
1	Introduction
Malignant	melanoma	represents	the	most	aggressive	form	of	skin	cancer,	with	an	increasing	incidence	worldwide.	It	derives	from	the	transformation	and	uncontrolled	growth	of	melanocytes,	and	it	is	characterized	by	different

progression	stages:	early	melanomas	(stages	0	and	I)	are	 localized	and	noninvasive;	stage	II	 tumors	are	 larger	and	often	present	ulcerations,	with	a	high	risk	to	metastasize;	advanced	melanomas	(stages	 III	and	IV)	have	already

colonized	 other	 body	 tissues.	 The	 staging	 is	 used	 to	 determine	 treatment:	 the	main	 options	 include	 surgical	 excision,	 chemotherapy,	 targeted	 therapy	 and	 immunotherapy	 [1,2].	Unfortunately,	 the	 currently	 available	 therapeutic

strategies	for	metastatic	melanoma	have	a	relatively	low	success	rate,	due	to	the	development	of	drug	resistance	generally	associated	with	changes	in	drug	pharmacokinetics,	mutation/amplification	of	drug	targets	and	enhanced	efflux

pump-mediated	drug	detoxification	[3–5].	Moreover,	 the	majority	of	both	consolidated	and	emerging	anti-melanoma	treatments	 is	characterized	by	severe	adverse	effects	 [6,7].	For	 these	reasons,	 in	 the	 last	decade	the	 interest	 in

natural	compounds	has	increased,	owing	to	their	potent	and	selective	anti-cancer	activity.	In	fact,	a	great	number	of	studies	has	consistently	reported	that	phytochemicals	can	exert	anti-proliferative,	pro-apoptotic,	anti-invasive	and

anti-angiogenic	effects	in	melanoma	cell	lines	and	mouse	models,	without	significant	toxicity	in	the	latter.	In	particular,	there	are	different	molecular	mechanisms	responsible	for	the	anti-melanoma	actions	of	these	compounds,	such	as

inhibition	of	tumor-promoting	proteins	and	activation	of	tumor-suppressing	cascades	[8].	This	review	attempts	to	summarize	the	recent	findings	about	the	role	of	various	natural	products	in	melanoma	prevention	and	treatment.
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Abstract

Melanoma	is	the	most	fatal	form	of	skin	cancer.	Current	therapeutic	approaches	include	surgical	resection,	chemotherapy,	targeted	therapy	and	immunotherapy.	However,	these	treatment	strategies	are	associated	with

development	 of	 drug	 resistance	 and	 severe	 side	 effects.	 In	 recent	 years,	 natural	 compounds	 have	 also	 been	 extensively	 studied	 for	 their	 anti-melanoma	 effects,	 including	 tumor	 growth	 inhibition,	 apoptosis	 induction,

angiogenesis	and	metastasis	suppression	and	cancer	stem	cell	elimination.	Moreover,	a	considerable	number	of	studies	reported	the	synergistic	activity	of	phytochemicals	and	standard	anti-melanoma	agents,	as	well	as	the

enhanced	effectiveness	of	 their	synthetic	derivatives	and	novel	 formulations.	However,	clinical	data	confirming	 these	promising	effects	 in	patients	are	still	 scanty.	This	review	emphasizes	 the	anti-tumor	mechanisms	and

potential	application	of	the	most	studied	natural	products	for	melanoma	prevention	and	treatment.
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2	NATURAL	COMPOUNDS	TARGETING	MELANOMAatural	compounds	targeting	melanoma
Accumulating	 evidence	 has	 highlighted	 the	 ability	 of	 numerous	 natural	 compounds	 to	 specifically	 target	 different	 signaling	molecules	 and	 pathways	 involved	 in	 tumorigenesis	 and	 in	 tumor	 progression.	 Several	 of	 these

naturally	occurring	molecules	have	been	tested	in	in	vitro,	pre-clinical	and	clinical	studies,	alone	or	in	combination	with	standard	anti-cancer	therapies	[9].	Among	them,	polyphenols	(flavonoids,	curcumin	and	resveratrol),	organosulfur

compounds	(sulforaphane),	 terpenoids	(artemisinin,	oridonin	and	ursolic	acid),	saponins	(ginsenosides),	 tocotrienols	(γ-	and	δ-isoforms),	alkaloids	 (berberine,	harmine	and	capsaicin)	and	hydroxycinnamic	acids	 (caffeic	acid	and	 its

phenethyl	ester)	have	shown	promise	as	anti-melanoma	agents	(Fig.	1).

2.1	Quercetin
Quercetin	 is	 a	 penta-hydroxylated	 flavonol.	 It	 is	 particularly	 abundant	 in	 capers,	 tomatoes,	 apples,	 onions	 and	 tea,	 and	 because	 of	 this	 wide	 distribution	 in	 nature	 many	 studies	 have	 been	 conducted	 to	 investigate	 its

chemopreventive	and	anti-tumor	properties	[10].

In	different	human	melanoma	cell	lines	quercetin	was	shown	to	reduce	cell	viability	at	low	doses	and	to	trigger	apoptosis	at	high	doses	[11].	These	anti-proliferative	and	pro-apoptotic	effects	were	also	confirmed	in	vivo	[12,13],

and	were	associated	with:	decrease	in	the	B-cell	lymphoma	2	(Bcl-2)	expression	[14];	nitric	oxide	(NO)	production	[15];	downregulation	of	protein	kinase	C-α	(PKC-α)	[16];	inhibition	of	the	signal	transducer	and	activator	of	transcription

3	(STAT3)	pathway	[17].	Interestingly,	melanoma	cells	overexpressing	tyrosinase,	the	rate-limiting	enzyme	in	melanin	synthesis,	were	more	susceptible	to	the	apoptosis	induced	by	quercetin:	in	particular,	the	flavonol-mediated	cell

Fig.	1	Chemical	structures	of	the	main	anti-melanoma	natural	compounds.
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death	was	associated	with	phosphorylation	of	p53,	inhibition	of	glutathione	reduction	and	reactive	oxygen	species	(ROS)	generation	[18,19].	Finally,	it	has	been	recently	demonstrated	that	this	compound	can	severely	alter	the	cellular

bioenergetics	in	murine	melanoma	B164A5	cells,	decreasing	both	the	oxygen	consumption	and	extracellular	acidification	rates	[20].

The	acquisition	of	invasive	behavior	is	fundamental	for	the	transformation	of	in	situ	melanoma	into	its	most	aggressive	counterpart.	Quercetin	was	found	to	suppress	the	metastatic	potential	of	melanoma	cells	by	inhibiting	the

matrix	metalloproteinase	9	(MMP-9)	activity	[21],	the	hepatocyte	growth	factor	(HGF)/c-MET	signaling	[22],	the	epithelial-to-mesenchymal	transition	(EMT)	[23]	and	the	interactions	of	the	tumor	cells	with	the	endothelium	[24].

The	role	of	quercetin	in	UV	protection	and	melanogenesis	is	still	a	matter	of	debate.	Yin	et	al.	have	recently	demonstrated	that	quercitrin,	a	glycosylated	form	of	quercetin,	can	protect	skin	from	UVB-induced	oxidative	damage

[25].	On	the	other	hand,	Rafiq	et	al.	reported	that	UVB-irradiated	B16F10	melanoma	cells	subsequently	treated	with	quercetin	underwent	a	dose	dependent	reduction	in	cell	viability	and	increased	apoptotic	cell	death	[26].	Moreover,

quercetin	exerted	anti-melanogenic	effects	in	UVA-exposed	B16F10	cells	through	downregulation	of	NF-E2	p45-related	factor	2	(Nrf2)	activity	[27]	and	reduced	oxidative	stress-induced	and	α-melanocyte	stimulating	hormone	(α-MSH)-

mediated	melanogenesis	in	the	same	cell	line	[28–30],	while	enhancing	melanin	synthesis	in	HMVII	melanoma	cells	[31].

