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Abstract: The linear and second-order nonlinear optical (NLO) properties of two pyrene-pyridine
chromophores, namely, 4-(pyren-1-yl)pyridine (L1) and 4-(2-(pyren-1-yl)ethyl)pyridine (L2),
were investigated and modulated by performing protonation/deprotonation cycles or by
complexation to d10 metal centers such as Zn(II) and Cu(I) to form the monomeric
[Zn(CH3CO2)2(L1)2] complex and the [CuI(L2)]n coordination polymer, respectively. The structures
of L1, L2, [Zn(CH3CO2)2(L1)2] and [CuI(L2)]n were determined by means of single-crystal X-ray
diffraction studies. The NLO response, measured by the electric-field-induced second harmonic
generation (EFISH) technique, was positive for both chromophores and showed an inversion of the
sign after exposure to HCl vapors. This process was completely reversible and the original values
were restored by simple exposure to NH3 vapors. Coordination of L1 to Zn(II) also resulted in a
negative NLO response, although smaller in magnitude compared to the protonated form, due to the
weak Lewis acidity of the “Zn(CH3CO2)2” fragment. The results were also interpreted on the basis of
DFT/TDDFT calculations.

Keywords: second-order nonlinear optics; EFISH technique; pyrene-pyridine chromophores;
acidochromism

1. Introduction

In recent years compounds with second-order nonlinear optical (NLO) properties have received
increasing attention due to their potential use in optical communications, signal processing,
data storage and electro-optical devices [1,2]. In this context, pyridine-based chromophores have been
extensively studied as promising building blocks for the preparation of bulk organic materials [3] and
coordination networks [4], or at the molecular level for the syntheses of organometallic complexes [5].
In particular, the investigation of Cr(0), W(0), Rh(I), Ir(I), and Os(II) complexes with para-substituted
pyridines has revealed the possibility of tuning the second-order NLO response of the ligand depending
on the electron properties and oxidation state of the metal center or on the ligand environment [6,7].
It has been shown that, according to the electron-withdrawing strength of the substituents on the
pyridine ring, the metal center plays an ambivalent role in acting as an electron donor through
metal-to-ligand (MLCT) charge-transfer transition or as an electron acceptor [5].
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More recently, pyridine-based chromophores have been investigated as acidochromes for their
ability to switch their second-order NLO response, both at molecular and macroscopic levels,
in response to protonation–deprotonation cycles [8,9]. Interestingly, the introduction of a rigid
π-delocalized system such as pyrene in 4-(2-(pyren-1-yl)vinyl)pyridine (PVP, see Scheme 1 for
its chemical structure) affords a simple and highly transparent chromophore characterized by
unexpected and tunable second-order NLO properties. An investigation on the reversible switch of
the luminescence and NLO properties of PVP upon exposure to HCl or NH3 vapors has revealed that
the pyrene moiety has a role in the NLO response of the chromophore [8].
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In this work, the study of the NLO properties of pyrene-pyridine chromophores is extended to
the push–pull derivative 4-(pyren-1-yl)pyridine (L1, see Scheme 1), in which the pyridine is directly
bound to the pyrene moiety, and to 4-(2-(pyren-1-yl)ethyl)pyridine (L2, see Scheme 1), where the
conjugation between the aromatic systems is lost due to the interconnecting dimethylene bridge.
Despite their simple structure, it is interesting that there are few reports in the literature regarding
these two ligands. L1 has been recently described for the synthesis of a RuII complex investigated
as catalyst in water oxidation, the pyrenyl moiety being used for anchoring on multi-walled carbon
nanotubes via π-stacking interactions [10]. The pyrenyl group has been also exploited in L1 for the
preparation of fluorescent probes bound to the proteins of the inner mitochondrial membranes of HeLa
cells [11], or in L2 for fluorescent sensing of transition metal ions [12,13]. To our knowledge there are
no reports in the literature on the second-order NLO response of these two ligands. Here, by means of
the electric-field-induced second harmonic generation (EFISH) technique, we investigated how the
NLO properties of L1 and L2 can be tuned either by performing protonation/deprotonation cycles,
or by coordination to d10 metal centers such as Cu(I) and Zn(II).

