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Abstract: A sequence of seven reactions (stereocontrolled 

allylation, Mitsunobu reaction, ring closing metathesis and 

amino/amido intramolecular nucleophilic addition) eff iciently 

convert the inexpensive starting 2-piperidine ethanol in a small 

library of enatiomerically pure nitrogen containing compounds  

characterized by three new  scaffolds that present a relevant 

diversity. The simple approach results challenging to continue the 

exploration of the chemical space. 

Introduction 

Now adays, small molecules are an eff icient tool in medicinal 

chemistry, as entities to probe biological pathw ays and as 

potential drug candidates. Among the methods useful for the 

generation of small molecules, diversity-oriented synthesis (DOS)  

is a really appealing one. Signif icant achievements w ere recently 

obtained in this f ield, and DOS confirmed its importance as a tool 

for the discovery of novel, biologically interesting small 

molecules.[1-3] In contrast to other approaches, such as the 

targeted-oriented synthesis (TOS) or combinatorial chemistry , 

DOS aims to obtain a w ide distribution of compounds in the 

chemical space, investigating in this w ay its unexplored or poorly  

populated portions, that can be promising sources for drug 

discovery.[4, 5] 

In the f ield of DOS, different efforts w ere made in our laboratory  

in the last years, exploiting the 2-piperidine ethanol as versatile 

precursor. This reagent, w hich is really cheap in its racemic form, 

contains tw o handles – the piperidine nitrogen and the hydroxyl 

group – w hich can be easily further functionalized, increasing in 

this w ay the structural complexity. This prompted us to exploit the 

2-piperidine ethanol in a diversity-oriented approach aimed at the 

obtainment of a small library of piperidine-containing derivatives. 

Considering our interest in natural products, w e took advantage 

of this approach to synthesize some alkaloids (aloperine, [ 6 ]  

different sedum alkaloids,[7] dumetorine, epidihydropinidine, 

coniine,[8] boehmeriasin A [9]) but also some synthetic derivatives, 

such as polyheterocyclic derivatives [10] and hybrid compounds  

(Figure 1).[11,12]  

Results and Discussion 

Encouraged by the demonstrated versatility of the 2-piperidine 

ethanol, w e devised to further expand the library of piperidine -

based derivatives according to the synthetic plan depicted in 

Scheme 1.  

Figure 1. Structures of the previously synthesized compounds 

 

The exploitation of the reactivity of the aminoaldehyde 2 and the 

reaction sequence based on stereocontrolled allylation, 

Mitsunobu reaction, ring closing metathesis (RCM) and 

intramolecular amine/amide addition, sounded challenging for a 

further investigation of the unexplored chemical space. 
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Scheme 1. Forw ard-synthetic approach. 

 

The homoallylic alcohol 3, resulting from the stereocontrolled 

allylation of 2, w ould be converted into the corresponding amine. 

Acylation, follow ed by a ring closing metathesis, should lead to a 

6-membered unsaturated lactam 6. This scaffold appears to be a 

versatile starting point to achieve further structural diversif ications. 

The cleavage of the Boc protecting group should lead to the free 

amine 7, w hich could eventually undergo an intramolecular aza-

Michael addition, to generate the tricyclic compound 8. Under  

Eschw eiler-Clarke conditions, the obtained iminium salt could be 

reduced by hydrogen transfer, leading to compound 10, or 

attacked by the lactam nitrogen, affording the octahydrodipyrido 

pyrimidone 9. 

Thus, starting from 2, the synthesis of four new  polyheterocyclic  

scaffolds should be possible. 

Considering that the main scaffold 6 is characterized by the 

presence of tw o stereocenters, w e envisaged a stereodivergent 

protocol, aimed at the obtainment of all the possible 

stereoisomers. We planned to introduce stereo-divergency taking 

advantage of a highly stereoselective allylation on the racemic  

aldehyde 2.[13,14] 

In detail, aldehyde 2, obtained from the 2-piperidine ethanol as 

reported previously,[10] underw ent a Brow n’s asymmetr ic  

allylboration, to access all the four stereoisomers of the 

homoallylic alcohol 3. To this extent, 2 w as treated w ith both (+)- 

and (-)- B-allyl di-isopinocamphey lboranes, generated reacting 

the proper di-isopinocampheylboron chloride (DIP-Cl) enantiomer  

w ith allylmagnesium bromide. The diastereomeric alcohols 3a 

and 3b w ere obtained reacting the aldehyde w ith (-)- B-allyl di-

isopinocampheylborane, and w ere separated through column 

chromatography (d.r. ≈ 1 : 1). 

Using (+)-B-allyl di-isopinocampheylborane in the same 

conditions, 3c and 3d w ere accessed as w ell (d.r. ≈ 1 : 1), 

(Scheme 2). 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2. Reagent and conditions. a) (-)-allylBIpc2 (from (-)-DIP-

Cl and allylmagnesium bromide), THF, -78°C to r.t., 4 h, 90% 

overall yield; b) (+)-allylBIpc2 (from (+)-DIP-Cl and 

allylmagnesium bromide), THF, -78°C to r.t., 4 h, 88% overall 

yield; c) TFA, CH2Cl2, 0°C to r.t., 18h, yield: 90%. 

 

The relative syn/anti configuration w as assigned on the basis of 

X-rays analysis, performed on one of the anti- isomer, after the 

cleavage of the Boc protecting group, leading to 11 (Scheme 2). 

The relative (S, R) configuration w as secured by single-crystal X-

ray diffraction. Full details are reported in the Supplementary  

Materials (see also Figure S1). The absolute configuration is 

determined by the configuration of the used DIP-Cl. To confirm 

the absolute configuration, a stereoselective allylation w ith (+)-

DIP-Cl w as performed on small scale on the enantiopure 

aldehyde 2-(R),[15,16] confirming the obtainment of 3c.  

The enantiopurity of our alcohols w as determined through chiral 

HPLC on reverse phase. Syn-isomers (3a and 3c), w ere obtained 

w ith a 92% ee w hile the anti-alcohols (3b and 3d), w ere accessed 

w ith 84% ee. For syn-compounds, the result w as also confirmed 

through 1H-NMR, registering the spectra in the presence of (R)-

(−)-1-(9-anthryl)-2,2,2-trif luoroethanol[17] as chiral solvating agent. 

(Figure S3, Supp.Info.). 