It	is	now	well	established	that	calcitriol,	the	active	form	of	vitamin	D,	is	not	only	involved	in	the	regulation	of	bone	metabolism,	but	it	also	exerts	significant	antitumor	effects	as	evidenced	by	in	vitro	and	in	vivo	studies	[32].

Specifically,	melanoma	cells	express	the	vitamin	D	receptor	(VDR),	and	vitamin	D	metabolites	were	shown	to	exert	antiproliferative	effects	on	melanoma	cells	[33–35].	In	line	with	these	observations,	melanoma	development	has	been

shown	to	be	correlated	with	vitamin	D	deficiency	and	dysfunctional	VDR	intracellular	signaling	pathways	[36].	Quercetin	was	reported	to	enhance	VDR	activity	in	human	colorectal	adenocarcinoma	cells	(Caco-2)	by	altering	cofactors

recruitment	[37]	and	upregulating	VDR	target	genes	[38].	Mechanistically,	quercetin	was	shown	to	bind	to	the	VDR	receptor,	as	evidenced	by	in	silico	studies	[39],	thus	triggering	its	antitumor	effects.	However,	the	possible	interaction

of	quercetin	with	VDR	is	still	a	matter	of	debate	[40].	So	far,	there	are	no	studies	reporting	the	possible	interaction	between	quercetin	and	VDR	signaling	pathways	in	melanoma	cells.

Synergistic	anti-cancer	activity	was	shown	by	quercetin	when	given	in	combination	with	either	synthetic	or	natural	compounds:	the	co-treatment	with	dacarbazine	or	temozolomide	sensitizes	melanoma	cells	to	the	anti-tumor

effects	of	these	chemotherapeutic	agents	through	p53	activation	[19,41];	the	resistance	of	MeWo	and	WM164	cells	to	recombinant	human	tumor	necrosis	factor-related	apoptosis-inducing	ligand	(rhTRAIL)	was	completely	abrogated	by

addition	of	quercetin	through	upregulation	of	rhTRAIL-binding	receptors	DR4	and	DR5	and	increased	degradation	of	the	anti-apoptotic	FLICE-like	inhibitory	protein	(FLIP)	[42];	a	combination	of	quercetin	and	sulforaphane	caused	a

significant	additive	effect	in	decreasing	B16F10	cell	proliferation	and	invasion	in	vitro	and	in	vivo	[43];	quercetin	and	curcumin	synergistically	inhibit	melanoma	cell	viability	by	downregulation	of	Wnt/β-catenin	signaling	and	apoptosis

induction	[44];	intravenous	administration	of	quercetin	and	pterostilbene	to	mice	suppressed	the	migration	of	melanoma	cells	to	the	liver	[45].

Novel	 quercetin	 synthetic	 derivatives	 have	 been	 recently	 developed.	 In	 particular,	 Yamauchi	 et	 al.	 observed	 that	 methylquercetins	 can	 inhibit	 both	 the	 proliferation	 and	 migration	 of	 melanoma	 cells,	 also	 stimulating

melanogenesis	through	modulation	of	microphthalmia-associated	transcription	factor	(MITF)	and	p38	expression	[46–48].	Quercetin	glycosides	were	demonstrated	to	both	induce	[49,50]	and	suppress	[51]	melanogenesis.

Nanosized	emulsions	and	lipid	nanosystems	containing	quercetin	exhibited	important	cytotoxic	effects	against	B16F10	cells	both	in	vitro	and	in	vivo,	with	an	increased	solubility	and	oral	bioavailability	in	mice	with	respect	to	the

standard	drug	[52,53].

2.2	Fisetin
Fisetin	is	a	flavonol,	chemically	referred	to	as	3,7,3′,4′-tetrahydroxyflavone,	which	is	commonly	found	in	cucumbers,	kiwi,	onions,	persimmons,	apples	and	strawberries.	It	was	observed	to	possess	important	neuroprotective

effects,	and	recently	its	anti-cancer	potential	has	also	been	investigated	[54].

Different	studies	conducted	by	Syed	et	al.	[55–57]	demonstrated	that	fisetin	can	arrest	melanoma	cell	proliferation	through	inhibition	of	the	Wnt	signaling	pathway	and	direct	binding	to	p70S6K	and	mTOR,	and	that	 it	can

activate	both	the	intrinsic	and	extrinsic	apoptotic	pathways.	Recent	findings	also	suggest	that	fisetin	can	trigger	mitochondrial	apoptosis	in	uveal	melanoma	cells,	while	sparing	normal	retinal	pigment	epithelial	cells	[58],	and	that	it

can	target	Y-box	binding	protein	1	(YB-1)/ribosomal	S6	kinase	(RSK)	axis	in	monolayer	and	3D	melanoma	cultures	[59].

Fisetin	was	reported	to	inhibit	melanoma	cell	invasion	through	EMT	reversion	and	suppression	of	mitogen-activated	protein	kinase	(MAPK)	and	nuclear	factor	kappa-light-chain-enhancer	of	activated	B	cells	(NF-κB)	signaling

pathways	[60].

α-MSH-	and	3-isobutyl-1-methylxanthine	(IBMX)-induced	melanosis	in	B16F10	melanoma	cells	was	inhibited	by	fisetin	treatment,	which	also	activated	the	connective	tissue	growth	factor	(CTGF)/transforming	growth	factor	β

(TGFβ)	signaling	pathway	in	human	skin	fibroblasts	and	3T3-L1	cells,	thus	up-regulating	skin	fibril-related	genes	and	decreasing	adipogenesis,	respectively	[61].	On	the	contrary,	4′-O-methylfisetin	significantly	promoted	melanogenesis

in	melanoma	cells	via	activation	of	mammalian	target	of	rapamycin	complex	1	(mTORC1)	[62].

In	athymic	nude	mice	subcutaneously	implanted	with	BRAF-mutated	melanoma	cells,	the	combination	therapy	with	fisetin	and	sorafenib,	a	small	multi-kinase	inhibitor	that	targets	both	the	mutated	and	the	wild-type	BRAF



kinase,	more	effectively	reduced	the	tumor	growth	when	compared	to	the	individual	agents,	via	enhancement	of	apoptosis	and	inhibition	of	MAPK	and	phosphoinositide	3-kinase	(PI3K)	pathways	[63].	Moreover,	fisetin	was	shown	to

potentiate	the	anti-metastatic	effects	of	sorafenib,	leading	to	a	decrease	in	N-cadherin,	vimentin,	fibronectin	expression	and	to	an	increase	in	E-cadherin	levels	both	in	vitro	and	in	vivo	[64].

The	co-treatment	with	fisetin	and	melatonin	also	resulted	in	the	synergistic	activation	of	apoptosis,	accompanied	by	suppression	of	cyclooxygenase-2	(COX-2),	nitric	oxide	synthase	(iNOS)	and	NF-κB	signaling	pathways	[65].

2.3	Apigenin
Apigenin	 (4'′,5,7,-trihydroxyflavone)	 is	 a	 flavone	 present	 in	many	 vegetables	 and	 fruits,	 particularly	 in	 chamomille,	 parsley,	 celery	 and	 oranges,	 and	 possesses	 radical-scavenging,	 anti-inflammatory	 and	 anti-carcinogenic

properties	[66].

The	anti-tumor	effects	of	apigenin	have	been	investigated	in	different	types	of	cancer,	including	melanoma.	The	main	mechanisms	of	action	are:	G2/M	cell	cycle	arrest	and	p-extracellular	signal-regulated	kinase	1/2	(p-ERK1/2),

p-Akt	and	p-mTOR	downregulation	[67];	apoptosis	activation,	associated	with	ROS	accumulation,	cytochrome	c	release,	DNA	fragmentation,	caspase-3	and	poly	(ADP-ribose)	polymerase	(PARP)	cleavage	[67,68];	 suppression	of	 cell

migration	through	STAT3	and	focal	adhesion	kinase	(FAK)	inhibition	[69,70];	reduced	vascular	endothelial	growth	factor	(VEGF)	expression	and	secretion	[71].