2. Results and Discussion

2.1. Synthesis and Characterization of L1, [L1H]+, and ZnL1

Compound L1 was synthesized by a slight modification, as reported in the literature [10] by
Suzuki–Miyaura cross-coupling between 1-bromopyrene and 4-pyridinylboronic acid (Scheme 2).
Single crystals of L1 (see Figure 1a and Figure S4, Table S1) were obtained by slow evaporation of a
dichloromethane/MeOH solution. X-ray diffraction studies revealed a partial conjugation between
pyrene and pyridine, as deduced by both the length of the bond connecting the two moieties, r(C1–C17)
= 1.486 Å, and the dihedral angle between the least-squares (l.s.) planes through their respective heavy
atoms (θ = 53.18◦). Molecules of L1 pack in a herringbone fashion, forming infinite chains along the
crystallographic axis b through C–H···π hydrogen bonds involving pyrene units (distance between
H4 and the pyrene l.s. plane equal to 2.69 Å). These chains are laterally connected through weak
C–H···N hydrogen bonds in one direction and, in the other direction, C–H···π hydrogen bonds and
π···π interactions between pyrene units. The closest distances between pyrene l.s. planes, 3.550 Å,
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and the respective centroids, 4.099 Å, are similar to those of the pyrene structure itself (3.53 and 3.95 Å,
respectively) [14].
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Figure 1. Fragments of the crystal packing of (a) L1 (viewed approximately along the a direction) and
(b) ZnL1 (viewed approximately along the ac direction) showing hydrogen bonds (light blue dashed
lines) and distance between centroids of the pyrene units (green dashed line). Ellipsoids drawn at
30% probability.

The UV–visible absorption spectrum of L1 in CHCl3 (treated overnight with basic Al2O3), showing
an absorption edge at 345 nm and vibronic system at 280 and 270 nm, was very similar to that of pyrene
itself, though slightly red-shifted and with a partial loss of the vibronic resolution (see Figure 2a),
but greatly different from that of PVP. In fact, the latter shows a broad low-energy band at 378 nm
associated with an intramolecular charge transfer (ICT) transition emanating from pyrene towards the
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pyridine moiety [8]. However, similarly to what was previously observed for PVP, the exposure of
the CHCl3 solution of L1 to HCl vapors for a few minutes resulted in a significant red shift (410 nm,
see Figure 2a) of the absorption maximum due to the formation of [L1H]+, which displayed a ICT
transition from pyrene to pyridine occurring at higher energy with respect to [PVPH]+ (443 nm),
in agreement with its reduced conjugation length. The reverse transformation was observed by
treating the solution with NH3 vapors for a few minutes. The protonation process also strongly
affected the photoluminescent behavior of L1 in CHCl3 solution. The initial 390 and 407 nm emission
bands of L1 pyrene moiety were in fact shifted to 482 nm after being exposed to HCl vapors (see
Figure 2b) and restored by treatment with ammonia vapors.

Inorganics 2019, 7, × FOR PEER REVIEW 4 of 10 

 

exposure of the CHCl3 solution of L1 to HCl vapors for a few minutes resulted in a significant red 

shift (410 nm, see Figure 2a) of the absorption maximum due to the formation of [L1H]+, which 

displayed a ICT transition from pyrene to pyridine occurring at higher energy with respect to 

[PVPH]+ (443 nm), in agreement with its reduced conjugation length. The reverse transformation 

was observed by treating the solution with NH3 vapors for a few minutes. The protonation process 

also strongly affected the photoluminescent behavior of L1 in CHCl3 solution. The initial 390 and 407 

nm emission bands of L1 pyrene moiety were in fact shifted to 482 nm after being exposed to HCl 

vapors (see Figure 2b) and restored by treatment with ammonia vapors.  

  

(a) (b) 

Figure 2. (a) Absorption spectra in CHCl3 solution of L1 (black line), [L1H]+ (red line), and ZnL1 (blue 

line); (b) Emission spectra in CHCl3 solution of L1 (black line), [L1H]+ (red line), and ZnL1 (blue line). 

