A remark on a paper by Alessandrini and Vessella ${ }^{\text {TH }}$

Luca Rondi
Dipartimento di Matematica e Informatica, Università degli Studi di Trieste, Italy
Received 26 May 2004; accepted 15 December 2004
Available online 3 November 2005

Abstract

We prove that the Lipschitz constant of the Lipschitz stability result for the inverse conductivity problem proved in [G. Alessandrini, S. Vessella, Lipschitz stability for the inverse conductivity problem, Adv. in Appl. Math. 35 (2005) 207-241], behaves exponentially with respect to the number N of regions considered.

© 2005 Elsevier Inc. All rights reserved.

Let $\Omega=B_{1}(0) \subset \mathbb{R}^{n}$, where $n \geqslant 2$ denotes the space dimension. Let $D=[-1 / 2,1 / 2]^{n}$ be the cube of side 1 centred at the origin. We have that D is compactly contained inside Ω. Let us consider the class of admissible conductivities

$$
\mathcal{A}=\left\{\gamma \in L^{\infty}(\Omega): 1 / 2<\gamma<3 / 2 \text { a.e. in } \Omega \text { and } \gamma=1 \text { a.e. in } \Omega \backslash D\right\} .
$$

For any $\gamma \in \mathcal{A}$, we set the Dirichlet-to-Neumann map associated to γ as the operator $\Lambda_{\gamma}: H^{1 / 2}(\partial \Omega) \mapsto H^{-1 / 2}(\partial \Omega)$ given by

$$
\left.H^{1 / 2}(\partial \Omega) \ni \varphi \mapsto \gamma \nabla u \cdot \nu\right|_{\partial \Omega} \in H^{-1 / 2}(\partial \Omega)
$$

[^0]where $u \in H^{1}(\Omega)$ solves the elliptic Dirichlet problem
\[

$$
\begin{cases}\operatorname{div}(\gamma \nabla u)=0 & \text { in } \Omega, \\ u=\varphi & \text { on } \partial \Omega .\end{cases}
$$
\]

Let us fix a positive integer N and let N_{1} be the smallest integer such that $N \leqslant N_{1}^{n}$. We divide each side of the cube D into N_{1} equal parts of length $h=1 / N_{1}$ and we let $\mathcal{S}_{N_{1}}$ be the set of all the open cubes of the type $D^{\prime}=\left(-1 / 2+\left(j_{1}^{\prime}-1\right) h,-1 / 2+j_{1}^{\prime} h\right) \times \cdots \times$ $\left(-1 / 2+\left(j_{n}^{\prime}-1\right) h,-1 / 2+j_{n}^{\prime} h\right)$, where $j_{1}^{\prime}, \ldots, j_{n}^{\prime}$ are integers belonging to $\left\{1, \ldots, N_{1}\right\}$. We order such cubes as follows. For any two different D^{\prime} and $D^{\prime \prime}$ belonging to $\mathcal{S}_{N_{1}}$ we say that $D \prec D^{\prime \prime}$ if and only if there exists $i_{0} \in\{1, \ldots, n\}$ such that $j_{i}^{\prime}=j_{i}^{\prime \prime}$ for any $i<i_{0}$ and $j_{i_{0}}^{\prime}<j_{i_{0}}^{\prime \prime}$.

Let $D_{j}, j=1, \ldots, N$, be the first N cubes, with respect to the order described above, of the set $\mathcal{S}_{N_{1}}$ and let $D_{0}=\Omega \backslash \bigcup_{j=1}^{N} \overline{D_{j}}$. We consider the following set of admissible conductivities

$$
\mathcal{A}_{N}=\left\{\gamma \in \mathcal{A}: \gamma(x)=\sum_{j=1}^{N} \gamma_{j} \chi_{D_{j}}(x)+\chi_{D_{0}}(x)\right\},
$$

where χ denotes the characteristic function and $\gamma_{j}, j=1, \ldots, N$, are not prescribed constants belonging to [1/2,3/2].

It is not difficult to show that, for suitable constants A, r_{0}, L, M, α and λ, depending at most on n and N, the hypotheses of Theorem 7 of [1] are satisfied, therefore there exists a constant C_{N}, depending on n and N only, such that for any $\gamma^{(1)}, \gamma^{(2)}$ belonging to \mathcal{A}_{N} we have

$$
\left\|\gamma^{(1)}-\gamma^{(2)}\right\|_{L^{\infty}(\Omega)} \leqslant C_{N}\left\|\Lambda_{\gamma^{(1)}}-\Lambda_{\gamma^{(2)}}\right\|_{\mathcal{L}\left(H^{1 / 2}(\partial \Omega), H^{-1 / 2}(\partial \Omega)\right)}
$$

Our aim is to estimate from below the Lipschitz constant C_{N} in terms of N. In the sequel we shall always omit the dependence of the constants from the space dimension n. We have the following result, essentially based on arguments developed in [2].

