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Universality in sandpiles
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We perform extensive numerical simulations of different versions of the sandpile model. We find that
previous claims about universality classes are unfounded, since the method previously employed to analyze the
data suffered from a systematic bias. We identify the correct scaling behavior and provide evidences suggest-
ing that sandpiles with stochastic and deterministic toppling rules belong to the same universality class.
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Sandpile automatfl] are among the simplest models to conditional expectation values, introduced in Réf2] and
describe avalanche propagation, a phenomenon of upsurginged in Ref[11], is systematically biased by nonuniversal
experimental interest in a wide range of fiel[d. In the  corrections and does not provide indications about universal-
stationary state, after suitable tuning of the driving fidlgls ity classes. By removing the bias, we provide evidence that
these models display critical behavior in the avalanche st¢he BTW and Manna models are universal. This conclusion
tistics. As for ordinary critical phenomena, it is possible to@ppears to be consistent with data collapse and moment
define a set of scaling exponents to characterize the larg&nalysis of the distributiongl5].
scale behavior of the systef]. Sandpile models are defined o alimensional hypercu-

The precise identification of universality classes in sandbic lattice. On each site of the lattice we define an integer
pile models[1] is an unresolved issue. From a theoreticalvariablez;, which we call “energy.” At each time step an
standpoint, it would be unusual that small modifications inénergy grain is added on a randomly chosen s#e-f;
the dynamical rules of the model could lead to different uni-+1). When one of the sites reaches or exceeds a threshold
versality classes. Real-space renormalization group calculd@ @ “toppling” occurs: z;=z,—z, and z;=z;+1, wherej
tions[5] suggest that different sandpile models, such as théepresents the nearest-neighbor sites of isittn the BTW
Bak, Tang, and Wiesenfel(BTW) [1], and the Manna4] modelz.=2d and each nearest-neighbor site receives a grain
models, all belong to the same universality class. This resukfter the toppling of the sité. In the Manna modet,=2
is also confirmed by a recently proposed field theory apand, therefore, only two randomly chosen neighboring sites
proach[6] that shows that all sandpile moddlg] are de- receive a grain. A toppling can induce nearest-neighbor sites
scribed by the same effective field theory at the coarséo topple on their turn and so on, until all of the lattice sites
grained level. Universality is also found between BTWs-  are below the critical threshold. This process is called an
cretg and Zhang 8] (continuou$ models in the dynamical avalanche. A slow driving is usually imposed so that grains
renormalization group calculations of RE8]. are added only when all of the sites are below the threshold.

The results obtained by numerical simulations are unclearThe model is conservative and energy is dissipated only at
Early large scale numerical simulations of the Mapfipand ~ the boundary sitegl]. Here we perform numerical simula-
BTW models[10] show that the avalanche distributions aretions of two-dimensional Manna and BTW models with open
described by the same exponents for the power law decayoundary conditions and conservative dynamics. The lattice
and the scaling of the cutoffs. These results were questioneglze ranges fronh =128 toL =2048 in both models. In each
by Ben-Hur and Bihan{11] who analyzed the scaling of case, statistical distributions are obtained averaging over 10
conditional expectation valuefgl2] of various quantities. nonzero avalanches.

They found significant differences in the exponents for the Avalanches in sandpile models are usually characterized
two models and therefore proposed a classification of univerby three variables: the number of topplings the areaa
sality in sandpile models, in which models with stochasticaffected by the avalanche, and the avalanche duratidrhe
update rules, such as the Manna model, fall into a universalprobability distribution of each of these variables is usually
ity class different from that of Abelian models, such as thedescribed as power law with a cutoff

BTW [13]. The method was later applied to the Zhang

model, which was declared “nonuniversa14]. These re- Ty

sults pose a puzzling problem since they contradict all of the POO=x"2G(XIXe), @
existing theories and do not agree with the scaling predicted

analyzing avalanche distributiof4,10]. wherex=s,a,T. When the system size goes to infinity,

Here we present large scale numerical simulations of théhe cutoffx, diverges a.~LPx. Under the finite size scal-
BTW and Manna sandpile models with the goal of settlinging (FSS assumption of Eq.(1), the set of exponents
the issue of universality. First we show that the method of 7, ,8,} defines the universality class of the model.
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In two dimensions, an accurate numerical determination 0.1
of the power law exponents in E€L) proved to be a difficult
task[4,10,16,17 due to the large deviations at the lower and
upper cutoffs. For this reason, Christensdral. [12], in or-
der to distinguish among universality classes, proposed a
more refined numerical analysis based on the evaluation of
the expectation valug(x|y) of the variablex restricted to
all the avalanches with variabler=y, where {X,Y}
={s,a,T} [12]. It is assumed thaE(x|y)~y” and the ex-
ponents vy,, are used to distinguish among universality
classeg[11]. These exponents satisfy the scaling relations
Yxy= 7;xl and yx;= YxyYyz-