The μβλ of L1 and [L1H]+ in CHCl3 solutions were measured at 1907 nm non-resonant 

wavelength by the EFISH method, which was recently proven to be a successful alternative to hyper 

Rayleigh scattering (HRS) to determine protonation–deprotonation NLO contrasts [8,9,15]. A μβλ 

equal to 640 × 10−48 esu was found for L1 (at 10−3 M in CHCl3 treated overnight with basic Al2O3). After 

the L1 CHCl3 solution was exposed to HCl vapors, an inversion of the sign of μβλ was observed (−460 

× 10−48 esu). To rationalize this observation, DFT, TDDFT and CPKS calculations have been 

performed on both the optimized charged [L1H]+ and neutral [L1HCl] model systems that can be 

compared with the optimized L1 one. The first system should simulate a broken ionic pair, while the 

second one a strongly interacting pair. The lowest excitation energy of L1 was computed at 348 nm, 

in perfect agreement with the experimental value, and a positive but small β||(z) value (3 × 10−30 esu) 

was obtained. Going to the simulated protonated forms, on one side calculations on [L1H]+ provided 

a negative β||(z) value (−88 × 10−30 esu), in agreement with the experimental observations, but too 

much red-shifted lower energy absorption (S0→S1 excitation computed at 549 nm). On the other side, 

for [L1HCl] the β||(z) value was positive (9 × 10−30 esu) and the S0→S1 excitation energy (366 nm) was 

strongly blue-shifted with respect to the experimental value. On the basis of the comparison between 

experimental and computed spectra, this study indicates that a realistic description of the 

protonated form of L1 (i.e., which takes into proper account neglected environment effects) is 

somehow intermediate to those achievable by our simulations. In fact, though a complete disruption 

of the ionic pair is to be discarded, an interaction of [L1H]+ with the Cl- anion should be expected, 

though weaker than that described by [L1HCl]. This interaction produces the observed inversion in 

the sign of μβλ together with a moderate red-shift of the lower-energy absorption band [15]. 

The pyridine moiety was further exploited to investigate the modulation of the linear and NLO 

response after coordination to the Zn(II) metal center. The complex was prepared by reacting L1 with 

Zn(CH3CO2)2 at room temperature in CH2Cl2 to afford the corresponding derivative 

[Zn(CH3CO2)2(L1)2] (ZnL1). 1H NMR spectroscopy revealed a shift to lower field of the signals of the 

pyridine ring (δ in CDCl3 8.93 and 7.72 ppm) with respect to the free ligand L1 (δ in CDCl3 8.83 and 

7.63 ppm, see Figure S1 in the Supplementary Materials). Single crystals of ZnL1 suitable for single 

crystal X-ray diffraction analysis were obtained by recrystallization from CH2Cl2/methanol solution 

(see Figures 1b and S5, Table S1). The crystal structure of ZnL1 consisted of mononuclear complexes 
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The µβλ of L1 and [L1H]+ in CHCl3 solutions were measured at 1907 nm non-resonant wavelength
by the EFISH method, which was recently proven to be a successful alternative to hyper Rayleigh
scattering (HRS) to determine protonation–deprotonation NLO contrasts [8,9,15]. A µβλ equal to
640 × 10−48 esu was found for L1 (at 10−3 M in CHCl3 treated overnight with basic Al2O3). After the
L1 CHCl3 solution was exposed to HCl vapors, an inversion of the sign of µβλ was observed
(−460 × 10−48 esu). To rationalize this observation, DFT, TDDFT and CPKS calculations have been
performed on both the optimized charged [L1H]+ and neutral [L1HCl] model systems that can be
compared with the optimized L1 one. The first system should simulate a broken ionic pair, while the
second one a strongly interacting pair. The lowest excitation energy of L1 was computed at 348 nm,
in perfect agreement with the experimental value, and a positive but small β||(z) value (3 × 10−30 esu)
was obtained. Going to the simulated protonated forms, on one side calculations on [L1H]+ provided a
negative β||(z) value (−88 × 10−30 esu), in agreement with the experimental observations, but too
much red-shifted lower energy absorption (S0→S1 excitation computed at 549 nm). On the other side,
for [L1HCl] the β||(z) value was positive (9 × 10−30 esu) and the S0→S1 excitation energy (366 nm)
was strongly blue-shifted with respect to the experimental value. On the basis of the comparison
between experimental and computed spectra, this study indicates that a realistic description of the
protonated form of L1 (i.e., which takes into proper account neglected environment effects) is somehow
intermediate to those achievable by our simulations. In fact, though a complete disruption of the ionic
pair is to be discarded, an interaction of [L1H]+ with the Cl- anion should be expected, though weaker
than that described by [L1HCl]. This interaction produces the observed inversion in the sign of µβλ

together with a moderate red-shift of the lower-energy absorption band [15].
The pyridine moiety was further exploited to investigate the modulation of the linear and NLO

