axis corresponding to
the points where string partials should be located. The filter
order is chosen to be n < l. For each partial k, the method
computes the quantities

βk = −1
2

(
φpre

(
fk
)

+ 2nπ fk
)
, (14)

where φpre( f ) is the prescribed allpass response. Filter coeffi-
cients aj are computed by solving the system

n∑
j=1

aj sin
(
βk + 2 jπ fk

) = − sin
(
βk
)
, k = 1, . . . , l. (15)

A least-squared equation error (LSEE) is used to solve the
overdetermined system (15). It was shown in [36] that sev-
eral tens of partials can be correctly positioned for any piano
key, with the allpass filter order not exceeding 20. Moreover,
the fine tuning of the string is automatically taken into ac-
count in the design. Figure 4 plots results obtained using a
filter order of 18. Note that the pure tone frequency JND (just
noticeable difference) has been used in Figure 4b as a refer-
ence as no accurate studies of partial JNDs for piano tones
are available to our knowledge.

Since the computational load for Hd(z) is heavy, it is im-
portant to find criteria for accuracy and order optimization
with respect to human perception. Rocchesso and Scalcon
[38] studied the dependence of the bandwidth of perceived
inharmonicity (i.e., the frequency range in which misplace-
ment of partials is audible) on the fundamental frequency
by performing listening tests with decaying piano tones. The
bandwidth has been found to increase almost linearly on a
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Figure 4: Dispersion filter (18th order) for the C2 string: (a) com-
puted (solid line) and theoretical (dashed line) percentage disper-
sion versus partial numbers and (b) deviation of partials (solid line).
Dash-dotted vertical lines show the end of the LSEE approximation;
dash-dotted bounds in (b) indicate the pure tone frequency JND as
a reference; and the dashed line in (b) is the partial deviation from
the theoretical inharmonic series in a nondispersive string model.

logarithmic pitch scale. Partials above this frequency band
only contribute some brightness to the sound, and can be
made harmonic without relevant perceptual consequences.

Järveläinen et al. [39] also found that inharmonicity is
more easily perceived at low frequencies even when coeffi-
cient B for bass tones is lower than for treble tones. This is
probably due to the fact that beats are used by listeners as
cues for inharmonicity, and even low B’s produce enough
mistuning in higher partials of low tones. These findings can
help in the allpass filter design procedure, although a number
of issues still need further investigation.

Fin
Sv(z) +

Fout

↓ 2 R1(z) + ↑ 2

↓ 2 R2(z) + ↑ 2

...
... ...

↓ 2 Rk(z) ↑ 2

Figure 5: The multirate resonator bank.

As high-order dispersion filters are needed for modeling
low notes, the computational complexity is increased signifi-
cantly. Bank [17] proposed a multirate approach to overcome
this problem. Since the lowest tones do not contain signifi-
cant energy in the high-frequency region anyway, it is worth-
while to run the lowest two or three octaves of the piano at
half-sampling rate of the model. The outputs of the low notes
are summed before upsampling, therefore only one interpo-
lation filter is required.

4.3. Coupled piano strings

String coupling occurs at two different levels. First of all, two
or three slightly mistuned strings are sounded together when
a single piano key is pressed (except for the lowest octave)
and complicated modulation of the amplitudes is brought
about. This results in beating and two-stage decay, the first
refers to an amplitude modulation overlaid on the exponen-
tial decay, and the latter means that tone decays are faster in
the early part than in the latter. These phenomena were stud-
ied by Weinreich as early as in 1977 [40]. At the second level,
the presence of the bridge and the action of the soundboard is
known to originate important coupling effects even between
different tones. In fact, the bridge-soundboard system con-
nects strings together and acts as a distributed driving-point
impedance for string terminations.

The simplest way for modeling beating and two-stage de-
cay is to use two digital waveguides in parallel for a single
note. Varying by the used type of coupling, many different
solutions have been presented in the literature, see, for ex-
ample, [14, 41].