With compounds 3a-d in our hands, a Mitsunobu reaction in the 

presence of diphenylphosphoryl azide (DPPA) w as performed,[18]  

follow ed by a Staudinger reduction of the obtained azide.[19] In this 

w ay, the interconversion of compounds 3a-d into the 

corresponding amines (4a-d) w as achieved w ith inversion of 

configuration. The amines w ere treated w ith acryloyl chloride (5a-

d), affording the amides, w hich w ere converted into lactams (6a-

d) through a ring-closing metathesis (RCM). Scheme 3 reports 

the three steps procedure for the conversion of 3a into 6a.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3. Reagent and conditions: a) i. PPh3, DIAD, DPPA, THF, 

0°C to r.t., 4h; ii. PPh3, THF/H2O 10:1, 5h, 40°C, yield: 62% over 

tw o steps; b) TEA, acryloyl chloride, CH2Cl2, 0°C to r.t., 2h, yield: 

63%; c) Ru-catalyst, CH2Cl2, 50°C, 1.5-7 h, yield: 73%. (Reported 

on compounds a as example) 

 

To this extent, tw o different catalysts w ere used: a 2nd generation 

Hoveyda-Grubbs (HG-II) (yields 54-60%) and a Umicore M73 

SIMes (yields 73-80%).[20] The latter resulted to be our catalyst of 

choice, because it proved to be more eff icient for the obtainment 

of products 6a-d, as reported in Scheme 3. Chiral HPLC analysis  

of these fundamental building blocks confirmed the maintenance 

of the previously observed enantiomeric excesses. 

Compounds 6a-d w ere treated w ith TFA, to remove the Boc 

protecting group. We realized that w hile syn-compounds gave the 

expected deprotected amines 7b and 7d, the anti-substrates 

underw ent directly the intramolecular aza-Michael addition on the 

α,β-unsaturated lactam, leading to the formation of the tricyclic 

compounds 8a and 8c (Scheme 4).The configuration of the new ly 

formed stereocenter at position 12 is defined by the configuration 

of the present stereocenters (Scheme 4). 

 

 

Starting material Product 

  H-2 H-8  H-2 H-8 H-12 Yield 

S
y

n
 

6b(2R, 8R) β β 7b(2R,8R) β β - 66% 

6d(2S,8S) α α 7d(2S,8S) α α - 70% 

A
n

ti
 

6a(2S, 8R) α β 8a(2S,8S,12R) α α α >95% 

6c(2R, 8S) β α 8c(2R,8R,12S) β β β >95% 

Scheme 4. Outcome of compounds 6 Boc removal. 
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The different outcome of compounds 6 deprotection can be 

explained taking into consideration the 3D structures and 

energies of the transition states leading to the tricyclic compounds  

8 (Figure 2). We hypothesize a late transition state (TS), similar  

in energy to the f inal products, according to Hammond’s postulate. 

The reactant and TS structure have been optimized w ith semi -

empirical calculations using the PM6 model.[21] The Intrinsic  

Reaction Coordinate pathw ay connecting reactants to the TS has 

been also calculated for both the diastereomers. Syn-compounds  

show ed a higher activation energy w ith respect to the anti-ones. 

In particular, the activation energy associated to the anti-

compounds is 9.28 Kcal/mol, w hile the activation energy of the 

syn-compounds is 11.54 Kcal/mol. The calculated activation 

energy difference of 2.26 Kcal/mol is in qualitative agreement w ith 

experimental results. This could explain w hy syn-products 6b and 

6d can be effectively deprotected, leading to 7b and 7d, w hile 

anti-products tend to cyclize, producing 8a and 8c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Hypothetic transition states leading to the formation of 

the Michael adducts. 

 

Finally, an Eschw eiler-Clarke reaction[22-24] w as performed on all 

the stereoisomers of the fundamental scaffold 6, affording in all of 

the cases the octahydrodipyrido pyrimidinones 9 (Scheme 5) and 

not the corresponding methyl amines 10 (Scheme 1). 

 

 

 

Starting material Product 

  H-2 H-8  H-2 H-8 Yield 

S
y

n
 

6b(2R, 8R) β β 9b(2R, 8R) α β 80% 

6d(2S,8S) α α 9d(2S, 8S) β α 77% 

A
n

ti
 

6a(2S, 8R) α β 9a(2S, 8R) β β 68% 

6c(2R, 8S) β α 9c(2R, 8S) α α 65% 

Scheme 5. Outcome of Eschw eiler-Clarke reaction. 

 

The formation of scaffold 9 w as explained by the intramolecular  

nucleophilic attack of the lactam nitrogen on the imminium salt, 

w hich resulted to be favored over the hydride transfer by the 

formate anion. 

To obtain scaffold 10, a reduction of the imminium salt w ith a 

stronger reducing agent, such as NMe3∙BH3 complex, was 

attempted. Unfortunately, this reaction resulted in a complex  

mixture of products, impossible to purify. 

In summary, 16 compounds, presenting three new  scaffolds, were 

obtained through this DOS approach. It is notew orthy that 

compounds 8 presents the isomeric scaffold of some lupin 

alkaloids, such as cytisine, sparteine and anagyramide,[25-28] w hile 

products 9 are characterized by a simplif ied structure of several 

Lycopodium alkaloids, like lycocernuine and cernuine.[29,30]] 

 
Conclusions 
 

The described results confirm 2-piperidine ethanol as a valuable 

and versatile building block for the obtainment of diversif ied library  

of new  polycyclic nitrogen containing compounds. The availability  

of a versatile synthon makes diversity-oriented synthesis a fruitful 

tool for the exploration of the chemical space.[31] Seven reaction 

steps based on stereocontrolled allylation, Mitsunobu reaction, 

ring closing metathesis and amino/amido intramolecular  

nucleophilic additions generated three new  scaffolds w ith a 

relevant diversity. Computational studies support the different 

experimental outcomes of tw o diastereomeric compounds in the 

intramolecular aza-nucleophilic addition.  
 

Experimental Section 
 

Chemistry 

 

General: Unless otherw ise stated, reagents and solvents w ere 

purchased from Sigma Aldrich, Fluorochem or TCI and used 

w ithout further purif ication. All reactions w ere carried out in oven-

dried glassw are and dry solvents, under nitrogen atmosphere and 

w ere monitored by thin layer chromatography (TLC) on silica gel 

(Merck precoated 60F254 plates), w ith detection by UV light (254 

nm) or by solutions of potassium permanganate stain or ninhydrin.  

Flash chromatography w as performed using silica gel (240-400 

mesh, Merck) as stationary phase. 
1H-NMR spectra w ere recorded on a Bruker Avance 

Spectrometer and are reported relative to residual CDCl3 or 

CD3OD. 13C-NMR spectra w ere recorded on the same 

instruments (100 MHz) and are reported relative to residual CDCl 3  

or CD3OD. All 1D and 2D NMR spectra w ere collected using the 

standard pulse sequences available w ith Bruker Topspin 1.3. 

Chemical shifts (δ) for proton and carbon resonances are quoted 

in parts per million (ppm) relative to tetramethylsilane (TMS), used 

as an internal standard. Data for 1H-NMR are reported as follow s: 

chemical shift (δ/ppm) (multiplicity, coupling constant (Hz), 

integration). Multiplicities are reported as follow s: s = singlet, d = 

doublet, t = triplet, m = multiplet, bs = broad singlet. Data for 13C-

NMR are reported in terms of chemical shift (δ/ppm). 

Mass spectra w ere registered exploiting the electrospray  

ionization (ESI) technique, on a Q-Tof micro mass spectrometer. 