PD-1/PD-L1	checkpoint	blockade-based	immunotherapy	has	shown	promising	results	in	the	treatment	of	melanoma.	Interestingly,	it	has	been	recently	demonstrated	that	apigenin	downregulates	the	interferon	gamma	(IFN-γ)-

induced	PD-L1	expression	in	melanoma	cells,	by	inhibiting	STAT1	phosphorylation.	Furthermore,	apigenin	enhanced	the	T	cell-mediated	melanoma	killing	in	vitro	and	suppressed	the	melanoma	xenograft	growth	by	increasing	CD4+

and	CD8 + T	cell	infiltration.	Finally,	apigenin	boosted	T	cell	immunity	through	downregulation	of	PD-L1	expression	in	dendritic	cells	[72].

Apigenin	was	 found	 to	 overcome	 resistance	 to	 TRAIL	 and	 to	 increase	 TRAIL-mediated	 apoptosis	 in	 different	 cancer	 cell	 lines	 (such	 as	 breast	 cancer,	 colon	 cancer,	 hepatocellular	 carcinoma,	 pancreatic	 carcinoma	 cells),

including	melanoma	cell	lines	[73].

Apigenin	exhibited	potent	melanogenic	activities	by	increasing	the	expression	levels	of	MITF,	tyrosinase,	tyrosinase-related	protein	1	(TRP-1)	and	TRP-2	and	by	activating	the	p38	pathway	[74,75].	Similar	results	were	obtained

with	apigenin-7-glucoside,	which	also	suppressed	melanoma	cell	proliferation	[76].

Apigenin-loaded	poly	(lactic-co-glycolide)	nanoparticles	were	reported	to	rapidly	enter	melanoma	cancer	cells,	triggering	mitochondrial	apoptosis	[77].

2.4	Luteolin
Luteolin	is	a	common	flavone	that	exists	in	a	variety	of	plants,	such	as	celery,	broccoli,	parsley,	thyme	and	rosemary,	and	a	growing	body	of	evidence	has	suggested	that	it	possesses	potent	anti-inflammatory,	neuroprotective

and	anti-tumor	activity	[78,79].

The	 anti-melanoma	activities	 of	 luteolin	were	 found	 to	 be	 correlated	with	 anti-proliferative,	 anti-metastatic	 and	 anti-angiogenic	 effects,	 such	 as	 cyclin-dependent	 kinase	 1	 (CDK-1)	 and	CDK-2	 inhibition,	 PI3K/Akt	 pathway

downregulation,	reversion	of	β3	integrin-mediated	EMT	and	suppression	of	hypoxia-inducible	factor	1-alpha	(HIF1α)/VEGF	signaling	[80–83].

The	endoplasmic	reticulum	(ER)	stress	is	a	cellular	process	occurring	in	different	physiological	and	pathological	conditions,	as	well	as	after	treatment	with	various	synthetic	and	natural	agents:	the	prolonged	accumulation	of

unfolded	and	misfolded	proteins	 in	 the	ER	 lumen	can	activate	a	set	of	pro-death	programs,	 such	as	 the	double-stranded	RNA-dependent	protein	kinase	PKR-like	ER	kinase	 (PERK)/eukaryotic	 initiation	 factor	2α	 (eIF2α)/activating

transcription	 factor	4	 (ATF4)/C/EBP	homologous	protein	 (CHOP)	pathway	and	 the	 inositol-requiring	enzyme	1α	(IRE1α)/c‐Jun	N‐terminal	 kinase	 (JNK)/p38	MAPK	cascade.	Several	 phytochemicals	were	demonstrated	 to	 trigger	ER

stress-related	death	in	tumor	cells	[84]:	among	them,	luteolin	specifically	induced	this	pro-apoptotic	pathway	in	melanoma	cells	[85].

Glutathione	S-transferase	(GST)	is	significantly	involved	in	the	metabolism	and	detoxification	of	drugs	commonly	used	in	melanoma	therapy,	thus	affecting	treatment	effectiveness.	Interestingly,	Balyan	et	al.	demonstrated	that

luteolin	can	selectively	inhibit	GST	after	tyrosinase-driven	conversion	in	luteolin-quinone	and	luteolin-glutathione	conjugate	[86].

The	anti-melanogenic	effects	of	 luteolin	have	been	reported	by	various	studies	[87,88].	 Improved	melanogenesis	 inhibitory	activity	has	been	shown	by	different	 luteolin	synthetic	derivatives,	 including	3-prenyl-luteolin	 [89],

luteolin	7-sulfate	[90]	and	7-O-substituted	luteolin	[91],	as	well	as	by	the	γ-irradiated	compound	[92].

2.5	Genistein
Genistein	(4′,5,7-trihydroxyisoflavone)	is	a	phytoestrogen	commonly	found	in	soybeans	that	has	been	correlated	with	a	decrease	in	the	incidence	of	breast	and	prostate	cancers	[93,94].



Concerning	melanoma,	genistein	treatment	of	different	human	and	murine	melanoma	cell	lines	resulted	in	cell	cycle	arrest	at	G1/S	and	G2/M	check	points,	accompanied	by	p21	upregulation,	CDK1	and	CDK2	inhibition	and

checkpoint	kinase	2	(Chk2)	activation	[95–102].	Moreover,	genistein	was	reported	to	promote	morphological	changes	in	melanoma	cells,	inducing	a	more	dendritic	and	differentiated	phenotype	characterized	by	enhanced	tyrosinase

activity	and	melanin	production	[95–97].

It	is	well	known	that	interleukin	8	(IL-8)	synthesis	can	be	stimulated	by	prostaglandin	E2	(PGE2)	in	several	pathologies,	including	cancer.	Venza	et	al.	demonstrated	that	PGE2	upregulates	IL-8	expression	in	melanoma	via	the

EP3	receptor	and	that	genistein	treatment	can	inactivate	the	latter,	resulting	in	the	reduction	of	IL-8	mRNA	and	protein	levels	and	in	the	suppression	of	oral,	uveal	and	cutaneous	melanoma	cell	growth	[103].

MicroRNAs	 (miRNAs)	 are	 endogenous,	 ˜22	 nucleotide,	 non-coding	RNAs	 implicated	 in	RNA	 silencing	 and	 post-transcriptional	 control	 of	 gene	 expression.	miRNAs	may	 function	 as	 either	 oncogenes	 or	 tumor	 suppressors

(oncomirs),	depending	on	the	specific	cancer	type.	Sun	et	al.	reported	that	genistein	can	inhibit	human	uveal	melanoma	cell	growth	via	downregulation	of	miR-27a	and	of	 its	target	gene	zinc	finger	and	BTB	domain	containing	10

(ZBTB10)	[104].

Genistein	suppressed	the	invasive	potential	of	melanoma	cells	via	the	FAK/paxillin	pathway	in	vitro	[105–107]	and	significantly	decreased	the	number	and	size	of	liver	and	lung	metastases	in	C57BL/6	mice	[108–110].

Vasculogenic	mimicry	(VM)	describes	the	ability	of	aggressive	melanoma	cells	to	form	vascular-like	structures	in	the	absence	of	endothelial	cells.	Genistein	not	only	exhibited	anti-angiogenic	properties	in	mouse	models	of

melanoma	[111]	but	also	inhibited	VM	of	uveal	melanoma	cells	both	in	vitro	and	in	vivo	[112].