Bank [17] presented a different approach for modeling
beating and two-stage decay, based on a parallel resonator
bank. In a subsequent study, the computational complexity
of the method was decreased by an order of ten by applying
multirate techniques, making the approach suitable for real-
time implementations [42]. In this approach, second-order
resonators R1(z) · · ·Rk(z) are connected to the basic string
model Sv(z) in parallel, rather than using a second waveg-
uide. The structure is depicted in Figure 5. The idea comes
from the observation that the behavior of two coupled strings
can be described by a pair of exponentially damped sinusoids
[40]. In this model, one sinusoid of the mode pair is simu-
lated by one partial of the digital waveguide and the other
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one by one of the resonators Rk(z). The transfer functions of
the resonators are as follows:

Rk(z) = Re
{
ak
}− Re

{
ak pk

}
z−1

1− 2 Re
{
pk
}
z−1 +

∣∣pk
∣∣2
z−2

,

ak = Ake
jϕk , pk = e j(2π fk/ fs)−1/ fsτk ,

(16)

where Ak, ϕk, fk, and τk refer to the initial amplitude, ini-
tial phase, frequency, and decay-time parameters of the kth
resonator, respectively. The overline stands for complex con-
jugation, Re indicates the real part of a complex variable, and
fs is the sampling frequency.

An advantage of the structure is that the resonators Rk(z)
are implemented only for those partials whose beating and
two-stage decay are prominent. The others will have sim-
ple exponential decay, determined by the digital waveguide
model Sv(z). Five to ten resonators have been found to be
enough for high-quality sound synthesis. The resonator bank
is implemented by the multirate approach, running the res-
onators at a much lower-sampling rate, for example, the 1/8
or 1/16 part of the original sampling frequency.

It is shown in [42] that when only half of the downsam-
pled frequency band is used for resonators, no lowpass filter-
ing is needed before downsampling. This is due to the fact
that the excitation signal is of lowpass character leading to
aliasing less than −20 dB. As the role of the excitation signal
is to set the initial amplitudes and phases of the resonators,
the result of this aliasing is a less than 1 dB change in the res-
onator amplitudes, which has been found to be inaudible.
On the other hand, the interpolation filters after upsampling
cannot be neglected. However, they are not implemented for
all notes separately; the lower-sampling rate signals of the dif-
ferent strings are summed before interpolation filtering (this
is not depicted in Figure 5). Their specification is relatively
simple (e.g., 5 dB passband ripple) since their passband er-
rors can be easily corrected by changing the initial ampli-
tudes and phases of the resonators. This results in signifi-
cantly lower-computational cost, compared to the methods
which use coupled waveguides.

Generally, the average computational cost of the method
for one note is less than five multiplications per sample.
Moreover, the parameter estimation gets simpler since only
the parameters of the mode pairs have to be found by, for
example, the methods presented in [17, 41], and there is no
need for coupling filter design. Stability problems of a cou-
pled system are also avoided. The method presented here
shows that combining physical and signal-based approaches
can be useful in reducing computational complexity.

Modeling the coupling between strings of different tones
is essential when the sustain pedal effect has to be simu-
lated. Garnett [12] and Borin et al. [16] suggested connect-
ing the strings to the same lumped terminating impedance.
The impedance is modeled by a filter with a high number of
peaks. For that, the use of feedback delay networks [43, 44]
is a good alternative. Although in real pianos the bridge con-
nects to the string as a distributed termination, thus coupling
different strings in different ways, the simple model of Borin
et al. was able to produce a realistic sustain pedal effect [45].

5. RADIATION MODELING

The soundboard radiates and filters the string waves that
reach the bridge, and radiation patterns are essential for
describing the “presence” of a piano in a musical context.
However, now we are concentrating on describing the sound
pressure generated by the piano at a certain locus in the
listening space, that is, the directional properties of radia-
tion are not taken into account. Modeling the soundboard
as a linear postprocessing stage is an intrinsically weak ap-
proach since on a real piano it also accounts for coupling
between strings and affects the decay times of the partials.
However, as already stated in Section 2, our modeling strat-
egy keeps the radiation properties of the soundboard sepa-
rated from its impedance properties. The latter are incorpo-
rated in the string model, and have already been addressed
in Sections 4.1 and 4.3; here we will concentrate on radia-
tion.

A simple and efficient radiation model was presented by
Garnett [12]. The waveguide strings were connected to the
same termination and the soundboard was simulated by con-
necting six additional waveguides to the common termina-
tion. This can be seen as a predecessor of using feedback de-
lay networks for soundboard simulation. Feedback delay net-
works have been proven to be efficient in simulating room
reverberation since they are able to produce high-modal
density at a low-computational cost [43]. For an overview,
see the work of Rocchesso and Smith [44]. Bank [17] ap-
plied feedback delay networks with shaping filters for the
simulation of piano soundboards. The shaping filters were
parametrized in such a way that the system matched the over-
all magnitude response of a real piano soundboard. A draw-
back of the method is that the modal density and the quality
factors of the modes are not fully controllable. The method
has proven to yield good results for high piano notes, where
simulating the attack noise (the knock) of the tone is the
most important issue.