Specif ic rotation values w ere measured on a P-1030 Jasco 

polarimeter, using 1 mL cells, w ith path length of 10 cm. Measures  

w ere collected at 20-25°C, using sodium D line w avelength λ=589 

nm. HPLC analysis w ere performed using a 15 cm X 4.6 mm 

Chiralcel® AD-RH RP column at 35°C. Detection occurred at two 

different w avelengths (254 nm and 204 nm). 

 

General procedure for the synthesis of (S)-tert-butyl 2-((S)-2-

hydroxypent-4-enyl)piperidine-1-carboxylate (3a), (R)-tert-

butyl 2-((S)-2-hydroxypent-4-enyl)piperidine-1-carboxylate 

(3b), (R)-tert-butyl 2-((R)-2-hydroxypent-4-enyl)piperidine-1-

carboxylate (3c), (S)-tert-butyl 2-((R)-2-hydroxypent-4-
enyl)piperidine-1-carboxylate, (3d).[11] 



FULL PAPER    

 
 
 
 

 

Allylmagnesium bromide (1 M solution in Et2O, 2.86 mL, 2.86 

mmol) w as added dropw ise to a solution of (–)-DIP-Cl (1.06 g, 

3.30mmol) in anhydrous THF (13.5 mL), previously cooled at –

78 °C. The reaction mixture w as w armed to 0 °C and stirred at 

this temperature for 1 h. The solution w as allow ed to stand until 

magnesium chloride precipitated. The supernatant solution was 

carefully transferred to another f lask and cooled at -78°C.Then, a 

solution of aldehyde 2 (0.500 g, 2.20 mmol) in anhydrous THF 

(6.5 mL) w as added dropw ise. The resulting solution w as stirred 

at -78°C for 1 h and then 16 h at room temperature. The reaction 

w as quenched w ith NaH2PO4 buffer solution at pH 7 (13.5 mL) , 

MeOH (13.5 mL) and 30 % H2O2 (6.7 mL). After stirring for 30 min, 

the mixture w as w ashed w ith saturated aqueous NaHCO3 and 

extracted w ith Et2O. The combined organic phases w ere dried 

over Na2SO4 and f iltered. The solvent w as evaporated under  

vacuum, and the residue w as purif ied by column chromatography  

on silica gel (hexane/EtOAc, 8:2) to give 3a and 3b as yellow  oils  

(90% overall yield). In order to obtain the other couple of 

diastereomers (3c and 3d), the reaction w as performed in the 

same w ay, using the (+)-DIP-Cl. 

 

(S)-tert-butyl 2-((S)-2-hydroxypent-4-enyl)piperidine-1-
carboxylate (3a). Yield: 44%. 1H NMR (400 MHz, CDCl3): δ = 

5.81–5.91 (m, 1H), 5.08 (d, J = 17.4 Hz, 1H), 5.05 (d, J =9.7 Hz, 

1H), 4.47 (bs, 1H), 3.95 (bs, 1H), 3.39 (bs, 1H), 2.66 (dt, J = 12.7, 

2.0 Hz, 1H), 2.27–2.33 (m, 1H), 2.16–2.23 (m, 1H), 2.01 (dt, J = 

12.5, 1.8 Hz, 1H), 1.73–1.76 (m, 1H), 1.42 (s, 9H), 1.35–1.59 (m, 

6H) ppm. 13C NMR (100 MHz, CDCl3): δ = 167.1, 135.5, 116.6, 

80.2, 67.1, 46.2, 41.1, 39.3, 36.9, 29.2, 28.6, 25.3, 19.4 ppm. 

[α]D
20 = –33 (c = 1, CHCl3). ESIMS m/z [M + H]+ calcd. for 

C15H28NO3: 270.2069, found: 270.2072. HPLC analysis: Chiralcel 

AD-RH RP column, 1 mL/min, CH3CN:H2O = 35:65, 96 bar, λ: 204 

nm, tR: 21.342 min, ee%: 92%. 

 

(R)-tert-butyl 2-((R)-2-hydroxypent-4-enyl)piperidine-1-
carboxylate (3c). Yield: 42% [α]D

20 = +35 (c = 0.8, CHCl3). ESIMS 

m/z [M + H]+ calcd. for C15H28NO3: 270.2069, found: 270.2073. 

HPLC analysis: Chiralcel AD-RH RP column, 1 mL/min, 

CH3CN:H2O = 35:65, 96 bar, λ: 204 nm, tR: 11.05 min, ee%: 92%. 

 

(R)-tert-butyl 2-((R)-2-hydroxypent-4-enyl)piperidine-1-
carboxylate (3b). Yield: 46%. 1H NMR (400 MHz, CDCl3): δ= 

5.85–5.75 (m, 1H), 5.10 (d, J = 17.3 Hz, 1H), 5.08 (d, J = 9.8 Hz, 

1H), 4.32 (br. s, 1H), 3.88–3.93 (m, 1H), 3.88–3.93 (m, 1H), 3.65 

(tt, J = 7.5, 2.4 Hz,1H), 2.79 (dt, J = 12.8, 0.2 Hz,1 H), 2.27–2.32 

(m, 1H), 2.14–2.21 (m, 1H), 1.77–1.82 (m, 1H), 1.42 (s,9 H), 1.35–

1.59 (m, 6H) ppm. 13C NMR (100 MHz,CDCl3): δ= 155.29, 135.06, 

117.4, 79.6, 71.3, 48.0, 41.8, 38.8, 37.0, 28.9, 28.4, 25.5, 18.9 

ppm. [α]D
20 = +15 (c = 0.9, CHCl3). ESIMS m/z [M+ H]+ calcd. for 

C15H28NO3: 270.2069, found: 270.2071. HPLC analysis: Chiralcel 

AD-RH RP column, 1 mL/min, CH3CN:H2O = 35:65, 96 bar, λ: 204 

nm, tR: 8.12 min, ee%: 84%. 

 

(S)-tert-butyl 2-((R)-2-hydroxypent-4-enyl)piperidine-1-
carboxylate, (3d). Yield: 46%. [α]D

20 = –14 (c = 13.3, CHCl3 ) . 

ESIMS m/z [M +H]+ calcd. for C15H28NO3: 270.2069, found: 

270.2068. HPLC analysis: Chiralcel AD-RH RP column, 1 mL/min, 

CH3CN:H2O = 35:65, 96 bar, λ: 204 nm, tR: 9.24 min, ee%: 84%. 

 

General procedure for the synthesis of (S)-tert-butyl 2-((R)-2-

aminopent-4-enyl)piperidine-1-carboxylate (4a), (R)-tert-

butyl 2-((R)-2-aminopent-4-enyl)piperidine-1-carboxylate (4b), 

(R)-tert-butyl 2-((S)-2-aminopent-4-enyl)piperidine-1-

carboxylate (4c), (S)-tert-butyl 2-((S)-2-aminopent-4-

enyl)piperidine-1-carboxylate (4d). 