response after coordination to the Zn(II) metal center. The complex was prepared by reacting
L1 with Zn(CH3CO2)2 at room temperature in CH2Cl2 to afford the corresponding derivative
[Zn(CH3CO2)2(L1)2] (ZnL1). 1H NMR spectroscopy revealed a shift to lower field of the signals
of the pyridine ring (δ in CDCl3 8.93 and 7.72 ppm) with respect to the free ligand L1 (δ in CDCl3
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8.83 and 7.63 ppm, see Figure S1 in the Supplementary Materials). Single crystals of ZnL1 suitable for
single crystal X-ray diffraction analysis were obtained by recrystallization from CH2Cl2/methanol
solution (see Figure 1b and Figure S5, Table S1). The crystal structure of ZnL1 consisted of mononuclear
complexes with N2O2-tetrahedral coordination of the Zn(II) atom, which was created by the nitrogen
atoms of the two L1 ligands and two oxygen atoms of the acetate anions. The asymmetric unit
comprised half a molecule, and generated the full one by a mirror plane through the Zn(II) atom and
one acetate ion residing on special position. The other acetate ion was disordered over two positions.
The coordination bond lengths (Zn–N, 2.054(2) Å; Zn–O(Ac), 1.931(3), 1.960(5) and 1.991(18) Å) were
close to those observed for analogous Zn(II) complexes of pyridine-based ligands [16]. A comparison
with the molecular structure of L1 revealed that the ligand did not undergo significant variations upon
coordination. Particularly in ZnL1 the bond connecting pyrene and pyridine, r(C1–C17) = 1.480 Å,
was almost unvaried and the two aromatic units were only slightly more coplanar (θ = 47.58◦) with
respect to what was observed for L1, most probably as a consequence of the different packing of
the two structures. Crystal packing of ZnL1 was governed by π···π interactions between the pyrene
units of adjacent complexes along the c-axis, forming infinite zig-zag chains along this direction.
The distance between pyrene l.s. planes, 3.394 Å, was shorter than that found in the structure of
the free ligand, though the interacting units were slightly more slipped in ZnL1 with respect to L1

(the distance between centroids of the pyrene rings was equal to 4.189 Å).
Similar to what was previously reported for the “Zn(CH3CO2)2” derivative with

4-trans-NC5H4CH=CHC6H4-4′-NMe2 stilbazole ligand [17], no changes were observed in the
absorption and emission spectra of ZnL1 with respect to the L1 ligand itself (see Table 1). This behavior
was related to the tetrahedral arrangement of the complex, for which no remarkable effect on
∆λmax of the ligand could be observed, as opposed to the pseudolinear coordination motifs and
notwithstanding the Lewis acidity of the metal center. This observation was rather well-reproduced by
(TD)PBE0/6-311++G(d,p) calculations on ZnL1. The lowest-energy computed transition, only slightly
red-shifted (by 17 nm) with respect to that of L1, showed ILCT character with no involvement of the
Zn atom.

EFISH measurements on a 10−3 M CHCl3 solution of ZnL1 revealed a negative µβλ value
(−250 × 10−48 esu), smaller (in absolute value) than that of [L1H]+ in agreement with the weak Lewis
acidity of the “Zn(CH3CO2)2” fragment [18].

Table 1. Linear and nonlinear optical properties of L1, L2, and their derivatives together with pyrene
and PVP reference compounds.

Compound λabs (nm) λem
a (nm) µβλ (10−48 esu)

Pyrene 337, 322, 309, 274, 264 415, 394, 385, 374 b -
PVP c 378(br) 450 1500

[PVPH]+ c 443, 395 550 −950
L1 345, 330(sh), 314(sh), 280, 270(sh) 407, 390 650 ± 156

[L1H]+ 410, 380, 328, 304 482 −460 ± 78
ZnL1 345, 330(sh), 314(sh), 280, 270(sh) 407, 390 −250 ± 42

L2 345, 328, 314, 277, 266 440(sh), 415(sh), 396, 377 197 ± 73
[L2H]+ 345, 328, 314, 277, 266 496 −270 ± 62
CuL2 345, 328, 314, 277, 266 443(sh), 416(sh), 397, 377 -

a λexc = 330 nm; b Data from reference [19]; c Data from reference [8].

