Stereodivergent Diversity-Oriented Synthesis: Exploiting the Versatility of 2-Piperidine Ethanol

Elisa Bonandi, ${ }^{[a]}$ Paola Marzullo, ${ }^{[a]}$ Francesca Foschi, ${ }^{[a]}$ Dario Perdicchia, ${ }^{[a]}$ Leonardo Lo Presti,,${ }^{[a]}$ Maurizio Sironi, ${ }^{[a]}$ Stefano Pieraccini, ${ }^{[a]}$ Guido Gambacorta, ${ }^{[a]}$ Joern Saupe, ${ }^{[b]}$ Lisa Dalla Via, ${ }^{[c]}$ Daniele Passarella*[a]

Abstract

A sequence of seven reactions (stereocontrolled allylation, Mitsunobu reaction, ring closing metathesis and amino/amido intramolecular nucleophilic addition) efficiently convert the inexpensive starting 2-piperidine ethanol in a small library of enatiomerically pure nitrogen containing compounds characterized by three new scaffolds that present a relevant diversity. The simple approach results challenging to continue the exploration of the chemical space.

Introduction

Now adays, small molecules are an efficient tool in medicinal chemistry, as entities to probe biological pathways and as potential drug candidates. Among the methods useful for the generation of small molecules, diversity-oriented synthesis (DOS) is a really appealing one. Significant achievements were recently obtained in this field, and DOS confirmed its importance as a tool for the discovery of novel, biologically interesting small molecules. ${ }^{[1-3]}$ In contrast to other approaches, such as the targeted-oriented synthesis (TOS) or combinatorial chemistry, DOS aims to obtain a wide distribution of compounds in the chemical space, investigating in this way its unexplored or poorly populated portions, that can be promising sources for drug discovery. ${ }^{[4,5]}$
In the field of DOS, different efforts w ere made in our laboratory in the last years, exploiting the 2-piperidine ethanol as versatile precursor. This reagent, which is really cheap in its racemic form, contains tw o handles - the piperidine nitrogen and the hydroxyl group - w hich can be easily further functionalized, increasing in this w ay the structural complexity. This prompted us to exploit the 2-piperidine ethanol in a diversity-oriented approach aimed at the obtainment of a small library of piperidine-containing derivatives. Considering our interest in natural products, we took advantage of this approach to synthesize some alkaloids (aloperine, ${ }^{[6]}$ different sedum alkaloids, ${ }^{[7]}$ dumetorine, epidihydropinidine, coniine, ${ }^{[8]}$ boehmeriasin $\mathrm{A}^{[9]}$) but also some synthetic derivatives,

[^0]such as polyheterocyclic derivatives ${ }^{[10]}$ and hybrid compounds (Figure 1). ${ }^{[11,12]}$

Results and Discussion

Encouraged by the demonstrated versatility of the 2 -piperidine ethanol, we devised to further expand the library of piperidinebased derivatives according to the synthetic plan depicted in Scheme 1.

Figure 1. Structures of the previously synthesized compounds
The exploitation of the reactivity of the aminoaldehyde 2 and the reaction sequence based on stereocontrolled allylation, Mitsunobu reaction, ring closing metathesis (RCM) and intramolecular amine/amide addition, sounded challenging for a further investigation of the unexplored chemical space.

Scheme 1. Forw ard-synthetic approach

The homoallylic alcohol 3, resulting from the stereocontrolled allylation of 2, w ould be converted into the corresponding amine. Acylation, follow ed by a ring closing metathesis, should lead to a 6 -membered unsaturated lactam 6. This scaffold appears to be a versatile starting point to achieve further structural diversifications. The cleavage of the Boc protecting group should lead to the free amine 7, which could eventually undergo an intramolecular azaMichael addition, to generate the tricyclic compound 8. Under Eschw eiler-Clarke conditions, the obtained iminium salt could be reduced by hydrogen transfer, leading to compound 10, or attacked by the lactam nitrogen, affording the octahydrodipyrido pyrimidone 9.
Thus, starting from 2, the synthesis of four new polyheterocyclic scaffolds should be possible.
Considering that the main scaffold 6 is characterized by the presence of two stereocenters, we envisaged a stereodivergent protocol, aimed at the obtainment of all the possible stereoisomers. We planned to introduce stereo-divergency taking advantage of a highly stereoselective allylation on the racemic aldehyde 2. ${ }^{[13,14]}$
In detail, aldehyde 2, obtained from the 2-piperidine ethanol as reported previously, ${ }^{[10]}$ underwent a Brown's asymmetric allylboration, to access all the four stereoisomers of the homoallylic alcohol 3. To this extent, $2 \mathbf{w}$ as treated w ith both (+)and (-)- B-allyl di-isopinocamphey lboranes, generated reacting the proper di-isopinocampheylbor on chloride (DIP-Cl) enantiomer with allylmagnesium bromide. The diastereomeric alcohols 3a and $\mathbf{3 b}$ were obtained reacting the aldehyde with (-)- B-allyl diisopinocampheylborane, and were separated through column chromatography (d.r. $\approx 1: 1$).
Using (+)-B-allyl di-isopinocampheylborane in the same conditions, 3c and 3d were accessed as well (d.r. $\approx 1: 1$), (Scheme 2).

Scheme 2. Reagent and conditions. a) (-)-ally|Blpc 2_{2} (from (-)-DIPCl and allylmagnesium bromide), $\mathrm{THF},-78^{\circ} \mathrm{C}$ to r.t., $4 \mathrm{~h}, 90 \%$ overall yield; b) (+)-ally|Blpc 2 (from (+)-DIP-Cl and allylmagnesium bromide), THF, $-78^{\circ} \mathrm{C}$ to r.t., $4 \mathrm{~h}, 88 \%$ overall yield; c) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to r.t., 18 h , yield: 90%.