PPh3 (0.277 g, 1.06 mmol) w as added to a solution of 3 (0.237 g, 

0.88 mmol) in anhydrous THF (7.5 mL) at room temperature. The 

reaction mixture w as cooled at 0°C and 

diisopropylazodicarboxylate (DIAD) (209 µL, 1.06 mmol) was 

carefully added dropw ise. After 10 minutes , 

diphenylphosphorylazide (DPPA) (228 µL, 1.06 mmol) w as slowly 

added as w ell. The reaction mixture w as w armed to room 

temperature and stirred for 4 h. The solvent w as evaporated 

under vacuum and the residue w as purif ied by column 

chromatography on silica gel (Hexane/EtOAc, 95:5), to give the 

azide as a light yellow  oil, w hich w as immediately used in the next 

step. The azide (0.194 g, 0.66 mmol), w as dissolved in THF (11.5 

mL) and treated w ith PPh3 (0.346 g, 1.32 mmol) and w ater (1.2 

mL). The reaction mixture w as w armed to 40°C and stirred at that 

temperature for 5 h. The reaction mixture w as cooled to room 

temperature and w ater (5 mL) w as added carefully. The layers 

w ere separated and the aqueous one w as extracted w ith Et2O. 

The collected organic phases w ere w ashed w ith brine (5 mL) , 

dried over Na2SO4, f iltered and concentrated under vacuum. The 

crude product w as purif ied by column chromatography on silica 

gel (CH2Cl2/MeOH, 9:1) to give 4 as a light yellow  oil. 

 

(S)-tert-butyl 2-((R)-2-aminopent-4-enyl)piperidine-1-
carboxylate (4a). Yield: 62% over tw o steps. 1H NMR (400 MHz , 

CDCl3) δ 5.87 – 5.73 (m, 1H), 5.20 – 5.10 (m, 2H), 4.37 (m, 1H), 

3.96-3.94 (m, 1H), 3.30 (bs, 2H), 2.86-2.80 (m, 2H), 2.48 – 2.37 

(dt, J = 13.5, 5.3 Hz, 1H), 2.15 (dt, J = 13.3, 6.4 Hz, 1H), 1.97 – 

1.86 (m, 1H), 1.67 – 1.49 (m, 6H), 1.45 (s, 9H), 1.41-1.35 (m, 1H)  

ppm. 13C NMR (100 MHz, CDCl3) δ 154.97, 134.67, 118.38, 79.50, 

48.76, 47.80, 40.86, 38.99, 36.20, 29.02, 28.49 (3 CH3), 25.56, 

19.07 ppm. [α]D
20 = -30 (c = 1.02, CHCl3). ESIMS m/z [M + Na]+  

calcd. for C15H28N2O2Na: 291.2048, found: 291.2051. 

 

(R)-tert-butyl 2-((S)-2-aminopent-4-enyl)piperidine-1-
carboxylate (4c). Yield: 65% over tw o steps, [α]D

20 = +33 (c = 

0.98, CHCl3). ESIMS m/z [M + Na]+ calcd. for C15H28N2O2 Na: 

291.2048, found: 291.2049. 

 

(R)-tert-butyl 2-((R)-2-aminopent-4-enyl)piperidine-1-
carboxylate (4b).Yield: 67% over tw o steps, 1H NMR (400 MHz , 

CDCl3) δ 5.79 (ddt, J = 17.3, 10.1, 7.1 Hz, 1H), 5.15 (m, 2H), 4.43 

(m, 1H), 4.09 (bs, 2H), 3.96 (m, 1H), 2.81 – 2.62 (m, 2H), 2.58 – 

2.39 (m, 1H), 2.38-2.23 (m, 1H), 2.17 – 1.98 (m, 1H), 1.72 (m, 1H), 

1.63 – 1.50 (m, 4H), 1.47 (s, 9H), 1.43 – 1.32 (m, 2H) ppm. 13C 

NMR (100 MHz, CDCl3) δ 135.16, 118.90, 80.78, 48.43, 46.96, 

40.66, 39.70, 35.73, 30.01, 29.11 (3CH3), 26.15, 19.73 ppm 

(detected signals). [α]D
20 = +14 (c = 0.72, CHCl3). ESIMS m/z [M 

+ Na]+ calcd. for C15H28N2O2Na: 291.2048, found: 291.2052. 

 

(S)-tert-butyl 2-((S)-2-aminopent-4-enyl)piperidine-1-
carboxylate (4d). Yield: 64% over tw o steps, [α]D

20 = -11 (c = 0.85, 

CHCl3). ESIMS m/z [M + Na]+ calcd. for C15H28N2O2Na: 291.2048, 

found: 291.2050. 

 

General procedure for the synthesis of (S)-tert-butyl 2-((R)-2-

acrylamidopent-4-enyl)piperidine-1-carboxylate (5a), (R)-tert-

butyl 2-((R)-2-acrylamidopent-4-enyl)piperidine-1-

carboxylate (5b), (R)-tert-butyl 2-((S)-2-acrylamidopent-4-

enyl)piperidine-1-carboxylate (5c), (S)-tert-butyl 2-((S)-2-

acrylamidopent-4-enyl)piperidine-1-carboxylate (5d). 
TEA (0.311 mL, 2.24mmol) w as added to a solution of 4 (0.272 g, 

1.02 mmol) in anhydrous CH2Cl2 (3.2 mL) cooled at 0°C. After 10 

minutes, acryloyl chloride (0.124 mL, 1.52 mmol) w as slow ly 

added dropw ise. The reaction mixture w as stirred for 2 h at room 

temperature, then NH4Cl w as added and the reaction mixture was 

extracted w ith CH2Cl2. The collected organic phases w ere 

https://www.sigmaaldrich.com/catalog/search?term=2446-83-5&interface=CAS%20No.&N=0&mode=partialmax&lang=en&region=US&focus=product
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w ashed tw ice w ith brine, dried over Na2SO4, f iltered and 

concentrated under vacuum. The crude w as purif ied by column 

chromatography on silica gel (CH2Cl2/MeOH, 9:1) to give 5 as a 

light yellow  oil. 

 

(S)-tert-butyl 2-((R)-2-acrylamidopent-4-enyl)piperidine-1-
carboxylate (5a). Yield: 63%, 1H NMR (400 MHz, CDCl3) δ 6.30 

(dd, J = 17.0, 1.2 Hz, 1H), 6.13 (dd, J = 17.0, 10.3 Hz, 1H), 5.86 

– 5.69 (m, 1H), 5.64 (dd, J = 10.3, 1.2 Hz, 1H), 5.20 – 4.96 (m, 

2H), 4.28 (m, 1H), 4.07 (m, 1H), 3.96 (m, 1H), 2.85 (t, 1H), 2.38 – 

2.16 (m, 2H), 1.83 – 1.64 (m, 2H), 1.63 – 1.63 (m, 5H), 1.47 (s, 

9H), 1.38-1.32 (m, 1H) ppm. 13C NMR (100 MHz, CDCl3) δ 165.96, 

155.84, 135.23, 131.93, 126.65, 118.40, 80.26, 47.80, 47.13, 

40.32, 39.55, 34.21, 29.18 (3CH3), 28.81, 26.09, 19.63 ppm. [α]D
20  

= -26 (c = 0.88, CHCl3). ESIMS m/z [M + Na]+ calcd. for 

C18H30N2O3Na: 345.2154, found: 345.2153. 

