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We investigate the breakdown of disordered networks under the action of an increasing external—
mechanical or electrical—force. We perform a mean-field analysis and estimate scaling exponents for the
approach to the instability. By simulating two-dimensional models of electric breakdown and fracture we
observe that the breakdown is preceded by avalanche events. The avalanches can be described by scaling laws,
and the estimated values of the exponents are consistent with those found in mean-field theory. The breakdown
point is characterized by a discontinuity in the macroscopic properties of the material, such as conductivity or
elasticity, indicative of a first-order transition. The scaling laws suggest an analogy with the behavior expected
in spinodal nucleation.S1063-651X%99)09205-3

PACS numbegs): 05.65+b, 62.20.Fe, 62.20.Mk

I. INTRODUCTION with the situation in which fracture hermallyactivated and
guencheddisorder is irrelevant. In most realistic situations,
The breakdown of solids under external forces is a longhowever, the solid is not homogeneous and disorder, in the
standing problem that has practical and theoretical relevanderm of vacancies or microcracks, strongly affects the nucle-
[1]. The first theoretical approach to fracture mechanics dateation proces$8,9]. For example, cracks may start from dif-
back to the 1920s with Griffith’s theof\2] which says that ferent defects and coalesicEl], in contrast with the assump-
cracks grow or heal, depending on whether the externaions of Griffith-like theories. There are situations,
stress prevails over the resistance at the surface of the cracdncountered, for example, in material testing, in which the
Since the work of Griffith, a great effort has been devoted tesystem is driven by an increasing external stress and the time
experimentally test the validity of the theory and to extend itscale of thermal fluctuations is larger than the time scale
to various crack geometries and boundary conditipfis  induced by the driving. In those cases, the system can effec-
The Griffith theory, in spirit, is very similar to the classical tively be considered as being at zero temperature and only
theory of nucleation in first-order phase transitid8$. In  quenched disorder is relevant. This is the situation we inves-
bubble nucleation, a critical droplet will form when the tigate in this paper. It is also worth emphasizing that the
change in free energy due to the bulk forces exceeds that dfreaking process is in most casesversible so opening
the surface terms. and closing a crack is not like flipping back and forth a spin.
The analogy between first-order transitions and fracture The understanding of the breakdown of disordered sys-
has been investigated further by numerical model and thedems has progressed to a large extent with the use of large-
retical calculations. Several authors suggested that the breageale simulations of lattice modef42]. In these models a
down point in a thermally activated fracture is analogous to aonductor is represented by a resistor network and an elastic
spinodal point. Spinodal nucleatigB], contrary to classical medium by a spring network or other more complex discreti-
nucleation, is characterized by scaling properties and fractaations. The disorder is modeled by random failure thresh-
droplets. Rundle and Klein6], analyzing a Landau- olds or by bond dilution. In this way the model retains the
Ginzburg equation for the growth of a single crack, showedong-range nature and the tensorial structure of the interac-
that the system obeys scaling laws expected for spinodaions, which are computed solving coupled linear equations.
nucleation. Selingeet al. [7,8] have studied the problem in These models have provided a good description of geometri-
mean-field theory and by numerical simulation. They con-cal and topological properties of fracture, leading to the in-
clude that a solid under stress is in a metastable state anection in this field of scaling concepf43]. Recently, qua-
when the external stress is raised beyond a critical valuesistatic lattice models have also been used to study
corresponding to the spinodal point, the system becomes uilynamical properties of fractufd4—17.
stable. The nature of the nucleation process in a stressed The breakdown of a disordered solid is preceded by in-
solid was studied by Golubovic and co-workd@ using tense precursors in the form of avalanches. It has been ex-
Monte Carlo simulations. Recently, in the framework of perimentally observed that the resporiaeoustic emission
elastic theory, it was showi0] that the point of zero exter- to an increasing external stress takes place in bursts distrib-
nal stress corresponds to the condensation point in gas-liquigted over a wide range of scales. Examples are found in the
first-order transitions. One of the ambitious goals of thesdracturing of wood[18], cellular glass[19], and concrete
and other studies is to formulate a statistical thermodynamicg20], in hydrogen precipitation21], in dislocation motion in
of fracture processes. ice crystals[22], and in volcanic activity{23]. These phe-
Most of the theoretical studies we have discussed dealomena are reminiscent of the Gutenberg-Richter law for
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earthquake statistidR4]. It is becoming apparent that ava- typical two-well structure. In the presence of an external
lanche response is the rule rather than the exception in drivemagnetic field, one of the wells is depressed with respect to
disordered systems. Other examples range from the motiothe other, which therefore represents the metastable state.
of domain walls in magnetéhe Barkhausen effeci25] and  The system must cross a free energy barrier to relax into the
flux lines in superconductof6], frictional sliding[27], to  stable phase. When the external field is increased, this nucle-
fluid flow in porous medig28] and the inflation of degassed ation barrier decreases, eventually vanishing at the spinodal.
lungs [29]. Therefore, understanding the general physicalJsing this formalism, it has been shown that the approach to
mechanisms of avalanche dynamics goes well beyond thine spinodal is characterized by scaling laws, analogous to
study of breakdown and fracture. critical phenomena. The magnetization or the order param-
In this paper, we numerically study the random fuseeter ¢ scales with the external field as
model[30-33 and a spring networf34]. The investigation
of these two models allows us to compare the behavior of a ¢— ps~(Hs—H)™, 1)