The	effects	of	genistein	on	the	immune	system	were	evaluated	by	Guo	et	al.	in	adult	female	B6C3F1	mice	injected	with	B16F10	cells.	In	particular,	they	observed	that	genistein	could	enhance	host	resistance	to	tumor	formation,

by	increasing	the	activity	of	cytotoxic	T	and	NK	cells	[113].

Synergistic	anti-melanoma	effects	were	shown	by	genistein	when	given	in	combination	with	standard	chemotherapeutic	agents,	such	as	cyclophosphamide	[114]	and	cisplatin	[115].	Moreover,	a	recent	study	by	Ji	et	al.	has

suggested	that	increasing	the	intracellular	levels	of	ceramide	can	sensitize	melanoma	cells	to	the	growth-suppressing	activity	of	genistein	[116].

5,7,4′-Trihydroxy-3′-methoxyisoflavone,	obtained	through	biotransformation	of	genistein	by	two	recombinant	Escherichia	colistrains,	significantly	reduced	the	proliferation	of	murine	melanoma	cells,	without	affecting	the	growth

of	normal	murine	fibroblasts	[117].

In	an	 interesting	study	conducted	by	Danciu	et	al.,	a	 lamellar	 lyotropic	 liquid	crystal	genistein-based	formulation	(LLC-Gen)	was	obtained	 in	order	to	enhance	the	aqueous	solubility	of	 this	compound.	The	formulation	was

applied	 locally,	 in	a	murine	model	of	melanoma,	with	or	without	electroporation:	 the	 tumor	volume,	 the	amount	of	melanin	and	 the	degree	of	erythema	were	 significantly	 reduced	after	21	days	of	 treatment,	with	an	even	better

prognosis	after	electroporation	[118].

2.6	Epigallocatechin-3-gallate
Epigallocatechin	gallate	(EGCG),	the	ester	of	epigallocatechin	and	gallic	acid,	belongs	to	the	catechin	subclass	of	flavonoids.	It	is	the	major	component	of	green	tea	and	is	a	potent	free-radical	scavenger	and	antioxidant.	In

addition,	it	is	under	study	as	a	potential	chemopreventive	agent	[119].

In	melanoma	cells,	EGCG	was	found	to	exert	both	anti-proliferative	and	pro-apoptotic	activities,	 inducing	cyclin	D1	and	CDK2	downregulation,	p16INK4a,	p21CIP1/WAF1	and	p27KIP1	activation,	Bcl-2-associated	X	protein

(Bax)/Bcl-2	ratio	modulation	and	caspase-3,	-7	and	-9	cleavage	[120].	Interestingly,	these	anti-cancer	effects	have	been	associated	with	inhibition	of	glucosidase	II,	a	key	enzyme	involved	in	the	glycoprotein	synthesis	in	the	ER,	and	with

inflammasome	downregulation,	followed	by	reduced	IL-1β	secretion	and	NF-κB	activity	[121,122].	Furthermore,	EGCG	was	demonstrated	to	act	as	an	agonist	of	67-kDa	laminin	receptor	(67LR),	a	cell	surface	receptor	highly	expressed

in	melanoma	cells,	leading	to	mTOR	pathway	inhibition,	merlin	tumor	suppressor	activation	and	increased	miRNA-let-7b	expression	[123,124].

EGCG	treatment	resulted	in	the	suppression	of	melanoma	cell	migration	and	invasion,	correlated	with	E-cadherin	upregulation,	HGF/SF-Met	signaling	dysregulation,	MMP-2	inhibition	and	TNF	receptor-associated	factor	6

(TRAF6)	inactivation	[125–129].

In	co-cultures	of	F10-OVA	melanoma	cells	and	tumor-specific	CD3 + T	cells,	EGCG	reduced	PD-L1	mRNA	expression	of	30%	in	the	tumor	cells	and	restored	IL-2	mRNA	expression	 in	the	 lymphocytes,	 indicating	that	 it	can

function	as	an	immune	checkpoint	inhibitor	[130].

EGCG	was	shown	to	possess	anti-melanogenic	activity,	associated	with	decreased	MITF	production	and	tyrosinase	expression	[131,132].

Synergistic	anti-melanoma	effects	of	EGCG	with	different	synthetic	and	natural	anti-cancer	agents	have	been	observed:	the	co-treatment	with	dacarbazine	significantly	reduced	the	primary	tumor	growth	and	the	number	of



lung	metastases	in	melanoma-bearing	mice	[133];	the	addition	of	TRAIL	to	the	EGCG	treatment	enhanced	the	apoptosis	rate	in	human	melanoma	A375	cells	[134];	EGCG	sensitized	melanoma	cells	to	IFN-α-induced	growth	suppression

[135];	with	respect	to	monotherapy,	the	combination	treatment	with	EGCG	and	vorinostat,	a	histone	deacetylase	(HDAC)	inhibitor,	resulted	in	significantly	greater	inhibition	of	cell	proliferation	and	activation	of	apoptosis	[136];	vitamin

A	 increased	 the	 expression	 of	 the	 67-kDa	 laminin	 receptor	 67LR	 in	 B16	 melanoma	 cells,	 potentiating	 the	 anti-proliferative	 activity	 of	 EGCG	 [137].	 Moreover,	 EGCG	 was	 reported	 to	 overcome	 resistance	 to	 the	 BRAF	 inhibitor

vemurafenib	by	activating	67LR-dependent	protein	phosphatase2A	pathway	in	melanoma	cells	[138].

Novel	EGCG	synthetic	derivatives	have	been	recently	developed:	a	3,4,5-trimethoxybenzoyl	ester	analogue	of	EGCG	was	reported	 to	bind	 to	human	dihydrofolate	 reductase	and	disrupt	 the	 folate	cycle	 in	melanoma	cells,

leading	 to	 cancer	 cell	 death	 [139];	 although	 EGCG	methylation	 generally	 reduces	 its	 anti-tumor	 properties,	 the	 anti-proliferative	 effects	 exerted	 by	 7-OMe	EGCGs	 on	 B16	 cells	were	 similar	 to	 those	 of	 EGCG	 [140];	 4-(S)-(2,4,6-

trimethylthiobenzyl)-EGCG	triggered	apoptosis	in	melanoma	cells	via	ROS-mediated	autophagy	induction	[141].

Transferrin	 receptors	 are	 generally	 overexpressed	 in	 cancer	 cells	 and	 therefore	 can	 be	 exploited	 for	 the	 anti-tumor	 drug	 transport	 across	 cell	membranes.	 Lemarié	 et	 al.	 reported	 that	 the	 intravenous	 administration	 of

transferrin-bearing	vesicles	entrapping	EGCG	to	mice	bearing	B16-F10	tumors	successfully	inhibited	cancer	progression	[142].

Improved	anti-melanoma	efficacy	was	shown	by	EGCG	when	encapsulated	in	gold	and	chitosan	nanoparticles	[143,144],	as	well	as	in	nanoethosomes	[145],	in	in	vitro	and	in	vivo	experiments.

2.7	Curcumin
Curcumin	is	a	polyphenol	obtained	from	Curcuma	longa,	commonly	known	as	turmeric.	It	is	nontoxic	and	characterized	by	many	therapeutic	properties,	particularly	by	antioxidant,	anti-inflammatory	and	anti-microbial	activities

[146,147].

As	regards	its	anti-melanoma	effects,	curcumin	was	shown	to	arrest	cell	proliferation	and	to	trigger	both	extrinsic	and	intrinsic	apoptosis	in	vitro	and	in	vivo	[148–155].	In	particular,	it	was	reported	to	inhibit	the	NF-κB	[156–158],

STAT3	[159],	Akt/mTOR	[160]	and	Wnt/β-catenin	[44]	signaling	pathways,	to	induce	ER	stress	[161],	to	activate	mammalian	Sterile	20-like	kinase	1	(MST1)/JNK	cascade	[162]	and	to	enhance	ROS	production	[163,164]	in	melanoma	cells.