 

(R)-tert-butyl 2-((S)-2-acrylamidopent-4-enyl)piperidine-1-
carboxylate (5c). Yield: 61%, [α]D

20 = +28 (c = 0.91, CHCl3 ) , 

ESIMS m/z [M + Na]+calcd. for C18H30N2O3Na: 345.2154, found: 

345.2156. 

 

(R)-tert-butyl 2-((R)-2-acrylamidopent-4-enyl)piperidine-1-
carboxylate (5b). Yield: 66%, 1H NMR (400 MHz, CDCl3) δ 6.24 

(dd, J = 17.0, 1.6 Hz, 1H), 6.06 (dd, J = 17.0, 10.2 Hz, 1H), 5.85 

– 5.70 (ddt, J = 17.2, 10.2, 7.1 Hz, 1H), 5.58 (dd, J = 10.2, 1.5 Hz, 

1H), 5.15 – 5.01 (m, 2H), 4.35 (m, 1H), 4.01 – 3.85 (m, 2H), 2.73 

(td, J = 13.2, 2.2 Hz, 1H), 2.42 (m, 1H), 2.36 (m, 1H), 1.87 (ddd, 

J = 14.0, 8.0, 5.5 Hz, 1H),1.71 (dt, J = 14.0, 5.8 Hz, 1H), 1.67 – 

1.50 (m, 5H), 1.45 (s, 9H), 1.43 – 1.32 (m, 1H) ppm. 13C NMR 

(100 MHz, CDCl3) δ 165.02, 155.07, 134.71, 131.40, 125.80, 

117.70, 79.67, 47.32 (2 CH), 39.27, 37.83, 33.45, 29.62, 28.49 

(3CH3), 25.51, 19.06 ppm. [α]D
20 = -23 (c = 1.17, CHCl3). ESIMS 

m/z [M + Na]+ calcd. for C18H30N2O3Na: 345.2154, found: 

345.2155. 

 

(S)-tert-butyl 2-((S)-2-acrylamidopent-4-enyl)piperidine-1-
carboxylate (5d). Yield: 64%, [α]D

20 = +20 (c = 0.97, CHCl3 ) . 

ESIMS m/z [M + Na]+ calcd. for C18H30N2O3 Na: 345.2154, found: 

345.2157. 

 

General procedure for the synthesis of (S)-tert-butyl 2-(((R)-

6-oxo-1,2,3,6-tetrahydropyridin-2-yl)methyl)piperidine-1-

carboxylate (6a), (R)-tert-butyl 2-(((R)-6-oxo-1,2,3,6-

tetrahydropyridin-2-yl)methyl)piperidine-1-carboxylate (6b), 

(R)-tert-butyl 2-(((S)-6-oxo-1,2,3,6-tetrahydropyridin-2-

yl)methyl)piperidine-1-carboxylate (6c), (S)-tert-butyl 2-(((S)-

6-oxo-1,2,3,6-tetrahydropyridin-2-yl)methyl)piperidine-1-

carboxylate (6d). 
A solution of Umicore M73 SIMes catalyst (4.2 mg, 0.0057 mmol)  

in anhydrous CH2Cl2 (8 mL) w as added dropw ise to a solution of 

5 (0.183 g, 0.57mmol) in anhydrous CH2Cl2 (24 mL). The reaction 

mixture w as stirred for 2 h at 50°C, then the solvent w as removed 

under vacuum. The residue w as purif ied by column 

chromatography on silica gel (CH2Cl2/MeOH, 95:5) to give 6 as a 

w hite amorphous solid. 

 

(S)-tert-butyl 2-(((R)-6-oxo-1,2,3,6-tetrahydropyridin-2-
yl)methyl)piperidine-1-carboxylate (6a). Yield: 73%, 1H NMR 

(400 MHz, CDCl3) δ 6.66 – 6.52 (m, 1H), 5.91 (d, J = 9.9 Hz, 1H), 

4.33 (m, 1H), 3.98 (m, 1H), 3.59 – 3.47 (m, 1H), 2.76 (t, J = 12.9 

Hz,1H), 2.56 (dt, J = 17.6, 5.0 Hz, 1H), 2.27 – 2.08 (m, 1H), 2.08 

– 1.93 (m, 2H), 1.76 – 1.51 (m, 5H), 1.47 (s, 9H), 1.44-1.36 (m, 

1H) ppm. 13C NMR (100 MHz, CDCl3) δ 167.08, 155.61, 141.10, 

125.31, 80.61, 49.79, 47.99, 39.81, 36.85, 30.57, 29.91, 29.11 

(3CH3), 26.06, 19.68 ppm. [α]D
20 = +13 (c = 0.91, CHCl3), ESIMS 

m/z [M + Na]+ calcd. for C16H26N2O3Na: 317.1841, found: 

317.1845. 

HPLC analysis: Chiralcel AD-RH RP column, 1 mL/min, 

CH3CN:H2O = 35:65, 96 bar, λ: 254 nm, tR: 7.70 min, ee%: 92%. 

 

(R)-tert-butyl 2-(((S)-6-oxo-1,2,3,6-tetrahydropyridin-2-
yl)methyl)piperidine-1-carboxylate (6c). Yield:77%, [α]D

20 = -13 

(c = 1.2, CHCl3). ESIMS m/z [M + Na]+ calcd. for C16H26N2O3 Na: 

317.1841, found: 317.1842. HPLC analysis: Chiralcel AD-RH RP 

column, 1 mL/min, CH3CN:H2O = 35:65, 96 bar, λ: 254 nm, tR: 

10.17 min, ee%: 92%. 

 

(R)-tert-butyl 2-(((R)-6-oxo-1,2,3,6-tetrahydropyridin-2-
yl)methyl)piperidine-1-carboxylate (6b). Yield: 80%, 1H NMR 

(400 MHz, CDCl3) δ 6.62 – 6.44 (m, 1H), 5.89 (dd, J = 9.9, 1.4 Hz, 

1H), 4.41 (m, 1H), 3.99 (m, 1H), 3.36 (m, 1H), 2.65 (t, J = 12.5 Hz, 

1H), 2.59 - 2.48 (m, 1H), 2.14 (dt, J = 17.8, 4.7 Hz, 1H), 1.90 (m, 

1H), 1.81 – 1.66 (m, 1H), 1.59 (m, 4H), 1.54 – 1.39 (m, 11H).1 3C 

NMR (101 MHz, CDCl3) δ 165.69, 139.68, 124.66, 47.34 (2CH) , 

38.70, 35.74, 30.04, 29.45, 28.56 (3CH3), 25.61, 19.28 ppm 

(detected signals). [α]D
20 = -66 (c = 0.85, CHCl3), ESIMS m/z [M 

+ Na]+ calcd. for C16H26N2O3Na: 317.1841, found: 317.1840, 

HPLC analysis: Chiralcel AD-RH RP column, 1 mL/min, 

CH3CN:H2O = 35:65, 96 bar, λ: 254 nm, tR: 8.71 min, ee%: 83%. 