guasistatic scalar model with a more complex vectorial dy- h velv. th
namical model. We analyze the scaling close to the break/n€re ¢s andHs are, respectively, the order parameter and

down and we find that it is consistent with a mean-fielgthe field at the spinodal. This law implies a divergence of the
analysis. We show that avalanche behavior near the breaUasistatic susceptibility

down in disordered systems is analogous to the formation of deb

droplets observed close to a spinodal instability in first-order XY= d_N(HS_ H)~?, y=1/2. 2)
phase transitions. The system is driven by a slowly increas- H

ing external force through a complex energy landscape; it iﬁ- . .

. : : he fluctuations in the order parameter can be related to
not a”O\.NEd. to Jump over energy barriers by therma_ll aCtlva'suitably defined clusters WhOS% sizes turn out to be power
tion. This situation should correspond to the experiment reiaw distributed with an’ exponent=3/2, in mean-field
p.ort.ed in Ref[18]. Th_e intriguing consequence of this analy- eory. For finite-dimensional short—ra,nge models, this
sis is that the behavior of a disordered driven system at Zer@ean-;‘ield picture is expected to fail, since the syste’m will
temperature Is similar to what is expected from a th(f"rmallwucleate before reaching the limit of metastability. On the
driven homogeneous system close to a spinodal point. It i8 .

tempting to conclude that quenched disorder has an effe&ﬁgigrr:?endc;fn:ﬁ:rl](;gel_dr;)nehea\i/r:?érlggi):)%idzgéoitbﬁavsagzg;]tzﬁ_
similar to thermal fluctuations, although a discussion inP 9 9 '

terms of metastability and nucleation is not possible in the?;inza:gnvemg%d eﬂgIY]M'cl)'ﬂfli?n?trlgf Sé'ggilat'oigsaogh;hr?n;cl’lng'
first case. We will briefly discuss these analogies in the mag- 9 9 : Y y

netic context. Finally, it is interesting to remark that spinodalacst'vi?]fgarogg?egﬁgusshgjlztl:r:ir']sbbeegg}/:flotgbcsoérr\?esr’s?:gﬂr;[o
nucleation and first-order transitions have also been sudf SP P ) 9

gested to play an important role in the physics of frictionaloa"\rlsk(r:]%nslféegt vgltrghthgssecgl)}rj]ndt;(r;th|%?d§;2uncé(taat:§nbggn
sliding and earthquakd85]. Also for these systems thermal u wiedge, su Ing Vi y

disorder is expected to be irrelevant with respect to quenche(&bfr?rt\;ﬁg ";ngrmvsg(\:/alllsrlmrgtuﬁégn\?v.ith a thermally activated
inhomogeneities. pap y

The paper is organized as follows. In Sec. I, we brieﬂyfracture but rather with a disordered driven system. In this

review spinodal nucleation and we discuss the role o{ggg:gl‘ anroméif;t;)ngS?ar:ﬁ:?;);ncfllo?eoTlggg SV;]Ithn ?hgmdel
guenched disorder. In Sec. lll, we present a mean-field y prop y W o9 |

analysis of fracture. Section IV discusses the simulations fo?:ontext of magnetic hysteresis. The model in question is a

the random fuse model and Sec. V is devoted to molecul rlandom-field Ising modeiRFIM), driven at zero temperature

dynamics simulations of a spring network. In Sec. VI, W:by an increasing uniform magnetic field. Each spins

discuss the cluster structure of our models and draw anal(%‘-"‘kes the sign of the local force
gies with percolation and in Sec. VII, we compare the results