The relative syn/anti configuration w as assigned on the basis of X-rays analysis, performed on one of the anti- isomer, after the cleavage of the Boc protecting group, leading to 11 (Scheme 2). The relative (S, R) configuration w as secured by single-crystal Xray diffraction. Full details are reported in the Supplementary Materials (see also Figure S1). The absolute configuration is determined by the configuration of the used DIP-Cl. To confirm the absolute configuration, a stereoselective allylation with (+)-DIP-Cl was performed on small scale on the enantiopure aldehyde 2-(R), ${ }^{[15,16]}$ confirming the obtainment of 3c.
The enantiopurity of our alcohols w as determined through chiral HPLC on reverse phase. Syn-isomers (3a and 3c), w ere obtained
w ith a 92\% ee w hile the anti-alcohols (3b and 3d), w ere accessed with 84% ee. For syn-compounds, the result was also confirmed through ${ }^{1} \mathrm{H}-\mathrm{NMR}$, registering the spectra in the presence of (R) -(-)-1-(9-anthryl)-2,2,2-trifluoroethanol ${ }^{[17]}$ as chiral solvating agent. (Figure S3, Supp.Info.).
With compounds 3a-d in our hands, a Mitsunobu reaction in the presence of diphenylphosphoryl azide (DPPA) w as performed, ${ }^{[18]}$ follow ed by a Staudinger reduction of the obtained azide. ${ }^{[19]}$ In this way, the interconversion of compounds 3a-d into the corresponding amines (4a-d) was achieved with inversion of configuration. The amines were treated with acryloyl chloride (5ad), affording the amides, which were converted into lactams (6ad) through a ring-closing metathesis (RCM). Scheme 3 reports the three steps procedure for the conversion of $\mathbf{3 a}$ into $\mathbf{6 a}$.

Scheme 3. Reagent and conditions: a) i. PPh_{3}, DIAD, DPPA, THF, $0^{\circ} \mathrm{C}$ to r.t., 4 h ; ii. $\mathrm{PPh}_{3}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O} 10: 1,5 \mathrm{~h}, 40^{\circ} \mathrm{C}$, yield: 62% over tw o steps; b) TEA, acryloyl chloride, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to r.t., 2 h , yield: 63%; c) Ru-catalyst, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50^{\circ} \mathrm{C}, 1.5-7 \mathrm{~h}$, yield: 73%. (Reported on compounds a as example)

To this extent, tw o different catalysts were used: a $2^{\text {nd }}$ generation Hoveyda-Grubbs (HG-II) (yields 54-60\%) and a Umicore M73 SIMes (yields $73-80 \%$). ${ }^{[20]}$ The latter resulted to be our catalyst of choice, because it proved to be more efficient for the obtainment of products 6a-d, as reported in Scheme 3. Chiral HPLC analysis of these fundamental building blocks confirmed the maintenance of the previously observed enantiomeric excesses.
Compounds 6a-d were treated with TFA, to remove the Boc protecting group. We realized that while syn-compounds gave the expected deprotected amines $\mathbf{7 b}$ and 7d, the anti-substrates underw ent directly the intramolecular aza-Michael addition on the α, β-unsaturated lactam, leading to the formation of the tricyclic compounds $8 \mathbf{a}$ and $8 \mathbf{c}$ (Scheme 4). The configuration of the newly formed stereocenter at position 12 is defined by the configuration of the present stereocenters (Scheme 4).

			$\begin{gathered} \mathrm{TF} \\ \mathrm{CH}_{2} \\ \text { Co } \\ \text { to } \end{gathered}$					
Starting material				Product				
			H-8		H-2	H-8	H-12	Yield
¢	6b(2R, 8R)	β	β	7b(2R,8R)	β	β	-	66\%
	$\mathbf{6 d}(2 S, 8 S)$		α	7d (2S,8S)	α	α	-	70\%
\%	6a(2S, 8R)	a	β	8a(2S, 8S, 12R)	a	a	a	>95\%
	$\mathbf{6 c}(2 R, 8 S)$	β	α	8c ($2 R, 8 R, 12 S$)	β	β	β	>95\%

Scheme 4. Outcome of compounds 6 Boc removal.

The different outcome of compounds 6 deprotection can be explained taking into consideration the 3D structures and energies of the transition states leading to the tricyclic compounds 8 (Figure 2). We hypothesize a late transition state (TS), similar in energy to the final products, according to Hammond's postulate The reactant and TS structure have been optimized with semiempirical calculations using the PM6 model. ${ }^{[21]}$ The Intrinsic Reaction Coordinate pathw ay connecting reactants to the TS has been also calculated for both the diastereomers. Syn-compounds show ed a higher activation energy with respect to the anti-ones. In particular, the activation energy associated to the anti compounds is $9.28 \mathrm{Kcal} / \mathrm{mol}$, while the activation energy of the syn-compounds is $11.54 \mathrm{Kcal} / \mathrm{mol}$. The calculated activation energy difference of $2.26 \mathrm{Kcal} / \mathrm{mol}$ is in qualitative agreement with experimental results. This could explain why syn-products $\mathbf{6 b}$ and 6d can be effectively deprotected, leading to 7b and 7d, while anti-products tend to cyclize, producing $8 \mathbf{a}$ and $8 \mathbf{c}$.

3D conformation of the not obtained product

Figure 2. Hypothetic transition states leading to the formation of the Michael adducts.

Finally, an Eschw eiler-Clarke reaction ${ }^{[22-24]}$ w as performed on all the stereoisomers of the fundamental scaffold 6, affording in all of the cases the octahydrodipyrido pyrimidinones 9 (Scheme 5) and not the corresponding methyl amines 10 (Scheme 1).

Scheme 5. Outcome of Eschw eiler-Clarke reaction.

The formation of scaffold 9 w as explained by the intramolecular nucleophilic attack of the lactam nitrogen on the imminium salt, which resulted to be favored over the hydride transfer by the formate anion.
To obtain scaffold 10, a reduction of the imminium salt with a stronger reducing agent, such as $\mathrm{NMe}_{3} \cdot \mathrm{BH}_{3}$ complex, was
attempted. Unfortunately, this reaction resulted in a complex mixture of products, impossible to purify.
In summary, 16 compounds, presenting three new scaffolds, were obtained through this DOS approach. It is notew orthy that compounds 8 presents the isomeric scaffold of some lupin alkaloids, such as cytisine, sparteine and anagyramide, ${ }^{[25-28]} \mathrm{w}$ hile products 9 are characterized by a simplified structure of several Lycopodium alkaloids, like lycocernuine and cernuine. ${ }^{[29,30]]}$

Conclusions

The described results confirm 2-piperidine ethanol as a valuable and versatile building block for the obtainment of diversified library of new polycyclic nitrogen containing compounds. The availability of a versatile synthon makes diversity-oriented synthesis a fruitful tool for the exploration of the chemical space. ${ }^{[31]}$ Seven reaction steps based on stereocontrolled allylation, Mitsunobu reaction, ring closing metathesis and amino/amido intramolecular nucleophilic additions generated three new scaffolds with a relevant diversity. Computational studies support the different experimental outcomes of two diastereomeric compounds in the intramolecular aza-nucleophilic addition.