 

(S)-tert-butyl 2-(((S)-6-oxo-1,2,3,6-tetrahydropyridin-2-
yl)methyl)piperidine-1-carboxylate (6d). Yield: 78%, [α]D

20 = 

+60 (c= 0.94, CHCl3). ESIMS m/z [M + Na]+ calcd. for C16H26N2O3  

Na: 317.1841, found: 317.1843. HPLC analysis: Chiralcel AD-RH 

RP column, 1 mL/min, CH3CN:H2O = 35:65, 96 bar, λ: 254 nm, tR: 

11.15 min, ee%: 82%. 

 

General procedure for the synthesis of (R)-2-(((R)-6-oxo-

1,2,3,6-tetrahydropyridin-2-yl)methyl)piperidinium 2,2,2-

trifluoroacetate (7b) and (S)-2-(((S)-6-oxo-1,2,3,6-

tetrahydropyridin-2-yl)methyl)piperidinium 2,2,2-

trifluoroacetate (7d). 
TFA (65 μL, 0.85 mmol) w as added to a solution of 6 (0.031 g, 

0.11mmol) in anhydrous CH2Cl2 (17 mL), cooled at 0°C. The 

reaction mixture w as stirred at room temperature for 18 h, then 

the solvent w as removed under vacuum, affording 7 as CF3COOH 

salt (w hite amorphous solid). 

 

(R)-6-((R)-piperidin-2-ylmethyl)-5,6-dihydropyridin-2(1H)-one 
(7b). CF3COOH salt. Yield: 66%,1H NMR (400 MHz, CDCl3) δ 

9.06 – 8.56 (m, 2H), 7.86 (bs, 1H), 6.67 (m, 1H), 5.90 (d, J = 9.3 

Hz, 1H), 3.89 (m, 1H), 3.50 – 3.36 (m, 1H), 3.36 – 3.21 (m, 1H), 

2.91 (m, 1H), 2.65 – 2.47 (m, 1H), 2.30 – 2.17 (m, 1H), 2.05 – 

1.79 (m, 5H), 1.79 – 1.67 (m, 1H), 1.67 – 1.58 (m, 1H), 1.54 (m, 

1H).13C NMR (100 MHz, CDCl3) δ 168.69, 167.18, 161.33 (q), 

142.50, 123.13, 53.36, 46.06, 45,03, 38.53, 29.51, 28.87, 22.30, 

22.09.[α]D
20-25 (c=0.62, MeOH), ESIMS m/z calcd. for 

[C11H19N2O]+: 195.1497, found: 195.1501. 

 

(S)-6-((S)-piperidin-2-ylmethyl)-5,6-dihydropyridin-2(1H)-one 
(7d). CF3COOH salt. Yield: 70%,[α]D

20 +20 (c=0.70, MeOH) , 

ESIMS m/z calcd. for [C11H19N2O]+: 195.1497, found: 195.1499. 

 

General procedure for the synthesis of (2S,6R,11aS)-

decahydro-4H-2,6-methanopyrido[1,2-a][1,5]diazocin-4-one 

(8a) and (2R,6S,11aR)-decahydro-4H-2,6-methanopyrido[1,2-

a][1,5]diazocin-4-one (8c). 

TFA (120 μL, 1.25 mmol) w as added to a solution of 6 (0.023 g, 

0.08 mmol) in anhydrous CH2Cl2 (13 mL), cooled at 0°C. The 

reaction mixture w as stirred at room temperature for 18 h, then 

the solvent w as removed under vacuum. The residue w as purif ied 
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by column chromatography on silica gel (CH2Cl2/MeOH, 95:5 to 

85:15), to give the 8 as CF3COOH salt (w hite amorphous solid). 

 

(2S,6R,11aS)-decahydro-4H-2,6-methanopyrido[1,2-
a][1,5]diazocin-4-one (8a). CF3COOH salt. Yield: qt%. 1H NMR 

(400 MHz, CD3OD) δ 3.65 (bs, 1H), 3.33 – 3.19 (m, 1H), 2.71 (m, 

3H), 2.54 (m, 1H), 2.36 (dd, J = 19.1, 5.8 Hz, 1H), 2.18 – 1.90 (m, 

2H), 1.87 – 1.50 (m, 5H), 1.48 – 1.30 (m, 3H).13C NMR (100 MHz , 

CD3OD) δ 174.41, 163.05 (q), 55.00, 53.30, 53.02, 46.56, 39.88, 

33.16, 31.51, 30.29, 26.21, 24.98 (detected signals). [α]D
20 =+30 

(c= 1.18, MeOH), ESIMS m/z calcd. for [C11H19N2O]+: 195.1497, 

found: 195.1498. 

 

(2R,6S,11aR)-decahydro-4H-2,6-methanopyrido[1,2-
a][1,5]diazocin-4-one (8c). CF3COOH salt. Yield: qt%. [α]D

20 =-

29 (c= 1.20, MeOH), ESIMS m/z calcd. for [C11H19N2O]+:  

195.1497, found: 195.1499. 

 
General procedure for the synthesis of (11aS,12aR)-

6,8,9,10,11,11a,12,12a-octahydrodipyrido[1,2-c:1',2'-

f]pyrimidin-4(1H)-one (9a), (11aR,12aR)-

6,8,9,10,11,11a,12,12a-octahydrodipyrido[1,2-c:1',2'-

f]pyrimidin-4(1H)-one (9b), (11aR,12aS)-

6,8,9,10,11,11a,12,12a-octahydrodipyrido[1,2-c:1',2'-

f]pyrimidin-4(1H)-one (9c), (11aS,12aS)-

6,8,9,10,11,11a,12,12a-octahydrodipyrido[1,2-c:1',2'-

f]pyrimidin-4(1H)-one (9d). 
A 37% aqueous solution of formaldehyde (20μL, 0.28 mmol) and 

formic acid (11 μL, 0.28 mmol) w ere added to a solution of 6 

(0.050 g, 0.16 mmol) in CH3CN (0.9 mL). The reaction mixture 

w as stirred for 2 h at 90°C, then other 20μL of formaldehyde 

solution and 11 μL of formic acid w ere added. The reaction 

mixture w as stirred at 90°C for 12 h. The solvent w as removed 

under vacuum and the residue w as dissolved in CH2Cl2 and 

w ashed w ith a saturated aqueous NaHCO3. The aqueous layer 

w as extracted w ith CH2Cl2 and the combined organic phases w ere 

dried over Na2SO4, f iltered and concentrated under vacuum. The 

crude product w as purif ied by column chromatography on silica 

gel (CH2Cl2/MeOH, 98:2 to 95:5), to give 9 as a yellow  amorphous  

solid. 