Curcumin	exhibited	anti-invasive	properties,	correlated	with	modulation	of	FAK	and	MMP-2	activity	and	of	integrin	receptor,	nonmetastatic	gene	23	(Nm23)	and	E-cadherin	expression	[165,166].	Moreover,	curcumin	selectively

downregulated	the	levels	of	phosphatase	of	regenerating	liver-3	(PRL-3),	an	oncogene	involved	in	tumor	metastasis,	in	B16F10	cells	[167].	Interestingly,	pulmonary	administration	of	this	compound	resulted	in	a	significant	decrease	in

the	number	of	lung	metastatic	nodules	in	melanoma	mouse	models	[168].

Different	 curcumin-based	 combination	 therapies	 have	 been	 proposed	 for	 the	 treatment	 of	melanoma:	 C6	 ceramide	 and	 homoserine	 based	C8-ceramide	 analogues	 promoted	 curcumin-mediated	 anti-proliferative	 and	 anti-

angiogenic	effects	[169,170];	 the	co-treatment	with	tamoxifen	and	curcumin	resulted	 in	synergistic	 induction	of	apoptosis	 in	G361	chemo-resistant	cells	 [171];	 fibroblast	activation	protein	α	(FAPα)	vaccine	combined	with	curcumin

elicited	the	anti-cancer	response	to	the	natural	compound	via	inhibition	of	indolamine-2,3-dioxygenase	and	of	EMT	[172];	1-phenyl-2-decanoylamino-3-morpholino-1-propanol	(PDMP)	facilitated	curcumin-induced	apoptotic	cell	death	by

enhancing	ceramide	accumulation	and	c-Jun	N-terminal	kinase	(JNK)	phosphorylation	whilst	suppressing	Akt/mTOR	signaling	pathway	[173];	ABT-737,	a	novel	Bcl-2	inhibitor,	potentiated	the	pro-apoptotic	activity	of	curcumin	in	WM-

115	and	B16	cell	lines	[174];	a	combination	of	curcumin	and	NC10,	a	synthetic	nitrosyl-iron	complex,	improved	the	anti-tumor	efficacy	of	the	monotherapy	with	the	polyphenol	[175];	borneol,	a	terpene	derivative	commonly	used	in

Chinese	medicine,	effectively	synergized	with	curcumin,	by	activating	the	caspase	cascade	in	A375	cells	[176];	the	red	united	blue	light	irradiation	greatly	enhanced	the	oxidative	stress-mediated	cell	death	induced	by	curcumin	[177].

Many	recent	studies	have	focused	on	the	synthesis	of	anti-melanoma	curcumin	derivatives:	the	curcumin	analog	DM-1	triggered	apoptotic	cell	death,	alone	or	in	combination	with	dacarbazine,	both	in	vitro	and	in	vivo	[178–181];

the	 analog	D6	 significantly	 upregulated	 the	 p53	 expression	 and	 inhibited	 the	 PI3K/Akt	 and	NF-κB	 pathways,	 inducing	mitochondrial	 apoptosis	 in	 different	melanoma	 cell	 lines	 [182–184];	 treatment	with	 the	 FLLL32	 and	FLLL62

analogues	resulted	in	STAT3	inhibition,	ultimately	leading	to	melanoma	cell	death	[185,186];	the	curcuminoid	EF24	exhibited	potent	anti-proliferative,	anti-metastatic	and	anti-angiogenic	effects,	also	modulating	miRNA-21	and	miRNA-

33b	expression	[187–189];	ferrocenyl	curcuminoid	derivatives	showed	improved	anti-melanoma	activity	compared	to	the	corresponding	organic	compounds	[190];	different	curcumin-like	diarylpentanoid	analogues	were	demonstrated	to

suppress	the	melanogenesis	in	B16	cells	[191];	tetrahydricyrcumin,	salicyl	curcumin	and	curcumin-III	greatly	reduced	the	neo-vascularization	in	mouse	melanoma	models	[192].

Micelles	 and	 liposomes	 are	 vesicles	 in	which	drugs	 can	be	 trapped	 and	 administered	more	 efficiently.	Different	 curcumin-loaded	micellar	 systems	 (chitosan-cholesterol-,	 poly(D,L-lactide)-,	 cholesterol-conjugated	poly(D,L-

lactide)-,	PEG-,	cholesterol-	and	vitamin	E-conjugated	PEG-based	micelles)	exhibited	higher	cytotoxicity	with	respect	to	the	free	compound	in	2D	and	3D	melanoma	cell	cultures	and	in	melanoma-bearing	mice,	successfully	solubilizing

and	stabilizing	the	drug	and	promoting	its	controlled	release	to	the	tumor	cells	[193–199];	liposomal	delivery	of	curcumin,	alone	or	in	combination	with	anti-cancer	agents	and	molecules	such	as	paclitaxel	or	STAT3	siRNA,	resulted	in

growth-suppressing	and	anti-angiogenic	effects	in	in	vitro	and	in	vivo	melanoma	models	[200–204].

Nanoparticles	and	cyclodextrin-based	carriers	can	also	be	used	to	encapsulate	curcumin	and	its	analogues,	and	have	been	recently	proposed	as	promising	new	formulations	for	melanoma	treatment	[205–223].



An	anti-Muc18	antibody-coupled	curcumin	more	efficiently	reduced	the	brain	metastasis	formation	in	mice	inoculated	with	B16F10	cells	[224].

2.8	Resveratrol
Resveratrol	(trans-3,4′,5-trihydroxystilbene)	is	a	grape-derived	polyphenol	that	has	been	intensively	studied	for	its	chemopreventive	potential	[225].

In	the	case	of	melanoma,	resveratrol	was	found	to	inhibit	cell	growth	by	inducing	S	phase	arrest,	with	cyclins	A,	E,	and	B1	upregulation,	dihydronicotinamide	riboside	quinone	reductase	2	(NQO2)-mediated	p53	overexpression,

ERK1/2	pathway	suppression,	NF-κB	inactivation	and	oncogenic	miR-221	downregulation	[226–230].	Moreover,	it	was	shown	to	trigger	mitochondrial	apoptosis	via	Bax/Bcl-2	ratio	modulation,	caspase-3	cleavage,	STAT3/β-catenin	and

survivin	suppression,	ROS	production	and	ER	stress	activation	[231–239].	Finally,	it	was	observed	to	induce	phenotype	changes	and	to	affect	melanin	synthesis	in	melanoma	cells	[240–243].

In	addition	to	the	above	mentioned	anti-cancer	effects,	resveratrol	exhibited	important	anti-angiogenic	and	anti-invasive	activities,	associated	with	αvβ3	integrin	inhibition,	VEGF	downregulation,	increased	thrombospondin	1

(TSP1)	expression	and	Akt	and	FAK	pathways	inactivation	[244–248].	Notably,	 in	mice	 injected	with	B16 M	cells	resveratrol	successfully	prevented	 liver	metastases	by	reducing	IL-18-dependent	expression	of	vascular	cell	adhesion

protein	1	(VCAM-1)	in	tumor-activated	hepatic	sinusoidal	endothelium,	thus	inhibiting	melanoma	cell	adhesion	to	the	microvasculature	[249,250].

Cellular	senescence	is	a	tumor-suppressive	mechanism	generally	associated	with	DNA	damaging	cancer	therapies.	In	particular,	it	can	be	followed	by	deleterious	effects	in	the	tumor	microenvironment,	such	as	the	acquisition

of	 a	 senescence-associated	 secretory	 phenotype	 (SASP)	which	 is	 responsible	 for	 the	 conversion	 of	 fibroblasts	 into	 pro-inflammatory	 cells	 capable	 of	 promoting	 cancer	 progression.	 In	 a	 recent	 study	 by	Menicacci	 et	 al.,	 chronic

resveratrol	treatment	significantly	inhibited	MRC5	fibroblast	SASP-related	pro-tumor	effects	on	melanoma	cells,	reducing	the	expression	of	EMT	markers	correlated	with	malignant	features	[251].