2.2. Synthesis and Characterization of L2, [L2H]+, and CuL2

Compound L2 was synthesized as reported in the literature [13] by the hydrogenation of PVP
(see Scheme 3). In L2 no conjugation was expected between the aromatic systems due to the
interconnecting dimethylene bridge. From single-crystal XRD analysis (see Figure 3a and Figure S6,
Table S1), the dihedral angle between the l.s. planes through pyrene and pyridine measured θ = 89.08◦.
Molecules of L2 formed infinite chains along the crystallographic axis c through C–H···π hydrogen
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bonds connecting pyridine with the π-electron system of pyrene (distance between H20 and the pyrene
l.s. plane equal to 2.91 Å). These chains were laterally connected through weak van der Waals contacts,
with the pyrene units showing a large slippage (distance between respective centroids equal to 7.214 Å)
though placed at interplanar distance equal to 3.551 Å.
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at 30% probability.

A comparison of the absorption spectra of L2 and PVP in CHCl3 showed that, due to the loss of
conjugation by hydrogenation of the ethylene bridge, the structureless features were here resolved
in two sets of vibronic bands centered at 345 and 277 nm (see Figure 4a and Table 1). These bands,
slightly red-shifted from those of the pyrene moiety, were not affected when exposing a CHCl3 solution
of L2 to HCl vapors. However, the formation of [L2H]+ could be assessed by the expected 1H NMR
appearance of a signal at 18.16 ppm for the NH+ moiety and by the shift to lower field of the pyridine
signals (δ in CDCl3 8.53 and 7.50 ppm) with respect to the free ligand L2 (δ in CDCl3 8.51 and 7.14 ppm,
see Figure S2). Additionally, a broad band centered at 496 nm appeared in the emission spectrum.
This fluorescence can be assigned to an “exciplex” formed between the pyrene and pyridinium moieties,
in agreement with previous findings [20]. The loss of push–pull character for L2 in comparison with
PVP was supported by EFISH measurements which revealed a µβλ of 197 × 10−48 esu (at 10−3 M
concentration) for the former in comparison with the 1500 × 10−48 esu value of the latter. As in the
case of [L1H]+, the protonated species [L2H]+ displayed a weaker but negative µβλ (−270 × 10−48

esu). DFT, TDDFT, and CPKS calculations on L2, [L2H]+, and [L2HCl] model systems led to similar
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results as those obtained to rationalize the behavior of L1, except for the lower excitation energy,
which in agreement with the experimental findings, did not vary going from L2 (337 nm) to either
[L2H]+ (339 nm) or [L2HCl] (338 nm). However, in contrast to what was obtained for L1, in this case we
were able to converge to a stationary state ”intermediate” between [L2H]+ and [L2HCl] by constraining
the L2–H and L2H–Cl distances to reasonable values (equal to 1.01 and 3.0 Å, respectively). For this
system, having a lower excitation energy at 338 nm, a negative β||(z) value (−6 × 10−30 esu) was
obtained, in agreement with the experimental measurements.
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L2 was further coordinated to Cu(I) in order to investigate the role of a d10 metal center on the
linear and non-linear optical properties of the ligand. By layering a CH3CN solution of L2 into a
water solution of CuI in saturated KI, crystals of the coordination polymer [CuI(L2)]n (CuL2) suitable
for X-ray diffraction were obtained (see Table S1 and Figure S7). In the crystal structure of CuL2,
the well-known double-stranded ”stair” motif (see Figure 3b) was observed. Each copper atom was
tetracoordinated (to three iodine atoms and the nitrogen of L2) in distorted tetrahedral stereochemistry,
with Cu–I and Cu–N bond distances comparable to those of known [CuI(L)]n stairs [21]. The organic
ligand stacked along both sides of the CuI skeleton, undergoing a conformational rearrangement with
respect to what was observed in the free ligand structure. In fact, the pyrene and pyridine moieties in
CuL2 were almost coplanar (θ = 4.82◦) as opposed to the twisted conformation of L2. The pyrene units
were placed at quite short interplanar distances (3.452 Å) with reduced slippage (distance between
respective centroids equal to 4.502 Å).

The formation of the Cu(I) derivative was confirmed by 1H NMR spectroscopy, which revealed
a loss in the resolution of both the pyridine (barely detectable) and the ethane bridge resonances
(see Figure S3). However, no remarkable changes could be detected in the absorption and emission
spectra, which reveals—as in the case of the free L2 ligand—the vibronic features characteristic of the
pyrene moiety.