 

(11aS,12aR)-6,8,9,10,11,11a,12,12a-octahydrodipyrido[1,2-
c:1',2'-f]pyrimidin-4(1H)-one (9a). Yield: 68%, 1H NMR (400 

MHz, CDCl3) δ 6.50 (ddd, J = 10.0, 5.3, 3.0 Hz, 1H), 5.89 (dd, J = 

10.0, 1.6 Hz, 1H), 5.18 (d, J = 11.0 Hz, 1H), 3.65 – 3.44 (m, 1H), 

3.03 (d, J = 11.0 Hz, 1H), 2.94 (d, J = 10.6 Hz, 1H), 2.50 (dt, J = 

18.0, 5.8 Hz, 1H), 2.26 (ddt, J = 16.4, 10.5, 2.7 Hz, 1H), 2.18 – 

1.98 (m, 2H), 1.81 – 1.51 (m, 6H), 1.42-1.29 (m, 2H).13C NMR 

(100 MHz, CDCl3) δ 164.56, 138.70, 124.33, 65.23, 60.49, 53.17, 

51.64, 39.14, 31.69, 29,65, 24.87, 23.55.[α]D
20 =+46 (c= 0.60, 

CHCl3), ESIMS m/z [M + Na]+calcd. for C12H18N2ONa: 229.1317, 

found: 229.1319. 

 

 

(11aR,12aS)-6,8,9,10,11,11a,12,12a-octahydrodipyrido[1,2-
c:1',2'-f]pyrimidin-4(1H)-one (9c). Yield: 65% [α]D

20 =-47 (c= 

0.55, CHCl3), ESIMS m/z [M + Na]+ calcd. for C12H18N2ONa: 

229.1317, found: 229.1318. 

 

(11aR,12aR)-6,8,9,10,11,11a,12,12a-octahydrodipyrido[1,2-
c:1',2'-f]pyrimidin-4(1H)-one (9b). Yield: 80%. 1H NMR (400 

MHz, CDCl3) δ 6.54 – 6.43 (m, 1H), 5.90 (dd, J = 9.8, 2.5 Hz, 1H), 

4.63 (d, J = 10.5 Hz, 1H), 3.92 (m, 1H), 3.84 (d, J = 10.5 Hz, 1H), 

2.90 (d, J = 11.6 Hz, 1H), 2.42 (m, 1H), 2.37 – 2.25 (m, 2H), 2.18 

– 2.04 (m, 1H), 1.92 (ddd, J = 13.6, 11.7, 8.7 Hz, 1H), 1.78 (d, J 

= 12.9 Hz, 1H), 1.63 – 1.53 (m, 3H), 1.52 – 1.46 (m, 2H), 1.37-

1.29 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 164.50, 138.62, 

125.84, 62.63, 58.43, 54.22, 48.10, 37.11, 32.18, 31.26, 

25.21(2CH2). [α]D
20 =+16 (c= 0.62, CHCl3), ESIMS m/z [M + Na]+  

calcd. for C12H18N2ONa: 229.1317, found: 229.1320. 

 

(11aS,12aS)-6,8,9,10,11,11a,12,12a-octahydrodipyrido[1,2-
c:1',2'-f]pyrimidin-4(1H)-one (9d). Yield: 77%, [α]D

20= -13 (c= 

0.70, CHCl3), ESIMS m/z [M + Na]+ calcd. for C12H18N2ONa: 

229.1317, found: 229.1321. 

 

1-piperidin-2-yl)pent-4-en-2-ol (11). 
TFA (2.2 mL. 28.0 mmol) w as added to a solution of 3-anti (0.500 

g, 1.84 mmol, racemic) in CH2Cl2 (20 mL), cooled at 0°C. The 

reaction mixture w as stirred at room temperature for 18 h, then 

the solvent w as removed under vacuum. The product (light yellow  

w ax) didn’t require further purif ication.  

 

CF3COOH salt. Yield: 90%, 1H NMR (400 MHz, CDCl3) δ 8.36 (bs, 

1H), 7.83 (bs, 1H), 5.87 – 5.57 (m, 1H), 5.27 – 5.00 (m, 2H), 4.11 

– 3.83 (m, 1H), 3.46 (m, 1H), 3.23 (m, 1H), 3.03 – 2.80 (m, 1H), 

2.25 (m, 2H), 2.13 – 1.62 (m, 7H), 1.62 – 1.43 (m, 1H). 13CNMR 

(100 MHz, CDCl3) δ 161.34, 133.07, 119.19, 71.44, 58.56, 45.05, 

42.62, 38.44, 29.68, 22.20 (2CH2) (detected signals). ESIMS m/z  

calcd. for [C10H20NO]+: 170.1545, found: 170.1544. 

 

Computational Studies 

Compounds syn- and anti-structures (see Figure 2) w ere 

optimized at the semiempirical level w ith the PM6 method.Errore . 

Il segnalibro non è definito. Transition states w ere built  

assuming a late transition state, similar in energy to the f inal 

products, according to Hammond’s postulate. TS and minima 

w ere identif ied throughfrequency calculation. 

Intrinsic reaction coordinate pathw ay connecting the reactants to 

the transition state w as also computed at the semiempirical PM6 

level. All calculations w ere performed w ith the Gaussian 2016 

package Gaussian 16, Revision B.01.[32] 

 

Keywords: piperidine derivatives • diversity-oriented synthesis • 

2-Piperidine Ethanol • stereodivergent synthesis • piperidine 

alkaloids. 

 
[1] W.R.J.D. Galloway , A. Isidro-Llobet, D. R. Spring, Nat. Commun.  

2010, 1, 1-80. 

[2] A. Trabocchi in Div ersity ‐Oriented Sy nthesis: Basics and 

Applications in Organic Sy nthesis, Drug Discov ery , and Chemical 

Biology , Wiley , 2013. 

[3] D. R. Spring, Org. Biomol. Chem. 2003, 1, 3867–3870. 

[4] S. L. Schreiber, Science 2000, 287, 1964-1969. 

[5] M. D. Burke, S. L. Schreiber, Angew. Chem. Int. Ed .2004, 43, 46–

58. 
[6] D. Passarella, M. Angoli, A. Giardini, G. Lesma, A. Silv ani, B. Danieli, 

Org. Lett. 2002, 4, 2925-2928. 

[7] D. Passarella, A. Barilli, F. Belinghieri, P. Fassi, S. Riv a, A. Sacchetti, 

A. Silv ani, B. Danieli, Tetrahedron Asymm. 2005, 16, 2225-2229. 
[8] D. Passarella, S. Riv a, G. Grieco, F. Cav allo, B. Checa, F. Arioli, E. 

Riv a, D. Comi, B. Danieli, Tetrahedron Asymm. 2009, 20, 192-197. 

[9] M. S. Christodoulou, F. Calogero, M. Baumann, A. N. García-

Argaez, S. Pieraccini, M. Sironi, F. Dapiaggi, R. Bucci, G. Broggini, 
S. Gazzola, S. Liekens, A. Silv ani, M. Lahtela-Kakkonen, N. 

Martinet, A. Nonell-Canals, E. Santamaría-Nav arro, I. R. Baxendale, 

L. Dalla Via, D. Passarella, Eur. J. Med. Chem. 2015, 92, 766-775. 
[10] E. Borsini, G. Broggini, F. Colombo, M. Khansaa, A. Fasana, S. Galli, 

D. Passarella, E. Riv a, S. Riv a, Tetrahedron Asymm. 2011, 22, 264-

269. 