It	is	well	documented	that	NO	can	participate	to	melanoma	progression.	Yang	et	al.	demonstrated	that	NO	can	enhance	melanoma	metastatic	potential	via	an	apurinic/apyrimidinic	endonuclease-1	(APE)/redox	factor-1	(Ref-1)-

driven	feedback	loop,	which	is	suppressed	by	resveratrol	[252].

Resveratrol	was	shown	to	potentiate	the	activity	of	different	anti-melanoma	agents:	 it	sensitized	melanoma	cells	to	TRAIL	pro-apoptotic	effects	[253,254];	 the	natural	compound-mediated	APE/Ref-1	 inhibition	 increased	the

dacarbazine-induced	cell	death	[255];	resveratrol	addition	rendered	melanoma	cells	more	sensitive	to	temozolomide	treatment	[255];	capsaicin	and	resveratrol	synergistically	triggered	apoptosis	through	NO	elevation	in	A375	cells

[256];	melanoma	sensitivity	 to	 cisplatin	was	enhanced	by	 resveratrol	 via	 connexin	43	upregulation	 [257];	 vemurafenib	 resistance	was	 reversed	by	 resveratrol	 treatment	via	Akt	 inactivation	 in	BRAF-mutated	melanoma	cells	 [258];

synergistic	anti-proliferative	effects,	correlated	with	AMP-activated	protein	kinase	(AMPK),	vasodilator-stimulated	phosphoprotein	(VASP)	and	VEGF	modulation,	were	shown	by	a	combination	of	resveratrol	and	5-fluorouracil	[259,260];

chloroquine	synergized	with	the	polyphenol	to	induce	cytotoxicity	in	melanoma	cells	[261];	resveratrol	improved	the	efficacy	of	high-dose	IL-2	immunotherapy	in	B16F10	melanoma	mouse	models,	also	preventing	the	endothelial	cell

injury	and	inhibiting	the	development	vascular	leak	syndrome	[262];	resveratrol	was	demonstrated	to	act	as	radiotherapy	sensitizer	in	radioresistant	melanoma	cell	lines	[263].

In	the	last	decade,	several	resveratrol	analogues	have	been	produced	in	order	to	improve	the	pharmacokinetic	properties	and	to	increase	the	pharmacological	potency	of	this	compound	for	melanoma	treatment	[264–274].

2.9	Sulforaphane
Sulforaphane	is	an	organic	isothiocyanate	with	several	health	benefits.	It	is	obtained	from	cruciferous	plants,	such	as	broccoli,	cabbage	and	cauliflower	[275].

In	 melanoma	 setting,	 sulforaphane	 was	 shown	 to	 trigger	 cell	 growth	 arrest	 and	 apoptosis,	 accompanied	 by	 the	 upregulation	 of	 early	 growth	 response	 protein	 1	 (EGR1),	 growth	 arrest	 and	 DNA-damage-inducible	 beta

(GADD45B),	ATF3	and	CDKN1A,	by	the	activation	of	caspase-3	and	-9,	Bax,	p53,	p53	upregulated	modulator	of	apoptosis	(PUMA),	Fas	and	mouse	double	minute	2	homolog	(MDM2)	and	by	the	downregulation	of	Bcl-2,	BH3	interacting

domain	death	agonist	 (Bid)	and	NF-κB	[276–279].	Furthermore,	 it	 induced	oxidative	 stress	 and	modulated	 the	expression	of	nerve	growth	 factor	 receptors	TrKA	and	p75NTR,	 shifting	 their	 ratio	 from	pro-survival	 to	pro-apoptotic

[278–280].

Sulforaphane	reduced	the	invasive	potential	of	B16F10	melanoma	cells	by	inhibiting	MMPs	activity,	thereby	suppressing	lung	metastases	[281].	Moreover,	it	inhibited	the	spread	of	B16F10	cells	through	the	stimulation	of	cell-

mediated	immune	response,	upregulation	of	IL-2	and	IFN-γ	and	downregulation	of	proinflammatory	cytokines	IL-1β,	IL-6,	TNF-α	and	granulocyte-macrophage	colony-stimulating	factor	(GM-CSF)	[282].

Cancer	stem	cells	(CSCs)	are	widely	recognized	as	a	small	subpopulation	of	cancer	cells	within	the	tumor	mass	responsible	for	the	resistance	to	standard	anti-cancer	therapies.	In	particular,	they	possess	self-renewal	ability,	as

well	 as	 the	 capacity	 to	 give	 rise	 to	 the	 entire	 tumor	 cell	 bulk	 through	differentiation,	 thus	 representing	 important	 therapeutic	 targets.	 Several	 phytochemicals	were	 demonstrated	 to	 target	CSCs,	 and	 sulforaphane	was	 found	 to

specifically	eliminate	the	melanoma	CSC	subpopulation,	by	suppressing	enhancer	of	zeste	homolog	2	(Ezh2)	function	[283].

Sulforaphane-encapsulated	microspheres	exhibited	potent	anti-melanoma	activity	both	in	vitro	and	in	vivo	[284,285].



Tahata	et	al.	investigated	sulforaphane	efficacy	and	safety	in	17	patients	with	at	least	2	atypical	nevi	and	a	prior	history	of	melanoma.	The	patients	were	given	three	different	oral	doses	of	the	compound	(50,	100	or	200 μmol)

daily	for	28	days.	Sulforaphane	was	well	tolerated	even	at	the	higher	dose	and	achieved	dose-dependent	levels	in	plasma	and	skin.	Importantly,	plasma	levels	of	proinflammatory	cytokines	decreased,	while	the	expression	of	the	tumor

suppressor	decorin	increased	from	day	1	to	28	[286].

2.10	Ursolic	acid
Ursolic	acid	is	a	triterpenoid	exhibiting	a	wide	spectrum	of	pharmacological	properties,	including	anti-inflammatory	and	anti-microbial	features.	It	is	present	in	a	variety	of	plants	and	herbs,	such	as	thyme	and	rosemary,	as	well

as	in	fruit	peels	[287].

Many	studies	have	pointed	out	that	ursolic	acid	possesses	potent	anti-melanoma	activity,	correlated	with	modulation	of	different	pathways,	including	NF-κB,	p53,	Akt	and	ERK1/2	proteins,	and	with	caspase	cascade	activation

[288–292].	Notably,	it	has	also	been	demonstrated	that	tyrosinase-	and	TRP-1-mediated	melanogenesis	and	COX-2/PGE2	pathway	are	implicated	in	the	resistance	of	melanoma	cells	to	the	ursolic	acid	cytotoxicity	[293,294].

In	addition	to	the	above	forenamed	anti-melanoma	effects,	ursolic	acid	was	observed	to	reduce	the	levels	of	VEGF,	NO	and	proinflammatory	cytokines	in	the	serum	of	melanoma	mouse	models	[295].	Furthermore,	it	significantly

suppressed	lung	metastasis	formation	[296].

It	should	be	noted	that	ursolic	acid	sensitized	melanoma	cells	both	to	UV	irradiation	[297]	and	radiotherapy	[298].

Novel	derivatives	and	nanoformulations	have	been	recently	developed	[299–302];	 interestingly,	the	administration	of	 low	molecular	weight	heparin-conjugated	ursolic	acid	and	of	 inclusion	complexes	formed	by	the	acid	and

cyclodextrins	to	melanoma-bearing	mice	resulted	in	a	significant	tumor	growth	inhibition	[303–305].