Theorem. There exist $N_{0} \in \mathbb{N}$ and a positive constant K_{1} such that for any $N \geqslant N_{0}$ we have

$$
C_{N} \geqslant \frac{1}{8} \exp \left(K_{1} N^{1 /(2 n-1)}\right)
$$

Proof. We define the following metric spaces. For any $N \in \mathbb{N}$, we consider $\left(\mathcal{A}_{N}, d_{0}\right)$ where d_{0} is the distance given by the $L^{\infty}(\Omega)$ norm. Let $\left(\mathcal{B}, d_{1}\right)$ be the metric space where $\mathcal{B}=$ $\left\{\Lambda_{\gamma}: \gamma \in \mathcal{A}\right\}$ and d_{1} is the distance induced by the norm in $\mathcal{L}\left(H^{1 / 2}(\partial \Omega), H^{-1 / 2}(\partial \Omega)\right)$. We let $\gamma^{(0)}=\chi_{\Omega}$.

First, we prove that for any $\delta, 0<\delta \leqslant 1 / 2$, and any $N \in \mathbb{N}$ there exists $\tilde{\mathcal{A}}_{N} \subset \mathcal{A}_{N}$ such that $d_{0}\left(\tilde{\gamma}, \gamma^{(0)}\right) \leqslant \delta$ for any $\tilde{\gamma} \in \tilde{\mathcal{A}}_{N}$, for any two distinct points $\gamma^{(1)}, \gamma^{(2)}$ in $\tilde{\mathcal{A}}_{N}$ we have $d_{0}\left(\gamma^{(1)}, \gamma^{(2)}\right) \geqslant \delta$ and $\tilde{\mathcal{A}}_{N}$ has 3^{N} elements.

In fact, it is enough to take as $\tilde{\mathcal{A}}_{N}$ the set of functions $\tilde{\gamma}$ which assume, on each D_{j}, $j=1, \ldots, N$, a value among $1,1-\delta$ and $1+\delta$.

We recall the following definition. For a given positive $\varepsilon, \tilde{\mathcal{B}} \subset \mathcal{B}$ is said to be an ε-net for \mathcal{B} if for every $\Lambda \in \mathcal{B}$ there exists $\tilde{\Lambda} \in \tilde{\mathcal{B}}$ such that $d_{1}(\Lambda, \tilde{\Lambda}) \leqslant \varepsilon$.

By using the arguments of the proof of Proposition 3.2 in [2], it is possible to show that we can apply Lemma 2.3 in [2] to \mathcal{B}. Therefore we have that for any $\varepsilon, 0<\varepsilon<1 / \mathrm{e}$, there exists an ε-net for \mathcal{B} with at most $\exp \left(K_{2}(-\log \varepsilon)^{2 n-1}\right)$ elements, K_{2} being a positive absolute constant.

For any $0<\varepsilon<1 / \mathrm{e}$ and any $N \in \mathbb{N}$, let $Q(\varepsilon, N)=\exp \left(K_{2}(-\log \varepsilon)^{2 n-1}\right)$. Let us remark that $3^{N}>Q(\varepsilon, N)$ if and only if $\varepsilon>\exp \left(-K_{1} N^{1 /(2 n-1)}\right)=\varepsilon_{0}(N) / 2$, where K_{1} is a positive absolute constant. There exists $N_{0} \in \mathbb{N}$ such that for any $N \geqslant N_{0}$ we have $\varepsilon_{0}(N)<1 / \mathrm{e}$. Thus, for any $N \geqslant N_{0}$, if we take $\varepsilon=\varepsilon_{0}(N)$, we have $3^{N}>Q(\varepsilon, N)$, then for any $\delta, 0<\delta \leqslant 1 / 2$, there exist $\gamma^{(1)}$ and $\gamma^{(2)}$ belonging to \mathcal{A}_{N} such that $d_{0}\left(\gamma^{(i)}, \gamma^{(0)}\right) \leqslant \delta$ for any $i=1,2$ and

$$
\delta \leqslant d_{0}\left(\gamma^{(1)}, \gamma^{(2)}\right) \leqslant C_{N} d_{1}\left(\Lambda_{\gamma^{(1)}}, \Lambda_{\gamma^{(2)}}\right) \leqslant 2 C_{N} \varepsilon_{0}(N)
$$

Choosing $\delta=1 / 2$, we can conclude that $C_{N} \geqslant \frac{1}{8} \exp \left(K_{1} N^{1 /(2 n-1)}\right)$.

References

[1] G. Alessandrini, S. Vessella, Lipschitz stability for the inverse conductivity problem, Adv. in Appl. Math. 35 (2005) 207-241
[2] M. Di Cristo, L. Rondi, Examples of exponential instability for inverse inclusion and scattering problems, Inverse Problems 19 (2003) 685-701.

[^0]: Work supported in part by MIUR under Grant No. 2002013279.
 E-mail address: rondi@units.it.
 0196-8858/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
 doi:10.1016/j.aam.2004.12.003