EFISH measurements in DMF or CH2Cl2 solutions of the CuL2 coordination polymer gave
unexpectedly high and negative values. This unusual second-order response deserves further
investigation to exclude the possible formation—under the strong electric field applied during the
measurements—of ionic species arising from the Cu(I) polymer commonly known as labile in solution.

3. Materials and Methods

3.1. Single-Crystal X-ray Crystallographic Studies

X-ray diffraction data of L1, ZnL1, L2, and CuL2 were collected on a Bruker Apex II diffractometer
(Bruker AXS Inc., Madison, WI, USA) using Mo Kα radiation. The structures were solved using
direct methods and were refined by using a full-matrix least squares procedure, based on F2 using
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all data [22]. Hydrogen atoms were placed at geometrically estimated positions. Details relating
to the crystals and the structural refinements are presented in Table S1. Full details of crystal data
and structure refinement, in CIF format, are available as Supplementary Materials. CCDC reference
numbers: 1886755 (L1), 1900477 (ZnL1), 1886756 (L2), and 1886757 (CuL2).

3.2. Computational Details

DFT and TDDFT calculations on L1 and L2, together with their protonated forms, and on ZnL1

were performed with Gaussian 16 program (Revision A.03) [23] using the 6-311++G(d,p) basis set.
The geometries of the compounds were optimized starting from their respective experimental ones
as derived from X-ray studies. Based on previous theoretical results that were obtained on PVP [8],
the PBE0 functional [24,25] was used for both DFT and TDDFT calculations, due to its ability to
correctly treat ground and excited state properties. Hyperpolarizability (β tensor) was computed
within the coupled perturbed Kohn–Sham (CPKS) approach at the same frequency as used in the
experiment. For a meaningful comparison with the experimental µβλ values, we report the quantity
β||(z) = 1/5 ∑j(βzjj + βjzj + βjjz), that is, the projection along the z-axis of a “vector” derived from
the full β tensor, with the molecule oriented with its dipole along the z-axis. In particular, for a
linear push–pull molecule a positive β||(z) value indicates that the associated vector is oriented
in the same direction as the dipole moment vector, whilst a negative one corresponds to vectors
oriented in opposite directions. We adopted the CAM-B3LYP functional [26], which has recently been
recommended for hyperpolarizability calculations of mid-size organic chromophores [27]. A pruned
(99,590) grid was selected for the computation and use of two-electron integrals and their derivatives.

3.3. EFISH Measurements

EFISH measurements [28] were carried out in CHCl3 (treated with basic Al2O3 before use) with a
non-resonant incident wavelength of 1907 nm, obtained by Raman-shifting the fundamental 1064 nm
wavelength produced by a Q-switched, mode-locked Nd3+:YAG laser. The µβλ values reported are
the mean values of four measurements performed on the same sample.

4. Conclusions

Our previous findings on the linear and NLO optical properties of pyrene-pyridine chromophores
were here extended to L1, with the pyridine directly bound to the pyrene moiety and to L2,
where the dimethylene bridge connecting the aromatic systems breaks the conjugation between
them. Similar to what was observed for PVP, their NLO response could be switched by performing
protonation/deprotonation cycles, with a change in the sign of µβλ for both protonated forms, although
greater in absolute value for L1 due to its push–pull character. Coordination of L1 to Zn(II) metal
center to form the monomeric ZnL1 complex also induced a change in the sign of µβλ, although the
weak Lewis acidity of the Zn(II) fragment resulted in a smaller absolute value when compared to the
protonated form. Coordination of L2 to Cu(I) metal center gave rise to the formation of the [CuI(L2)]n

coordination polymer, showing the well-known double-stranded “stair” motif in its crystal structure.
EFISH measurements on this Cu(I) polymer gave an unexpectedly high and negative second-order
response, which deserves further investigation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/7/3/38/s1,
Experimental Procedures, Figure S1: Expanded region of 1H NMR spectra of L1 and ZnL1, Figure S2: 1H NMR
spectra of L2 and [L2H]+, Figure S3: 1H NMR spectra of L2 and CuL2, Figure S4: ORTEP view of L1 with atom
labelling scheme, Figure S5: ORTEP view of ZnL1 with atom labelling scheme, Figure S6: ORTEP view of L2 with
atom labelling scheme, Figure S7: ORTEP view of CuL2 with atom labelling scheme, Table S1: Crystallographic
data and structure refinement details for L1, ZnL1, L2 and CuL2.
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