2.11	Ginsenosides
Ginsenosides	are	triterpene	saponins	and	are	the	major	pharmacologically	active	components	of	ginseng	root	[306].

In	melanoma	cells,	ginsenoside	Rh2	was	found	to	exert	a	G1	phase-specific	suppressive	effect	on	the	Cdk2	activity	and	to	induce	caspase-3	and	-8	dependent	apoptosis	[307,308].	Similar	anti-proliferative	and	pro-apoptotic

effects	were	also	shown	by	other	members	of	the	ginsenoside	group:	ginsenoside	Rg3	decreased	HDAC3	expression,	increased	p53	acetylation,	downregulated	NF-κB-mediated	fucosyltransferase	4	(FUT4)	expression	and	inactivated

epidermal	growth	factor	receptor	(EGFR)/MAPK	pathway,	leading	to	melanoma	cell	death	both	 in	vitro	and	in	vivo	[309–312];	upregulation	of	Fas,	FasL	and	Bax	protein	expression	and	downregulation	of	procaspase-8,	procaspase-3,

mutant	 p53	 and	Bcl-2	 protein	 expression	were	 observed	 in	SK-MEL-2	human	melanoma	 cells	 after	 ginsenoside	Rk1	 treatment	 [313];	 a	major	metabolite	 of	 the	 red	ginseng	ginsenoside	Rb1,	 called	 20-O-β-D-glucopyranosyl-20(S)-

protopanaxadiol,	suppressed	melanoma	cell	growth	by	inducing	autophagy	and	apoptosis	via	AMPK/JNK	signaling	activation	[314].

Ginsenosides	 have	been	 recently	 proposed	 as	 skin-whitening	 agents,	 owing	 to	 their	 ability	 to	 affect	melanin	 synthesis	 via	 tyrosinase	 inhibition	 [315–318].	Notably,	Kim	et	 al.	 have	 also	 suggested	 that	 ginsenoside	F1	may

attenuate	B16F10	melanoma	cell	hyperpigmentation	via	Ras	homologous	(Rho)	signaling	activation	and	subsequent	dendrite	retraction	[319].	However,	the	role	of	ginsenosides	in	altering	melanoma	cell	morphology	is	still	unclear,

since	a	recent	study	by	Jiang	et	al.	has	demonstrated	that	ginsenoside	Rh2	can	induce	dendrite	formation	by	changing	the	physical	properties	of	cholesterol-regulated	membrane	lipid	bilayers	[320].

Promising	anti-angiogenic	and	anti-metastatic	potential	in	melanoma	treatment	was	shown	by	ginsenosides	Rb2,	Rg3	and	Rp1	[321–325].

Ginsenoside	Rh2	 treatment	 enhanced	 the	 anti-cancer	 immunological	 response	 in	melanoma	mouse	models,	 by	 increasing	 T-lymphocyte	 infiltration	 in	 the	 tumor	 and	 by	 triggering	 cytotoxicity	 in	 spleen	 lymphocytes	 [326].

Similarly,	ginsenoside	Rg3	induced	immunogenic	cell	death	in	B16F10	melanoma	cells,	as	evidenced	by	upregulated	surface	expression	of	calreticulin	and	heat	shock	proteins;	moreover,	the	proportion	of	dendritic	CRT+	CD11c+	cells

was	increased	in	the	Rg3-treated	group,	which	also	secreted	IFN-γ,	an	effector	molecule	for	anti-tumor	activity	in	T	cells	[327].

Oral	administration	of	ginsenoside	Rh2	to	C57BL/6	mice	bearing	B16	melanoma	synergistically	enhanced	the	anti-tumor	activity	of	cyclophosphamide	in	a	dose-dependent	manner.	Furthermore,	it	decreased	the	micronucleus

formation	in	polychromatic	erythrocytes	and	DNA	strand	breaks	in	white	blood	cells,	suggesting	that	it	not	only	increases	the	anti-melanoma	efficacy	of	cyclophosphamide	but	also	reduces	its	genotoxic	effects	[328].

New	 synthetic	 ginsenoside	 derivatives	 have	 been	 recently	 obtained,	 showing	 considerable	 cytotoxicity	 against	melanoma	 cells	 [329].	 Interestingly,	 Cui	 et	 al.	 cloned	 and	 characterized	 a	 novel	 ginsenoside-transforming	 β-

glucosidase	(BglG167b)	derived	from	Microbacterium	sp.	Gsoil	167	that	can	efficiently	hydrolyze	gypenoside	XVII,	a	deglycosylated	product	of	major	ginsenoside	Rb1,	into	gypenoside	LXXV,	which	displayed	an	enhanced	anti-melanoma

effect	compared	to	the	original	compound	[330].

In	a	study	by	Zare-Zardini	et	al.,	novel	drug	delivery	systems	based	on	ginsenoside	Rh2-treated	highly	porous	graphene	were	produced	in	order	to	improve	the	compound	cytotoxic	effects	on	different	cancer	cell	lines,	including



melanoma	A375	cells	[331].

2.12	Tocotrienols
Tocotrienols	(TTs)	are	hydrophobic	compounds	which	belong	to	the	vitamin	E	family.	They	are	composed	of	a	chromanol	ring	linked	to	an	unsaturated	isoprenoid	side	chain;	the	number	and	the	position	of	methyl	substitutes	on

the	chromanol	ring	identify	α-,	β-,	γ-	and	δ-TT	isoforms.	Natural	sources	containing	high	levels	of	tocotrienols	are	annatto	(Bixa	orellana	L.)	seeds,	red	palm	oil,	rice	bran	and	other	vegetable	oils.	In	several	studies	TTs	were	reported	to

exert	health	promoting	effects	based	on	their	neuroprotective,	cardioprotective,	antioxidant,	anti-inflammatory	and	cholesterol-lowering	properties	[332].	In	addition,	anti-proliferative,	pro-apoptotic	and	anti-metastatic	activities	have

been	demonstrated	in	a	wide	range	of	cancer	cells	in	vitro	and	in	vivo	[333–337].

We	demonstrated	that	δ-TT	exerts	pro-apoptotic	effects	in	human	melanoma	A375	and	BLM	cell	lines,	by	triggering	the	activation	of	the	PERK/p-eIF2α/ATF4/CHOP,	IRE1α	and	caspase-4	ER	stress-related	pathways	[338,339].

We	also	showed	that,	unlike	vemurafenib,	δ-TT	specifically	targets	the	ABCG2-positive	CSCs	subpopulation	in	the	A375	cell	line,	preventing	the	formation	of	melanospheres	and	inducing	their	disaggregation	[340].

In	malignant	melanoma	cells,	γ-TT-induced	cell	death	was	found	to	be	associated	with	the	cleavage	of	procaspases,	the	activation	of	JNK	signaling	pathway	and	the	suppression	of	NF-κB,	EGFR	and	inhibitor	of	DNA-binding	(Id)

family	proteins.	Moreover,	γ-TT	significantly	suppressed	melanoma	cell	invasion	capability,	by	downregulating	mesenchymal	markers	and	restoring	E-	and	γ-cadherin	expression	[341].

A	synergistic	tumor-suppressing	activity	was	observed	by	combining	TTs	with	standard	anti-cancer	agents	or	other	natural	compounds.	In	particular,	TTs	were	reported	to	potentiate	lovastatin-mediated	growth	inhibition	of

murine	melanoma	B16	cells,	by	dysregulating	HMG-CoA	reductase	activity	both	in	vitro	and	in	vivo	[342].	Moreover,	in	the	same	cell	line	γ-TT	was	found	to	upregulate	the	aryl	hydrocarbon	receptor	(AhR)	expression,	enhancing	the	anti-

proliferative	activity	of	baicalein,	a	flavone	isolated	from	the	roots	of	Scutellaria	baicalensis	and	Scutellaria	lateriflor	[343].