Experimental Section

Chemistry

General: Unless otherw ise stated, reagents and solvents were purchased from Sigma Aldrich, Fluorochem or TCl and used w ithout further purification. All reactions w ere carried out in ovendried glassw are and dry solvents, under nitrogen atmosphere and w ere monitored by thin layer chromatography (TLC) on silica gel (Merck precoated 60F254 plates), w ith detection by UV light (254 nm) or by solutions of potassium permanganate stain or ninhydrin. Flash chromatography w as performed using silica gel (240-400 mesh, Merck) as stationary phase.
${ }^{1} \mathrm{H}$-NMR spectra were recorded on a Bruker Avance Spectrometer and are reported relative to residual CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$. ${ }^{13} \mathrm{C}$-NMR spectra were recorded on the same instruments $(100 \mathrm{MHz})$ and are reported relative to residual CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$. All 1D and 2D NMR spectra w ere collected using the standard pulse sequences available with Bruker Topspin 1.3. Chemical shifts (δ) for proton and carbon resonances are quoted in parts per million (ppm) relative to tetramethylsilane (TMS), used as an internal standard. Data for $\mathrm{H}-\mathrm{NMR}$ are reported as follow s: chemical shift (δ / ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows:s = singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{bs}=$ broad singlet. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ / ppm).
Mass spectra were registered exploiting the electrospray ionization (ESI) technique, on a Q-Tof micro mass spectrometer. Specific rotation values were measured on a P-1030 Jasco polarimeter, using 1 mL cells, with path length of 10 cm . Measures w ere collected at $20-25^{\circ} \mathrm{C}$, using sodium D line w avelength $\lambda=589$ nm. HPLC analysis were performed using a $15 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ Chiralcel ${ }^{8}$ AD-RH RP column at 35° C. Detection occurred at two different w avelengths (254 nm and 204 nm).

General procedure for the synthesis of (S)-tert-butyl 2-((S)-2-hydroxypent-4-enyl)piperidine-1-carboxylate (3a), (R)-tertbutyl 2-((S)-2-hydroxypent-4-enyl)piperidine-1-carboxylate (3b), (R)-tert-butyl 2-((R)-2-hydroxypent-4-enyl)piperidine-1carboxylate (3c), (S)-tert-butyl 2-((R)-2-hydroxypent-4-enyl)piperidine-1-carboxylate, (3d). ${ }^{[11]}$

Allylmagnesium bromide (1 M solution in $\mathrm{Et}_{2} \mathrm{O}, 2.86 \mathrm{~mL}, 2.86$ $\mathrm{mmol}) \mathrm{w}$ as added dropw ise to a solution of $(-)-\mathrm{DIP}-\mathrm{Cl}(1.06 \mathrm{~g}$, 3.30 mmol) in anhydrous THF (13.5 mL), previously cooled at $78{ }^{\circ} \mathrm{C}$. The reaction mixture w as w armed to $0^{\circ} \mathrm{C}$ and stirred at this temperature for 1 h . The solution was allow ed to stand until magnesium chloride precipitated. The supernatant solution was carefully transferred to another flask and cooled at $-78^{\circ} \mathrm{C}$. Then, a solution of aldehyde $2(0.500 \mathrm{~g}, 2.20 \mathrm{mmol})$ in anhydrous THF $(6.5 \mathrm{~mL}) \mathrm{w}$ as added dropw ise. The resulting solution w as stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then 16 h at room temperature. The reaction w as quenched w ith $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ buffer solution at $\mathrm{pH} 7(13.5 \mathrm{~mL})$, $\mathrm{MeOH}(13.5 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (6.7 mL). After stirring for 30 min , the mixture was washed with saturated aqueous NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was evaporated under vacuum, and the residue was purified by column chromatography on silica gel (hexane/EtOAc, 8:2) to give $\mathbf{3 a}$ and $\mathbf{3 b}$ as yellow oils (90% overall yield). In order to obtain the other couple of diastereomers (3c and 3d), the reaction w as performed in the same way, using the (+)-DIP-Cl.
(S)-tert-butyl 2-((S)-2-hydroxypent-4-enyl)piperidine-1carboxylate (3a). Yield: 44%. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $5.81-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.47$ (bs, 1H), 3.95 (bs, 1H), 3.39 (bs, 1H), 2.66 (dt, J = 12.7, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{dt}, \mathrm{J}=$ $12.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.35-1.59(\mathrm{~m}$, $6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.1,135.5,116.6$, 80.2, 67.1, 46.2, 41.1, 39.3, 36.9, 29.2, 28.6, 25.3, 19.4 ppm. $[\alpha]_{\mathrm{D}}{ }^{20}=-33 \quad\left(c=1, \mathrm{CHCl}_{3}\right)$. ESIMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{3}$: 270.2069, found: 270.2072 . HPLC analysis: Chiralcel AD-RH RP column, $1 \mathrm{~mL} / \mathrm{min}, \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=35: 65,96$ bar, $\lambda: 204$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}: 21.342 \mathrm{~min}, \mathrm{ee} \%: 92 \%$.
(R)-tert-butyl 2-((R)-2-hydroxypent-4-enyl)piperidine-1carboxylate (3c). Yield: $42 \%[a]_{\mathrm{D}}{ }^{20}=+35\left(c=0.8, \mathrm{CHCl}_{3}\right)$. ESIMS $m / z[M+H]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{3}$: 270.2069, found: 270.2073. HPLC analysis: Chiralcel AD-RH RP column, $1 \mathrm{~mL} / \mathrm{min}$, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=35: 65$, 96 bar, $\lambda: 204 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}: 11.05 \mathrm{~min}$, ee\%: 92%.
(R)-tert-butyl 2-((R)-2-hydroxypent-4-enyl)piperidine-1carboxylate (3b). Yield: 46\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $5.85-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.32$ (br. s, 1H), 3.88-3.93 (m, 1H), 3.88-3.93 (m, 1H), 3.65 (tt, $J=7.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (dt, $J=12.8,0.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.32$ $(\mathrm{m}, 1 \mathrm{H}), 2.14-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.35-$ $1.59(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.29,135.06$, $117.4,79.6,71.3,48.0,41.8,38.8,37.0,28.9,28.4,25.5,18.9$ ppm. $[\alpha]_{\mathrm{D}}{ }^{20}=+15\left(c=0.9, \mathrm{CHCl}_{3}\right)$. ESIMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{3}$: 270.2069, found: 270.2071 . HPLC analysis: Chiralcel AD-RH RP column, $1 \mathrm{~mL} / \mathrm{min}, \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=35: 65,96$ bar, $\lambda: 204$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}: 8.12 \mathrm{~min}, \mathrm{ee} \%: 84 \%$.
(S)-tert-butyl 2-((R)-2-hydroxypent-4-enyl)piperidine-1carboxylate, (3d). Yield: 46%. [$\alpha]_{\mathrm{D}}{ }^{20}=-14\left(c=13.3, \mathrm{CHCl}_{3}\right)$. ESIMS $m / z\left[M+H^{+}\right.$calcd. for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{3}:$ 270.2069, found: 270.2068. HPLC analysis: Chiralcel AD-RH RP column, $1 \mathrm{~mL} / \mathrm{min}$, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=35: 65,96$ bar, $\lambda: 204 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}: 9.24 \mathrm{~min}, \mathrm{ee} \%: 84 \%$.