As stated in Ref[12], if the conditional probability dis-
tribution p(x|y) is sufficiently peaked, then,, is well de-
fined, and to each value of the varialdleve can unambigu-
ously associate a value of the varialylg(i.e., x~y*x). In
particular, the cutoff of the distributions should be related by
the same exponentsi.e., x,~y.®), which implies y,,
=pBx!By. For instance, we haves,= B2 since, in two
dimensions, avalanches are compact for both the BT
and Manna model§ll], so thatB,=2. The data collapse
analysis shows that the BTW and Manna models both share
the same exponeniB;=2.7 [4,10,16, which implies ys,
=1.35. On the contrary, Ref§11,14 found ys,=~1.06 for
the BTW model andy;,=1.24 for the Manna model, which
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FIG. 1. Probability distribution of having an avalanche size
given its areaa for the BTW model. The inset shows that all data
collapse onto the universal scaling functig{s|a)=a"saf[ (s
—a)/a”sa], with ys,~1.35.

©)

would yield two different universality classes for the two \yhereC is a nonuniversal constant.
models. Less marked differences were also observed for the In the BTW modelp(s|a) has the form of Eq(2), as

other exponents,, [11,14.

shown by performing data collapse analylsise Fig. 1(in-

In order to resolve this paradox, we return to the hypoth-ey]. Thus, we can easily subtract the linear bias from the
esis underlying the use of conditional expectation valuesgypectation value in order to obtain the correct scaling be-
p(x|y) must be symmetrical and strongly peaked around théyayior to be compared with that of the Manna mogig. 2),
average value. We checked numerically that this assumptiogy, which conditional distributions appear to be symmetric.

is not fulfilled; in the BTW model the distributiop(s|a) is
maximum fors=a and decreases f@&>a, with a charac-
teristic values* scaling asa®s'? (see Fig. 1 The distribution

Data from avalanche areas up &s=1C° provide striking
evidence that both models share the same asymptotic behav-
ior with an exponentys,=1.35+0.05, in agreement with

is not symmetric(see also Ref[17]), consistent with the  qiher published resul{#,10,16,17. The scaling of the other
constraints=a (the avalanche area cannot be greater thaRypectation values is also biased, as is apparent from the
the number of topplings Similar considerations apply, as bending in the curves reported in Reffé1,14. The correc-

well, to other quantitiesi.e., a=T, s=T), in which condi-
tional probability distributions show asymmetry, although
less marked.

To understand the effect of nonsymmetric distributions on

conditional expectation values, consider a distribution of the  1¢’
form
P(x[y) = O(x—y)F[(x—y)/x*]Ix*, (2)
~ 10°
where the characteristic value scalesxdgy)~y”xy, and =
6(x) is the step function. The factord/ ensures normaliza- &
tion for anyy,
10°
J dxp(x|y)=1, ()
so that the conditional expectation value is given by o

)= | " fLix-yi ). @

tion of the bias is not so straightforward as in the case we

- BTW (L=2048)
< Manna (L=2048)
10° 10° 10* 10° 10°
Areaa

FIG. 2. Conditional expectation valuig(s|a) for the BTW and

Manna modeldafter bias subtraction The slope is given byyg,

Performing the substitution=x—y, we obtain

=1.35+0.05 for both curves.
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TABLE I. Values of the critical exponents describing the scal-
ing of the cutoff of the distributions for different models @+ 2.
The results are obtained from the moments analigsie text Note
that the exponentg,, B;, and B8, are usually reported in the lit-
erature ad, z, andd;, respectively.

Model Bs Bt Ba Ts

Manna 2.740.02 1.56:0.02 2.02£0.02 1.2#0.01
BTW 2.73+0.02 1.52-0.02 2.0x*0.02 1.270.01

B: and B, are reported in Table I. Also in this case the
exponents for the two models share the same values within
error bars, confirming the presence of a single universality
FIG. 3. Plot of o4(q) for the BTW and Manna models. The class.

linear part has slope 2.74. Note the nonuniversal corrections to the As a final consistency test, we use the data collapse
linear behavior expected far=r7—-1=0.3. method in order the check the FSS hypothesis, which states
_ . _ that rescaling},=x/L"x andPq =P(x,L)L"x, the data for
have discussed, but can be obtained from the analysis ct?Iifferent L must collapse onto universal curves. If FSS is

p(x|y).. This discussion cIearI_y shows that condmongl ex'verified, we can compute the exponentfrom the scaling
pectation values are not a reliable method to determine thF

niversality cl f 2 model. unl tematic analvsi Flation (2= 1) By=0,(1), which should be satisfied for
universaiity class of a model, uniess a systematic analysis 0enough large sizes. Using the valuesBgfreported in Table
the bias is performed.