Despite	the	many	anti-cancer	properties,	TTs	fail	to	reach	the	tumor	mass	after	intravenous	administration,	and	melanoma-targeted	vesicles	bearing	transferrin	have	been	proposed	to	overcome	bioavailability	limitations	[344].

2.13	Berberine
Berberine	is	a	benzylisoquinoline	alkaloid	extracted	from	various	plants,	particularly	from	those	belonging	to	the	genus	Berberis.	Ongoing	experimental	and	clinical	studies	have	pointed	out	great	potential	of	this	compound	in

the	regulation	of	glucose	and	lipid	homeostasis,	inflammation	and	cancer	growth	[345].

Serafim	et	al.	demonstrated	that	in	melanoma	cells	berberine	is	concentrated	in	mitochondria	at	low	doses,	promoting	G1	phase	arrest,	while	it	accumulates	in	the	cytoplasm	and	in	the	nucleus	at	higher	doses,	inducing	G2

arrest	[346].	Importantly,	berberine	was	also	shown	to	trigger	apoptosis	[347]	and	necrosis	[348]	and	to	inhibit	melanin	synthesis	[349]	in	different	melanoma	cell	lines.

Melanoma	 cell	 migration	 was	 significantly	 affected	 by	 berberine	 treatment	 through	 modulation	 of	 PI3K/Akt,	 FAK	 and	 NF-kB	 pathways	 in	 vitro	 [350,351].	 Furthermore,	 the	 alkaloid	 successfully	 enhanced	 the	 survival	 of

melanoma-bearing	mice,	by	reducing	pulmonary	metastases	via	MMP	downregulation	and	AMPK-mediated	suppression	of	ERK	activity	and	COX-2	expression	[352,353].

Berberine	exhibited	antiangiogenic	activity	associated	with	the	inhibition	of	HIF,	VEGF,	NO	and	proinflammatory	cytokines	[354].

Finally,	it	should	be	underlined	that	increased	anti-melanoma	effects	were	shown	by	berberine	when	given	in	combination	with	doxorubicin	[355].

2.14	Other	compounds
Honokiol	is	a	lignan	occurring	in	several	species	of	the	genus	Magnolia.	It	exerted	cytostatic	and	cytotoxic	effects	in	melanoma	cells,	by	reducing	cyclin	D1,	CDK1	and	CDK2	levels,	attenuating	Akt/mTOR	signaling,	suppressing

HIF-1	pathway,	disrupting	mitochondrial	 electron	 transport	 chain	 (ETC)	 function	and	 inducing	caspase/PARP	cleavage	 [356–360].	 In	addition,	 it	 activated	ER	stress	 via	direct	binding	 to	GRP78	ATPase	domain	and	Calpain-10	and

CHOP/GADD153	cascade	[361,362].	Furthermore,	it	affected	the	migration	ability	of	Hs294 t	and	SK-Mel28	cells	through	inhibition	of	NADPH	oxidase	1	(Nox1)	and	blockade	of	the	interactions	between	the	enzyme	subunits	p22	and

p47	[363].	 It	 also	 specifically	 targeted	 and	 eliminated	melanoma	CSCs	 via	AMPK	activation	 and	Notch-2	downregulation	 [364,365],	while	 its	 bis-dichloroacetate	 derivative	 demonstrated	 enhanced	 activity	 in	 vemurafenib-resistant

melanoma	in	vivo	[366].

Artemisinin	and	its	derivatives,	such	as	artenusate,	artemison	and	dihydoartemisinin,	are	well	known	antimalarial	drugs.	Interestingly,	in	melanoma	cell	lines	they	were	shown	to	exert	potent	anti-proliferative	and	pro-apoptotic

effects,	associated	with	Wnt/β-catenin	signaling	inhibition	and	oxidative	stress	induction,	and	to	suppress	cell	migration	through	downregulation	of	MMP-2	and	αvβ3	integrin	expression	[367–372].

Oridonin,	a	diterpenoid	 isolated	from	Rabdosia	rubescens,	was	 found	 to	 induce	G2/M	phase	arrest	and	differentiation	of	melanoma	cells,	and	 to	activate	p53	and	ERK	pathways,	 to	suppress	 IGF-1R	signaling	and	 fatty	acid



synthase	(FAS)	activity,	to	modulate	Bax/Bcl-xL	ratio	and	Bim	expression	and	to	promote	cytochrome	c	release	from	mitochondria,	ultimately	triggering	apoptosis	[373–377].	Moreover,	it	was	reported	to	affect	melanoma	cell	invasive

potential	and	TGF-β1-mediated	EMT	via	PI3K/Akt	downregulation	[378].

Harmine	is	a	β-carboline	alkaloid	from	the	plant	Peganum	harmala.	Hamsa	et	al.	reported	that	in	B16F10	cells	it	can	activate	both	intrinsic	and	extrinsic	apoptosis,	suppress	angiogenesis	through	modulation	of	VEGF,	NO	and

pro-inflammatory	cytokines,	and	inhibit	invasion	via	MMP-9	and	ERK	downregulation	[379–381].	Notably,	harmine	analogues	have	also	shown	promising	anti-melanoma	effects	both	in	vitro	and	in	vivo	[382,383].

Capsaicin	is	an	alkaloid	derived	from	chili	peppers	of	the	genus	Capsicum.	Morré	et	al.	correlated	its	anti-melanoma	activity	with	the	inhibition	of	cell	surface	NADH	oxidase	[384].	More	recently,	in	melanoma	cells	capsaicin	was

demonstrated	to	inhibit	NF-κB-driven	proliferation	[385],	to	trigger	Bcl-2	dependent	apoptosis	[386]	and	to	suppress	PI3K/Akt	signaling-mediated	migration	[387].

Caffeic	acid	and	its	phenetyl	ester	(CAPE)	are	bioactive	compounds	from	the	propolis	extract.	They	were	observed	to	reduce	p-Akt,	p-mTOR	and	X-linked	inhibitor	of	apoptosis	protein	(XIAP)	levels	[388]	and	to	trigger	ROS

formation,	GSH	depletion	and	mitochondrial	apoptosis	[389–392],	as	well	as	to	inhibit	VEGFR-2-driven	neovascularization	[393]	and	tyrosinase	dependent	melanin	synthesis	[394,395]	in	melanoma	cells	and	mouse	models.

The	molecular	mechanisms	underlying	the	anti-melanoma	effects	of	the	natural	compounds	here	discussed	are	summarized	in	Fig.	2.

3	CONCLUDING	REMARKSoncluding	remarks
The	present	article	gives	an	overview	of	recent	evidence	about	the	anti-melanoma	effects	of	various	natural	products.

Nutraceuticals	present	numerous	advantages	since	they	are	usually	nontoxic	and	their	cost	is	highly	affordable	around	the	world.	It	is	now	well	established	that	they	can	exert	anti-melanoma	properties,	and	many	in	vitro	and

pre-clinical	studies	have	been	conducted	to	clarify	the	molecular	mechanisms	underlying	these	activities.	Moreover,	recent	studies	focused	on	the	development	of	new	synthetic	derivatives,	formulations	and	combinations	with	standard

drugs,	 have	 clearly	 suggested	 that	 these	 compounds	hold	promise	 for	melanoma	prevention	 and	 treatment.	However,	 the	 relevance	of	 these	 findings	 still	 needs	 to	be	 confirmed	 in	patients,	 and	 clinical	 trials	 aimed	at	 validating

nutraceuticals	effectiveness	are	urgently	required.
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Fig.	2	Molecular	mechanisms	underlying	the	anti-melanoma	effects	of	natural	compounds.	Phytochemicals	modulate	several	key	pathways	involved	in	apoptosis,	proliferation,	metastasis,	angiogenesis,	cancer	stemness	and	immune	response.
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