General procedure for the synthesis of (S)-tert-butyl 2-((R)-2-aminopent-4-enyl)piperidine-1-carboxylate (4a), (R)-tertbutyl 2-((R)-2-aminopent-4-enyl)piperidine-1-carboxylate (4b), (R)-tert-butyl

2-((S)-2-aminopent-4-enyl)piperidine-1carboxylate (4c), (S)-tert-butyl 2-((S)-2-aminopent-4 enyl)piperidine-1-carboxylate(4d).
$\mathrm{PPh}_{3}(0.277 \mathrm{~g}, 1.06 \mathrm{mmol}) \mathrm{w}$ as added to a solution of $3(0.237 \mathrm{~g}$, $0.88 \mathrm{mmol})$ in anhydrous THF (7.5 mL) at room temperature. The reaction mixture was cooled at $0^{\circ} \mathrm{C}$ and diisopropylazodicarboxylate (DIAD) (209 $\mu \mathrm{L}, 1.06 \mathrm{mmol})$ was carefully added dropw ise. After 10 minutes, diphenylphosphorylazide (DPPA) ($228 \mu \mathrm{~L}, 1.06 \mathrm{mmol}$) w as slowly added as well. The reaction mixture was warmed to room temperature and stirred for 4 h . The solvent was evaporated under vacuum and the residue was purified by column chromatography on silica gel (Hexane/EtOAc, 95:5), to give the azide as a light yellow oil, which was immediately used in the next step. The azide ($0.194 \mathrm{~g}, 0.66 \mathrm{mmol}$), was dissolved in THF (11.5 $\mathrm{mL})$ and treated w ith $\mathrm{PPh}_{3}(0.346 \mathrm{~g}, 1.32 \mathrm{mmol})$ and w ater (1.2 mL). The reaction mixture w as w armed to $40^{\circ} \mathrm{C}$ and stirred at that temperature for 5 h . The reaction mixture w as cooled to room temperature and water (5 mL) w as added carefully. The layers w ere separated and the aqueous one was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The collected organic phases were washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude product was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, \quad 9: 1\right)$ to give 4 as a light yellow oil.
(S)-tert-butyl

2-((R)-2-a minopent-4-enyl)piperidine-1carboxylate (4a). Yield: 62\% over tw o steps. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.87-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{~m}, 1 \mathrm{H})$, 3.96-3.94 (m, 1H), 3.30 (bs, 2H), 2.86-2.80 (m, 2H), $2.48-2.37$ (dt, J = 13.5, 5.3 Hz, 1H), $2.15(\mathrm{dt}, \mathrm{J}=13.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-$ $1.86(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.49(\mathrm{~m}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.41-1.35(\mathrm{~m}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.97,134.67,118.38,79.50$, 48.76, 47.80, 40.86, 38.99, 36.20, 29.02, $28.49\left(3 \mathrm{CH}_{3}\right)$, 25.56, $19.07 \mathrm{ppm} .[a]_{\mathrm{D}}{ }^{20}=-30\left(c=1.02, \mathrm{CHCl}_{3}\right)$. ESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$: 291.2048, found: 291.2051.
(R)-tert-butyl 2-((S)-2-aminopent-4-enyl)piperidine-1carboxylate (4c). Yield: 65\% over two steps, $[a]_{D}{ }^{20}=+33$ ($c=$ $\left.0.98, \mathrm{CHCl}_{3}\right)$. ESIMS m/z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$: 291.2048, found: 291.2049.
(R)-tert-butyl 2-((R)-2-aminopent-4-enyl)piperidine-1carboxylate (4b).Yield: 67\% over tw osteps, ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.79$ (ddt, J = 17.3, 10.1, $\left.7.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.15(\mathrm{~m}, 2 \mathrm{H}), 4.43$ (m, 1H), 4.09 (bs, 2H), 3.96 (m, 1H), 2.81 - 2.62 (m, 2H), 2.58 $2.39(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.17-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H})$, $1.63-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 135.16,118.90,80.78,48.43,46.96$, $40.66,39.70,35.73,30.01,29.11\left(3 \mathrm{CH}_{3}\right), 26.15,19.73 \mathrm{ppm}$ (detected signals). $[\alpha]_{D}{ }^{20}=+14\left(c=0.72, \mathrm{CHCl}_{3}\right)$. ESIMS m/z [M $+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$: 291.2048, found: 291.2052.
(S)-tert-butyl 2-((S)-2-aminopent-4-enyl)piperidine-1carboxylate (4d). Yield: 64\% over tw o steps, $[\alpha]_{D}{ }^{28}=-11$ ($c=0.85$, $\left.\mathrm{CHCl}_{3}\right)$. ESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}:$ 291.2048, found: 291.2050.