The problem of soundboard radiation can also be ad-
dressed from the point of view of filter design. However, as
the soundboard exhibits high-modal density, a high-order
filter has to be used. For fs = 44.1 kHz, a 2000 tap FIR fil-
ter was necessary to achieve good results. The filter order did
not decrease significantly when IIR filters were used.

To resolve the high-computational complexity, a multi-
rate soundboard model was proposed by Bank et al. [46].
The structure of the model is depicted in Figure 6. The string
signal is split into two parts. The part below 2.2 kHz is down-
sampled by a factor of 8 and filtered by a high-order fil-
ter Hlow(z) precisely synthesizing the amplitude and phase
response of the soundboard for the low frequencies. The
part above 2.2 kHz is filtered by a low-order filter, model-
ing the overall magnitude response of the soundboard at
high frequencies. The signal of the high-frequency chain
is delayed by N samples to compensate for the latency of
decimation and interpolation filters of the low-frequency
chain.

The filters Hlow(z) and Hhigh(z) are computed as fol-
lows. First, a target impulse response Ht(z) is calculated by
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measuring the force-pressure transfer function of a real piano
soundboard. Then, this is lowpass-filtered and downsampled
by a factor of 8 to produce an FIR filter Hlow(z). The impulse
response of the low-frequency chain is now subtracted from
the target response Ht(z) providing a residual response con-
taining energy above 2.2 kHz. This residual response is made
minimum phase and windowed to a short length (50 tap).
The multirate soundboard model outlined here consumes
100 operations per cycle and produces a spectral character
similar to that of a 2000-tap FIR filter. The only difference
is that the attack of high notes sounds sharper since the en-
ergy of the soundboard response is concentrated to a short
time period above 2.2 kHz. This could be overcome by using
feedback delay networks for Hhigh(z), which is left for future
research.

The parameters of the multirate soundboard model can-
not be interpreted physically. However, this does not lead to
any drawbacks since the parameters of the soundboard can-
not be changed by the player in real pianos either. Having
a purely physical model, for example, based on finite differ-
ences [47], would lead to unacceptable high-computational
costs. Therefore, implementing a black box model block as a
part of a physical instrument model seems to be a good com-
promise.

6. CONCLUSIONS

This paper has reviewed the main stages of the development
of a physical model for the piano, addressing computational
aspects and discussing problems that not only are related to
piano synthesis but arise in a broad class of physical models
of sounding objects.

Various approaches have been discussed for dealing with
nonlinear equations in the excitation block. We have pointed
out that inaccuracies at this stage can lead to severe instabil-
ity problems. Analogous problems arise in other mechanical
and acoustical models, such as impact and friction between
two sounding objects, or reed-bore interaction. The two al-
ternative solutions presented for the piano hammer can be
used in a wide range of applications.

Several filter design techniques have been reviewed for
the accurate tuning of the resonating waveguide block. It has
been shown that high-order dispersion filters are needed for
accurate simulation of inharmonicity. Therefore, perceptual
issues have been addressed since they are helpful in optimiz-
ing the design and reducing computational loads. The re-
quirement of physicality can always be weakened when the
effect caused by a specific feature is considered to be inaudi-
ble.

A filter-based approach was presented for the sound-
board model. As such, it cannot be interpreted as physical,
but this does not influence the functionality of the model. In
general, only those parameters which are involved in block
interaction or are influenced by control messages need to
have a clear physical interpretation. Therefore, we recom-
mend synthesis structures that are based on building blocks
with physical input and output parameters, but whose inner

Fstring ↓ 8 Hlow(z) ↑ 8 + P

Hhigh(z) z−N

Figure 6: The multirate soundboard model.

structure does not necessarily follow physical model. In other
words, the basic building blocks are black box models with
the most efficient implementations available, and they form
the physical structure of the instrument model at a higher
level.

The use of multirate techniques was suggested for mod-
eling beating and two-stage decay as well as the soundboard.
The model can run at different sampling rates (e.g., 44.1,
22.05, and 11.025 kHz) or/and with different filter orders im-
plemented in the digital waveguide model. Since the stabil-
ity of the numerical structures is maintained in all cases, the
user has the option of choosing between quality and effi-
ciency. This remark is also relevant for potential applications
in structured audio coding. In cases when instrument mod-
els are to be encoded and transmitted without the precise
knowledge of the computational power of the decoder, it is
essential that the stability is guaranteed even at low-sampling
rates in order to allow graceful degradation.
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