[11] C. Marucci, M. S. Christodoulou, S. Pieraccini, M. Sironi, F. 
Dapiaggi, D. Cartelli, A. M. Calogero, G. Cappelletti, C. Vilanov a, S. 

Gazzola, G. Broggini, D. Passarella, Eur. J. Org. Chem. 2016, 2016, 

2029–2036. 

[12] E. Bonandi, F. Foschi, C. Marucci, F. Dapiaggi, M. Sironi, S. 
Pieraccini, M. S. Christodoulou, F. de Asis Balaguer, F.; F. Diaz, N. 

Zidar, D. Passarella, ChemPlusChem 2019, 84, 98-102. 

https://pubs.acs.org/author/Angoli%2C+Marco
https://pubs.acs.org/author/Giardini%2C+Alessandra
https://pubs.acs.org/author/Lesma%2C+Giordano
https://pubs.acs.org/author/Silvani%2C+Alessandra
https://www.sciencedirect.com/science/article/pii/S095741660500409X#%21
https://www.sciencedirect.com/science/article/pii/S095741660500409X#%21
https://www.sciencedirect.com/science/article/pii/S095741660500409X#%21
https://www.sciencedirect.com/science/article/pii/S0957416611000292#%21
https://www.sciencedirect.com/science/article/pii/S0957416611000292#%21
https://www.sciencedirect.com/science/article/pii/S0957416611000292#%21
https://www.sciencedirect.com/science/article/pii/S0957416611000292#%21
https://www.sciencedirect.com/science/article/pii/S0957416611000292#%21
https://www.sciencedirect.com/science/article/pii/S0957416611000292#%21
https://www.sciencedirect.com/science/article/pii/S0957416611000292#%21


FULL PAPER    

 
 
 
 

 

[13] H. C. Brown, P. K. Jadhav , J. Am. Chem. Soc. 1983, 105, 2092-

2093. 

[14] V. Ramachandran, G. M. Chen, H. C. Brown, Tetrahedron Lett. 1997, 
38, 2417–2420. 

[15] M. Angoli, A. Barilli, G. Lesma, D. Passarella, S. Riv a, A. Silv ani, B. 

Danieli, J. Org. Chem. 2003, 68, 9525–9527. 

[16] D. Perdicchia, M. S. Christodoulou, G. Fumagalli, F. Calogero, C. 

Marucci, D. Passarella, Int. J. Mol. Sci. 2016, 17, 17. 

[17] J. Comelles, C. Estiv ill, M. Moreno-Manas, A. Virgili, A. Vallribera, 

Tetrahedron 2004, 60, 11541–11546. 

[18] K. C. Kumara Swamy , N. N. Bhuv an Kumar, N. N., E. Balaraman, K. 
V. P. Pav an Kumar, Chem. Rev. 2009, 109, 2551-2651. 

[19] A. Takada, K. Uda, T. Ohtani, S. Tsukamoto, D. Takahashi, K. 

Toshima, J. Antibiot. 2013, 66, 155–159. 

[20] D. Rix, F. Caijo, I. Laurent, F. Boeda, H. Clav ier, S. P. Nolan, M. 
Mauduit, J. Org. Chem. 2008, 73, 4225-4228. 

[21] J. J. P. Stewart, J. Mol. Model. 2007, 13, 1173-1213. 

[22] H. T. Clarke, H. B. Gillespie, S. Z. J. Weisshaus, J. Am. Chem. Soc. 
1933, 55, 4571–4587. 

[23] S. Torchy , D. J. Barbry , Chem. Research. 2001, 2001, 292–293. 

[24] G: Bobowski, J. Org. Chem. 1985, 50, 929–931. 

[25] I. Philipov a, G. Stav rakov , N. Vassilev , R. Nikolova, B. Shiv achev, 
V. Dimitrov , J. Organomet. Chem. 2015, 778, 10-20. 

[26] B. Danieli, G. Lesma, D. Passarella, A. Sacchetti, A. Silv ani, A. 

Virdis, Org. Lett. 2004, 6, 493-496. 

[27] S. Okuda, H. Kataoka, K. Tsuda, Chem. Pharm. Bull. 1965, 13, 
491-500. 

[28] J. D. Firth, S. J. Canipa, L. Ferris, P. O’Brien, Angew. Chem. Int. 

Ed. 2018, 57, 223 –226. 

[29] Q. Yang, Y. Zhu, R. Zhan, Y. A. Chen, Chem. Nat. Compd. 2018, 
54, 729-731. 

[30] N. Veerasamy , R. G. Carter, Tetrahedron 2016, 72, 4989-5001. 

[31] A. Prabhat, J. Reni, G. Zhonghong, R. Bojana, Chem. Biol. 2005, 
12, 163–180. 

[32] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. 

Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, 

H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. 
Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. 

F. Izmay lov , J. L. Sonnenberg, D. Williams-Young, F. Ding, F. 

Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. 

Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, 
M. Hada, M. Ehara, K. Toy ota, R. Fukuda, J. Hasegawa, M. Ishida, 

T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vrev en, K. Throssell, 

J. A. Montgomery , Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. 
Hey d, E. N. Brothers, K. N. Kudin, V. N. Starov erov , T. A. Keith, R. 

Kobay ashi, J. Normand, K. Raghav achari, A. P. Rendell, J. C. 

Burant, S. S. Iy engar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, 

C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, 
O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., 

Wallingf ord CT, 2016. 

 

 

 

 

https://www.mdpi.com/search?authors=Dario%20Perdicchia&orcid=
https://www.mdpi.com/search?authors=Michael%20S.%20Christodoulou&orcid=
https://www.mdpi.com/search?authors=Francesco%20Calogero&orcid=
https://pubs.acs.org/author/Swamy%2C+K+C+Kumara
https://pubs.acs.org/author/Kumar%2C+N+N+Bhuvan
https://pubs.acs.org/author/Balaraman%2C+E
https://pubs.acs.org/author/Kumar%2C+K+V+P+Pavan
file:///C:/Users/acer/Desktop/analoghi%20joc/S0040402016305567.html%23!
file:///C:/Users/acer/Desktop/analoghi%20joc/S0040402016305567.html%23!


FULL PAPER    

 
 
 

 
 

FULL PAPER 

Efficient conversion of 2-piperidine 

ethanol in a small library of 

enatiomerically pure nitrogen 

containing compounds by a 

stereodivergent approch. The new  

scaffolds results challenging to for the  

exploration of the chemical space. 

   
Exploration of the Chemical Space 

Elisa Bonandi, Paola Marzullo, 

Francesca Foschi, Dario Perdicchia, 

Leonardo Lo Presti, Maurizio Sironi, 

Stefano Pieraccini, Guido Gambacorta, 

Joern Saupe, Lisa Dalla Via, Daniele 

Passarella* 

Page No. – Page No. 
 

Stereodivergent Diversity-Oriented 

Synthesis: Exploiting the Versatility 

of 2-Piperidine Ethanol 

  

 
 

 
 

 
 
 

 

 

.)) 