General procedure for the synthesis of (S)-tert-butyl 2-((R)-2a crylamidopent-4-enyl)piperidine-1-carboxylate (5a), (R)-tertbutyl 2-((R)-2-acrylamidopent-4-enyl)piperidine-1carboxylate (5b), (R)-tert-butyl 2-((S)-2-acrylamidopent-4-enyl)piperidine-1-carboxylate (5c), (S)-tert-butyl 2-((S)-2a crylamidopent-4-enyl)piperidine-1-carboxylate (5d).
TEA ($0.311 \mathrm{~mL}, 2.24 \mathrm{mmol}) \mathrm{w}$ as added to a solution of $4(0.272 \mathrm{~g}$, $1.02 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.2 \mathrm{~mL})$ cooled at $0^{\circ} \mathrm{C}$. After 10 minutes, acryloyl chloride ($0.124 \mathrm{~mL}, 1.52 \mathrm{mmol}$) w as slowly added dropw ise. The reaction mixture w as stirred for 2 h at room temperature, then $\mathrm{NH}_{4} \mathrm{Cl}$ w as added and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The collected organic phases were
washed tw ice with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$ to give 5 as a light yellow oil.
(S)-tert-butyl 2-((R)-2-acrylamidopent-4-enyl)piperidine-1carboxylate (5a). Yield: 63\%, ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta ~ 6.30$ (dd, J = 17.0, 1.2 Hz, 1H), 6.13 (dd, J = 17.0, $10.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.86 - 5.69 (m, 1H), 5.64 (dd, J = 10.3, 1.2 Hz, 1H), $5.20-4.96$ (m, 2H), $4.28(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{t}, 1 \mathrm{H}), 2.38-$ $2.16(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.47(\mathrm{~s}$, $9 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.96$ $155.84,135.23,131.93,126.65,118.40,80.26,47.80,47.13$, $40.32,39.55,34.21,29.18\left(3 \mathrm{CH}_{3}\right), 28.81,26.09,19.63 \mathrm{ppm} .[\alpha]_{\mathrm{D}}{ }^{20}$ $=-26\left(c=0.88, \mathrm{CHCl}_{3}\right)$. ESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}: 345.2154$, found: 345.2153.
(R)-tert-butyl 2-((S)-2-acrylamidopent-4-enyl)piperidine-1carboxylate (5c). Yield: $61 \%,[\alpha]_{\mathrm{D}}{ }^{20}=+28\left(c=0.91, \mathrm{CHCl}_{3}\right)$, ESIMS m/z [M + Na] ${ }^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}: 345.2154$, found: 345.2156.
(R)-tert-butyl 2-((R)-2-a crylamidopent-4-enyl)piperidine-1carboxylate (5b). Yield: $66 \%,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.24$ (dd, $J=17.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, \mathrm{J}=17.0,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.85$ -5.70 (ddt, J = 17.2, 10.2, $7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.58 (dd, J = 10.2, 1.5 Hz , $1 \mathrm{H}), 5.15-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.85(\mathrm{~m}, 2 \mathrm{H}), 2.73$ (td, J = 13.2, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 1.87$ (ddd, $\mathrm{J}=14.0,8.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dt}, \mathrm{J}=14.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-$ $1.50(\mathrm{~m}, 5 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 165.02,155.07,134.71,131.40,125.80$, 117.70, 79.67, 47.32 (2 CH), 39.27, 37.83, 33.45, 29.62, 28.49 $\left(3 \mathrm{CH}_{3}\right), 25.51,19.06 \mathrm{ppm} .[\alpha]_{D}{ }^{20}=-23\left(c=1.17, \mathrm{CHCl}_{3}\right)$. ESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}: 345.2154$, found: 345.2155.
(S)-tert-butyl 2-((S)-2-acrylamidopent-4-enyl)piperidine-1carboxylate (5d). Yield: $64 \%,[\alpha]_{\mathrm{D}}^{20}=+20\left(c=0.97, \mathrm{CHCl}_{3}\right)$. ESIMS m/z [M + Na] ${ }^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}: 345.2154$, found: 345.2157.

General procedure for the synthesis of (S)-tert-butyl 2-(((R)-6-oxo-1,2,3,6-tetrahydropyridin-2-yl)methyl)piperidine-1carboxylate (6a), (R)-tert-butyl 2-(((R)-6-oxo-1,2,3,6-tetrahydropyridin-2-yl)methyl)piperidine-1-carboxylate (6b), (R)-tert-butyl 2-(((S)-6-oxo-1,2,3,6-tetrahydropyridin-2-yl)methyl)piperidine-1-carboxylate (6c), (S)-tert-butyl 2-(((S)-6-oxo-1,2,3,6-tetrahydropyridin-2-yl)methyl)piperidine-1carboxylate (6d).
A solution of Umicore M73 SIMes catalyst ($4.2 \mathrm{mg}, 0.0057 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ w as added dropw ise to a solution of 5 ($0.183 \mathrm{~g}, 0.57 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (24 mL). The reaction mixture w as stirred for 2 h at $50^{\circ} \mathrm{C}$, then the solvent w as removed under vacuum. The residue w as purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$ to give 6 as a white amorphous solid.
(S)-tert-butyl 2-(((R)-6-oxo-1,2,3,6-tetrahydropyridin-2-yl)methyl)piperidine-1-carboxylate (6a). Yield: 73\%, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.66-6.52(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.33(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{t}, \mathrm{J}=12.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.56(\mathrm{dt}, \mathrm{J}=17.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.08$ $-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.44-1.36(\mathrm{~m}$, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.08,155.61,141.10$, 125.31, 80.61, 49.79, 47.99, 39.81, 36.85, 30.57, 29.91, 29.11 $\left(3 \mathrm{CH}_{3}\right), 26.06,19.68 \mathrm{ppm} .[\alpha]_{D}{ }^{20}=+13\left(c=0.91, \mathrm{CHCl}_{3}\right)$, ESIMS
$\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$: 317.1841, found: 317.1845.