To provide further evidence about a single universalityI and the values obtained fer,(1), we find theexponentsyy

class, we perform the moment analysis on the distributionéo be inserted into the data collapse. For instance, using the

; . exact resuliog(1)=2 and the estimate@,=2.7, we obtain
P, Inclose snalogywiththe rscentwarkorDe Menecn 23 G e el oy

: for both modeldsee Fig. 4.
apply the moments analysis on both the BTW and Manna In the sameS(way wge gbtain very good data collapse for

models, taking advantage of the large sizes reached in oW Manna modeP(a) and P(t) distributions, yieldingr

numerical simulations. We define tllemoment ofx on a —15 andr.=1.35. On the other hand We’ find thattthe
i i ay — (9 . =1L 2= 1.35. ,

lattice of sizel. as(x), =/ x"P(x)dx. If the FSS hypothesis BTW data collapses for time and area distributions are not

[ciﬂ.t(rlaigllssfovran“zd; i;tll%ilsatr:g t:bet:iiymptotlc limik€-»c0), we compatible with the FSS hypothesis. The linear behavior of
the moments analysis, however, ensures that for large sizes
the FSS form must be approached. This result can be ex-

(xq>,_=LBx(q+1‘T)f 29%77G(z)dz~LALat1=D - (p) plained if we assume that the scaling in the BTW model
displays subdominant corrections of the form(x)
=(CyX "1+ Cyox™ 2+---)G(X/X;), whereC,; are nonuniver-

sal constants. These corrections are compatible with the lin-

ear behavior at largg, but the decay of thé&(x) is not a

simple power law for smak and thus FSS is not obeyed. It

or, in general{x9), ~L°<%, The exponentsr,(q) can be
obtained as the slope of the log-log plot o), versusL.
Using Eq.(6), we obtain{x9" 1), /(x% ~LPx or o (q+1)
—o4(q) = By, so that the slope af,(q) as a function ofy is
the cutoff exponeng,=do(q)/dg. This is, in general, not . ;
true for smallq because the integral in E) is dominated Manna model OL=2048
by the lower cutoff. In particular, corrections to scaling of 10° g
the type(x%), ~L<PF(L) are important fog=<7,— 1. For
instance, wheilg= r,— 1, logarithmic corrections give rise to
effective exponents up to very large lattice sizes. Finally, 10°
normalization imposes,(0)=0.
In Fig. 3 we show the results obtained from the moment = |
analysis of the distributioR(s) for the Manna and the BTW 5 '
models. In this case we can use the exact re@i-L2,
which impliesa4(1)=2, as a test for the convergence of our
simulations to the asymptotic scaling regime. This relation is 10 o
fulfilled and theo¢(q) of the two models are indistinguish-
able forg=1, indicating universal scaling behavior. We ob- 1o 10
serve small deviations for smail that are due to the non- 10’
universal lower cutoff. By measuring the slopeaa{q), we
obtain Bs=2.7. This value is larger than the value reported F|G. 4. Data collapse analysis of the avalanche size distribution
in Ref. [15] (i.e., D=2.5), where small lattice sizes have for the Manna and BTWinsed models. The values used for the
been used. We have repeated the same analysis for tlgtical exponents are;=1.27 andB,=2.7. Lattice sizes used are
P(T,L) and theP(a,L), and the measured cutoff exponents reported in the figure.

BTW model
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is worth it to remark that the time and area distributions sparorder to quantify the extent of subdominant corrections to
over much less order of magnitude than the size distributionscaling in the BTW model.
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due to higher order operators in the dynamics and do ndl discussions and suggestions. The main part of the nu-

determine the universality class, since the asymptotic scalin erical simulations have bgen run on th_e KAI__IX parallel
behavior is ruled by the leading power. ompute18] (a Beowulf project at Cagliari Physics Depart-

. . ._mend. We thank G. Mula for leading the effort toward orga-
In summary, we have presented numerical evidence poin nizing this computer facility. A.V. and S.Z. acknowledge

ing toward a single universality class for the Manna and thepartial support from the European Network under Contract
BTW models. In particular, we show that previous analyseNo. ERBFMRXCT980183. The Center for Polymer Studies
[11,14 are not reliable because of systematic biases introis supported by the NSF. A.C. acknowledges the hospitality
duced by the method employed. Further work is needed if the CPS, where this work was initiated.
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