HPLC analysis: Chiralcel AD-RH RP column, $1 \mathrm{~mL} / \mathrm{min}$, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=35: 65,96$ bar, $\lambda: 254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}: 7.70 \mathrm{~min}, \mathrm{ee} \%: 92 \%$.
(R)-tert-butyl 2-(((S)-6-oxo-1,2,3,6-tetrahydropyridin-2-yl)methyl)piperidine-1-carboxylate (6c). Yield:77\%, [a] ${ }_{\mathrm{D}}{ }^{20}=-13$ $\left(c=1.2, \mathrm{CHCl}_{3}\right)$. ESIMS m/z $\left.\mathrm{M}+\mathrm{Na}\right]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$: 317.1841, found: 317.1842. HPLC analysis: Chiralcel AD-RH RP column, $1 \mathrm{~mL} / \mathrm{min}, \quad \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=35: 65,96$ bar, $\lambda: 254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$: 10.17 min, ee\%: 92%.
(R)-tert-butyl 2-(((R)-6-oxo-1,2,3,6-tetrahydropyridin-2-yl)methyl)piperidine-1-carboxylate (6b). Yield: 80%, ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 6.62-6.44(\mathrm{~m}, 1 \mathrm{H}), 5.89(\mathrm{dd}, \mathrm{J}=9.9,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{t}, \mathrm{J}=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.59-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{dt}, \mathrm{J}=17.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~m}$, $1 \mathrm{H}), 1.81-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.39(\mathrm{~m}, 11 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.69,139.68,124.66,47.34(2 \mathrm{CH})$, $38.70,35.74,30.04,29.45,28.56\left(3 \mathrm{CH}_{3}\right), 25.61,19.28 \mathrm{ppm}$ (detected signals). $[\alpha]_{D}^{20}=-66\left(c=0.85, \mathrm{CHCl}_{3}\right)$, ESIMS m/z [M $+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$: 317.1841, found: 317.1840, HPLC analysis: Chiralcel AD-RH RP column, $1 \mathrm{~mL} / \mathrm{min}$, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=35: 65,96 \mathrm{bar}, \lambda: 254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}: 8.71 \mathrm{~min}, \mathrm{ee} \%: 83 \%$.
(S)-tert-butyl 2-(((S)-6-oxo-1,2,3,6-tetrahydropyridin-2-yl)methyl)piperidine-1-carboxylate (6d). Yield: 78\%, $[\alpha]_{D}{ }^{20}=$ $+60\left(c=0.94, \mathrm{CHCl}_{3}\right)$. ESIMS m/z [M + Na] ${ }^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$ Na: 317.1841, found: 317.1843. HPLC analysis: Chiralcel AD-RH RP column, $1 \mathrm{~mL} / \mathrm{min}, \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=35: 65$, 96 bar, $\lambda: 254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$: $11.15 \mathrm{~min}, \mathrm{ee} \%$: 82%.

General procedure for the synthesis of (R)-2-(((R)-6-oxo-1,2,3,6-tetrahydropyridin-2-yl)methyl)piperidinium 2,2,2trifluoroacetate (7b) and (S)-2-(((S)-6-oxo-1,2,3,6-tetrahydropyridin-2-yl)methyl)piperidinium 2,2,2trifluoroacetate (7d).
TFA ($65 \mu \mathrm{~L}, 0.85 \mathrm{mmol}$) w as added to a solution of $6(0.031 \mathrm{~g}$, 0.11 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$, cooled at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 18 h , then the solvent w as removed under vacuum, affording 7 as $\mathrm{CF}_{3} \mathrm{COOH}$ salt (w hite amorphous solid).
(R)-6-((R)-piperidin-2-ylmethyl)-5,6-dihydropyridin-2(1H)-one (7b). $\mathrm{CF}_{3} \mathrm{COOH}$ salt. Yield: $66 \%,{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta$ $9.06-8.56(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{bs}, 1 \mathrm{H}), 6.67(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{~d}, \mathrm{~J}=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.21(\mathrm{~m}, 1 \mathrm{H})$, $2.91(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.05-$ $1.79(\mathrm{~m}, 5 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.69,167.18,161.33$ (q), 142.50, 123.13, 53.36, 46.06, 45.03, 38.53, 29.51, 28.87, 22.30, 22.09. [$\alpha]_{\mathrm{D}}{ }^{20}-25 \quad(c=0.62$, MeOH), ESIMS m / z calcd. for [$\left.\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$: 195.1497, found: 195.1501.
(S)-6-((S)-piperidin-2-ylmethyl)-5,6-dihydropyridin-2(1H)-one (7d). $\mathrm{CF}_{3} \mathrm{COOH}$ salt. Yield: $70 \%,[a]_{\mathrm{D}}^{20}+20(c=0.70$, MeOH$)$, ESIMS m/z calcd. for [$\left.\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$: 195.1497, found: 195.1499.

General procedure for the synthesis of (2S,6R,11aS)-decahydro-4H-2,6-methanopyrido[1,2-a][1,5]diazocin-4-one (8a) and (2R,6S,11aR)-decahydro-4H-2,6-metha nopyrido[1,2-a][1,5]diazocin-4-one (8c).
TFA $(120 \mu \mathrm{~L}, 1.25 \mathrm{mmol}) \mathrm{w}$ as added to a solution of $6(0.023 \mathrm{~g}$, 0.08 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$, cooled at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 18 h , then the solvent w as removed under vacuum. The residue was purified
by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right.$ to 85:15), to give the 8 as $\mathrm{CF}_{3} \mathrm{COOH}$ salt (white amorphous solid).

(2S,6R,11aS)-decahydro-4H-2,6-methanopyrido[1,2-

a][1,5]diazocin-4-one (8a). $\mathrm{CF}_{3} \mathrm{COOH}$ salt. Yield: qt\%. H NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) б 3.65 (bs, 1H), $3.33-3.19$ (m, 1H), 2.71 (m, $3 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=19.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-1.90(\mathrm{~m}$, $2 \mathrm{H})$, $1.87-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.48-1.30(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.41,163.05$ (q), $55.00,53.30,53.02,46.56,39.88$, $33.16,31.51,30.29,26.21,24.98$ (detected signals). [a] ${ }^{20}=+30$ (c=1.18, MeOH), ESIMS m/z calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$: 195.1497, found: 195.1498.
(2R,6S,11aR)-decahydro-4H-2,6-methanopyrido[1,2-a][1,5]diazocin-4-one (8c). $\mathrm{CF}_{3} \mathrm{COOH}$ salt. Yield: $\mathrm{q}+\%$. $[\alpha]_{\mathrm{D}}{ }^{20}=-$ $29(c=1.20, \mathrm{MeOH})$, ESIMS m/z calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$: 195.1497, found: 195.1499.

General procedure for the synthesis of (11aS,12aR)-6,8,9,10,11,11a,12,12a-octahydrodipyrido[1,2-c:1',2'-

f]pyrimidin-4(1H)-one
 (9a), (11aR,12aR)-

6,8,9,10,11,11a,12,12a-octahydrodipyrido[1,2-c:1',2'-f]pyrimidin-4(1H)-one
(9b),
6,8,9,10,11,11a,12,12a-octa hydrodipyrido[1,2-c:1',2'
f]pyrimidin-4(1H)-one (9c), \quad (11aS,12aS)-6,8,9,10,11,11a,12,12a-octa hydrodipyrido[1,2-c:1',2'-

f]pyrimidin-4(1H)-one (9d).

A 37% aqueous solution of formaldehyde ($20 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$) and formic acid ($11 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$) were added to a solution of 6 ($0.050 \mathrm{~g}, 0.16 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ (0.9 mL). The reaction mixture was stirred for 2 h at $90^{\circ} \mathrm{C}$, then other $20 \mu \mathrm{~L}$ of formaldehy de solution and $11 \mu \mathrm{~L}$ of formic acid were added. The reaction mixture w as stirred at $90^{\circ} \mathrm{C}$ for 12 h . The solvent w as removed under vacuum and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with a saturated aqueous NaHCO_{3}. The aqueous layer w as extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic phases w ere dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude product was purified by column chromatography on silica gel ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 98: 2$ to $95: 5$), to give 9 as a yellow amorphous solid.
(11aS, 12aR)-6,8,9,10,11,11a,12,12a-octahydrodipyrido[1,2-c:1',2'-f]pyrimidin-4(1H)-one (9a). Yield: 68\%, 'H NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.50$ (ddd, $\mathrm{J}=10.0,5.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.89 (dd, J = $10.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.44(\mathrm{~m}, 1 \mathrm{H})$, 3.03 (d, J = $11.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.94(\mathrm{~d}, \mathrm{~J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dt}, \mathrm{J}=$ 18.0, $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.26 (ddt, $J=16.4,10.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.18-$ $1.98(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.51(\mathrm{~m}, 6 \mathrm{H}), 1.42-1.29(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.56,138.70,124.33,65.23,60.49,53.17$, $51.64,39.14,31.69,29,65,24.87,23.55 .[a]]^{20}=+46 \quad(c=0.60$, $\left.\mathrm{CHCl}_{3}\right)$, ESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{ONa}:$ 229.1317, found: 229.1319.
(11aR,12aS)-6,8,9,10,11,11a,12,12a-octahydrodipyrido[1,2-c:1',2'-f]pyrimidin-4(1H)-one (9c). Yield: $65 \%[a]]^{20}=-47$ (c= $0.55, \mathrm{CHCl}_{3}$), ESIMS $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{ONa}$: 229.1317, found: 229.1318.
(11aR,12aR)-6,8,9,10,11,11a,12,12a-octahydrodipyrido[1,2-c:1',2'-f]pyrimidin-4(1H)-one (9b). Yield: 80%. 'H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta 6.54-6.43(\mathrm{~m}, 1 \mathrm{H}), 5.90$ (dd, J = 9.8, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.63(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.90(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.18$ $-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.92$ (ddd, J = 13.6, 11.7, $8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 1.78 (d, J $=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.37-$
$1.29(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.50,138.62$, 125.84, 62.63, $58.43,54.22,48.10,37.11,32.18,31.26$, $\left.25.21\left(2 \mathrm{CH}_{2}\right) .[\alpha]\right]^{20}=+16\left(c=0.62, \mathrm{CHCl}_{3}\right)$, ESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$ calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{ONa}: 229.1317$, found: 229.1320.
(11aS,12aS)-6,8,9, 10,11,11a,12,12a-octahydrodipyrido[1,2-c:1',2'-f]pyrimidin-4(1H)-one (9d). Yield: 77%, [a] ${ }^{20}=-13$ (c= $\left.0.70, \mathrm{CHCl}_{3}\right)$, ESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{ONa}$: 229.1317, found: 229.1321.

1-piperidin-2-yl)pent-4-en-2-ol(11).
TFA (2.2 mL . 28.0 mmol) w as added to a solution of 3-anti (0.500 $\mathrm{g}, 1.84 \mathrm{mmol}$, racemic) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, cooled at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 18 h , then the solvent was removed under vacuum. The product (light yellow wax) didn't require further purification.
$\mathrm{CF}_{3} \mathrm{COOH}$ salt. Yield: $90 \%,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36$ (bs, 1 H), $7.83(\mathrm{bs}, 1 \mathrm{H}), 5.87-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.27-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.11$ - $3.83(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.80(\mathrm{~m}, 1 \mathrm{H})$, $2.25(\mathrm{~m}, 2 \mathrm{H}), 2.13-1.62(\mathrm{~m}, 7 \mathrm{H}), 1.62-1.43(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{CNMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.34,133.07,119.19,71.44,58.56,45.05$, 42.62, 38.44, 29.68, $22.20\left(2 \mathrm{CH}_{2}\right)$ (detected signals). ESIMS m/z calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}\right]^{+}: 170.1545$, found: 170.1544.

Computational Studies

Compounds syn- and anti-structures (see Figure 2) were optimized at the semiempirical level with the PM6 method. Errore. II segnalibro non è definito. Transition states were built assuming a late transition state, similar in energy to the final products, according to Hammond's postulate. TS and minima w ere identified throughfrequency calculation.
Intrinsic reaction coordinate pathw ay connecting the reactants to the transition state w as also computed at the semiempirical PM6 level. All calculations w ere performed with the Gaussian 2016 package Gaussian 16, Revision B.01. ${ }^{[32]}$

Keywords:piperidine derivatives • diversity-oriented synthesis -2-Piperidine Ethanol • stereodivergent synthesis • piperidine alkaloids.
[1] W.R.J.D. Galloway, A. Isidro-Llobet, D. R. Spring, Nat. Commun. 2010, 1, 1-80.
[2] A. Trabocchi in Div ersity -Oriented Sy nthesis: Basics and Applications in Organic Sy nthesis, Drug Discov ery, and Chemical Biology, Wiley, 2013.
D. R. Spring, Org. Biomol. Chem 2003, 1, 3867-3870.
$\begin{array}{ll}{[3]} & \text { D. R. Spring, Org. Biomol. Chem 2003, 1, } 3867 \\ {[4]} & \text { S. L. Schreiber, Science 2000, 287, 1964-1969. }\end{array}$
[5] M. D. Burke, S. L. Schreiber, Angew. Chem Int. Ed .2004, 43, 4658.
D. Passarella, M. Angoli, A. Giardini, G. Lesma, A. Silv ani, B. Danieli, Org. Lett. 2002, 4, 2925-2928.
[7] D. Passarella, A. Barilli, F. Belinghieri, P. Fassi, S. Riv a, A. Sacchetti, A. Silv ani, B. Danieli, Tetrahedron Asymm 2005, 16, 2225-2229. D. Passarella, S. Riva, G. Grieco, F. Cav allo, B. Checa, F. Arioli, E. Riva, D. Comi, B. Danieli, Tetrahedron Asymm 2009, 20, 192-197. M. S. Christodoulou, F. Calogero, M. Baumann, A. N. GarcíaArgaez, S. Pieraccini, M. Sironi, F. Dapiaggi, R. Bucci, G. Broggini, S. Gazzola, S. Liekens, A. Silv ani, M. Lahtela-Kakkonen, N. Martinet, A. Nonell-Canals, E. Santamaría-Nav arro, I. R. Baxendale, L. Dalla Via, D. Passarella, Eur. J. Med. Chem 2015, 92, 766-775.
[10] E. Borsini, G. Broggini, F. Colombo, M. Khansaa, A. Fasana, S. Galli, D. Passarella, E. Riva, S. Riva, Tetrahedron Asymm 2011, 22, 264269.
[11] C. Marucci, M. S. Christodoulou, S. Pieraccini, M. Sironi, F. Dapiaggi, D. Cartelli, A. M. Calogero, G. Cappelletti, C. Vilanova, S. Gazzola, G. Broggini, D. Passarella, Eur. J. Org. Chem 2016, 2016, 2029-2036.
[12] E. Bonandi, F. Foschi, C. Marucci, F. Dapiaggi, M. Sironi, S.
Pieraccini, M. S. Christodoulou, F. de Asis Balaguer, F.; F. Diaz, N. Zidar, D. Passarella, ChemPlusChem 2019, 84, 98-102.
[13] H. C. Brown, P. K. Jadhav, J. Am Chem Soc. 1983, 105, 20922093.
V. Ramachandran, G. M. Chen, H. C. Brown, Tetrahedron Lett. 1997, 38, 2417-2420. Danieli, J. Org. Chem 2003, 68, 9525-9527.
D. Perdicchia, M. S. Christodoulou, G. Fumagalli, F. Calogero, C Marucci, D. Passarella, Int. J. Mol. Sci. 2016, 17, 17.
J. Comelles, C. Estiv ill, M. Moreno-Manas, A. Virgili, A. Vallribera, Tetrahedron 2004, 60, 11541-11546.
K. C. Kumara Swamy, N. N. Bhuv an Kumar, N. N., E. Balaraman, K. V. P. Pav an Kumar, Chem Rev. 2009, 109, 2551-2651.
A. Takada, K. Uda, T. Ohtani, S. Tsukamoto, D. Takahashi, K. Toshima, J. Antibiot. 2013, 66, 155-159.
D. Rix, F. Caijo, I. Laurent, F. Boeda, H. Clavier, S. P. Nolan, M Mauduit, J. Org. Chem 2008, 73, 4225-4228.
J. J. P. Stewart, J. Mol. Model. 2007, 13, 1173-1213.
H. T. Clarke, H. B. Gillespie, S. Z. J. Weisshaus, J. Am Chem Soc. 1933, 55, 4571-4587.
S. Torchy, D. J. Barbry, Chem Research. 2001, 2001, 292-293. G: Bobowski, J. Org. Chem 1985, 50, 929-931.
I. Philipov a, G. Stav rakov, N. Vassilev, R. Nikolova, B. Shiv achev, V. Dimitrov, J. Organomet. Chem 2015, 778, 10-20.
B. Danieli, G. Lesma, D. Passarella, A. Sacchetti, A. Silv ani, A. Virdis, Org. Lett. 2004, 6, 493-496.
S. Okuda, H. Kataoka, K. Tsuda, Chem Pharm Bull. 1965, 13, 491-500.
J. D. Firth, S. J. Canipa, L. Ferris, P. O'Brien, Angew. Chem Int. Ed. 2018, 57, 223 -226. Q. Yang, Y. Zhu, R. Zhan, Y. A. Chen, Chem Nat. Compd. 2018, 54, 729-731.
N. Veerasamy, R. G. Carter, Tetrahedron 2016, 72, 4989-5001. A. Prabhat, J. Reni, G. Zhonghong, R. Bojana, Chem Biol. 2005, 12, 163-180.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toy ota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vrev en, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Hey d, E. N. Brothers, K. N. Kudin, V. N. Starov erov, T. A. Keith, R. Kobay ashi, J. Normand, K. Raghav achari, A. P. Rendell, J. C. Burant, S. S. Iy engar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingf ord CT, 2016.

FULL PAPER

Efficient conversion of 2-piperidine ethanol in a small library of enatiomerically pure nitrogen containing compounds by a stereodivergent approch. The new scaffolds results challenging to for the exploration of the chemical space.

Exploration of the Chemical Space

Elisa Bonandi, Paola Marzullo,
Francesca Foschi, Dario Perdicchia,
Leonardo Lo Presti, Maurizio Sironi, Stefano Pieraccini, Guido Gambacorta, Joern Saupe, Lisa Dalla Via, Daniele Passarella*

Page No. - Page No.
Stereodivergent Diversity-Oriented Synthesis: Exploiting the Versatility of 2-Piperidine Ethanol

[^0]: [a] Dr. E. Bonandi, Dr. P. Marzullo, Dr. F. Foschi, Dr. D. Perdicchia, Dr. L. Lo Presti, Prof. Dr. M. Sironi, Dr. S. Pieraccini, Dr. G. Gambacorta,
 Prof. Dr. D. Passarella- Dipartimento di Chimica - Univ ersità degli Studi di Milano - Via Golgi, 19, 20133, Milano (Italy) -
 E-mail: daniele.passarella@unimi.it -https://users.unimi.it/passalab/
 [b] Dr. J. Saupe.
 Analy tiCon Discov ery GmbH, Hermannswerder Haus 17, 14473 Potsdam (Germany)
 [c] Prof. Dr. L. Dalla Via.
 Dipartimento di Scienze del Farmaco, Univ ersità degli Studi di Padova - Via F. Marzolo, 5, 35131 Padova (Italy)

 Supporting information and ORCID(s) from the author(s) for this article are av ailable on the WWW under ...