SoE
of our model with experiments and discuss some open ques- fi=— 5o E sj+hi+H, ©)
tions. i ]
serﬁesdh?r:tsg%ig]m of a subset of these resuits has been prS\/-here the sum runs over the neighboring sites, lznid the

random field at sité, which has a Gaussian distribution with
varianceR. When the external field is increased, some local
Il. SPINODAL NUCLEATION, THERMAL forces change sign and the spins flip along the directia of
FLUCTUATIONS, AND QUENCHED DISORDER in avalanches. For low values of the Strength of the disorder
R<R., there is a critical value of the field. for which the
Nucleation near a spinodal appears to be very differenystem undergoes a discréfizst-ordey transition involving
than classical nucleation and the classical theory is expectegfinite change in the order paramettite magnetization
to fail. Droplets appear to be fractal objects and the process |n mean-field theory, the approach to the instabikity is
of nucleation is due to the coalescence of these dropletgharacterized by the same scaling laws and exponents of
rather than the growth of a single ofig6]. The theoretical  spinodal nucleation, as reported in E¢®.and(2). Close to

description of homogeneous spinodal nucleation is based afe first-order transition, the avalanche size distribution is
the Landau-Ginzburg free energy of a spin system in thejescribed by a scaling form

presence of an external magnetic fi¢&]. When the tem-
perature is below the critical value, the free energy has the P(m)~s~"f(m(H.—H)"), (4)
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with 7=3/2 andx=1. It is worth noting that these scaling where $=3,0;/L?. We can express the energy as a sum
exponents coincide with the mean-field exponents for thever “spins” interacting with effective random fields,
distribution of droplets in homogeneous spinodal nucleation.

From these studies it appears that the behavior of thermally 1 12 )
activated homogeneous spinodal nucleation is similar to the Emr(! ,{U}):Ei aihi=3 EI i m_Di :
approach to the instability in disordered systems driven at ®)
zero temperature. However, one should bear in mind that for

a given realization of the disorder the dynamics is com-The value of¢p can be computed self-consistently as
pletely deterministic in the second case. Concepts such as
metastability and nucleating droplets are formally not de-
fined in this context.

H[LVG(Zé—1)]
J p(D)dD, 9

¢=P(h;<0)=1-
0

Ill. MEAN-FIELD THEORY wherep(D) is the distribution of failure thresholds. The so-
) ) ) . lution of this equation can be expressed in terms of the cur-
In this section we generalize the analysis of R&f.to  rent per unit lengttf=1/L. We can identifyf with the exter-
derive a simple mean-field theory for fracture. The models,; field andg with the order parameter.
we will analyze are defined on a two-dimensional lattice. \ye can show(see Appendix that under general condi-

Each bond of the lattice is supposed to obey the equations (ﬁfonSp in Eq. (9) has a solution fof < f, and, close td., ¢
linear elasticity, until it is stretched beyond a randomly cho-g.5es as

sen threshold, after which it breaks. In the electric case the

equations are scalar, each bond satisfies the Ohm law, and d— o~ (f— )12 (10)

the currents are computed numerically by solving the Kirch-

hoff equations with the appropriate boundary condition.  The mean-field theory we have presented is very similar to
To illustrate the mean-field theory we will consider for the fiber-bundle modelFBM) with global load sharing, an

simplicity the random fuse model. To every bonaf the  exactly solvable model for fracture which has been studied

lattice we associate a fuse of unit conductivity=1. An  extensively[41,47. In the FBM an external loafF, is ap-

external current or voltageV is then applied to the system plied to N parallel fibers, and equally shared among the un-

by imposing an external voltagé to two opposite edges of broken ones. This means that the force on each fiber is

the lattice. When the current in the bond exceeds a randomly

distributed threshold; the bond becomes an insulatar; fi=F/n, (12)
=0). The voltage dropsjV); for each bond are computed ) ] ]
by minimizing the total dissipated energy where n=N¢ is the number of unbroken fibers. A fiber

breaks when its force exceeds a quenched random threshold
1 D. One can write an equation for the density of unbroken
E({o})= > > ail(AV)2-D2]. (5)  fibers that has the form of Eq9), with the upper limit of
' integration replaced b¥#/(N¢). The FBM can be obtained

The dynamics of the model results from a double minimiza2> @ mean-field theory in the case of site damage, since in

tion process. The voltage dropa¥); are obtained by a tén(sd))c:s(,; the effective medium conductivity is given by

glrzbtilenglgmlszsg?g rcr)1fi;rrﬁi;:flgaﬁagﬁgo;ﬁevg;egﬁg %irst We can obtain the mean-field avalanche size distribution
. ) . . ’ from the exact results derived for the FBMZ2],

step is equivalent to solving the Kirchhoff equations for the

network, while the second step corresponds to breaking the

bonds for which the current overcomes the threshold. The P(m)~m~"f(m(f,—f)*), 7= 5 k=1 (12

external current is increased slowly until the lattice is no

longer conducting. This means that each time a bond ?S brcV\/herem is the number of bonds that break as a function of
ﬁe\r:v, \Eh(la Vo“ig{ﬁ andnghe tﬁ/uitrirents are recomputed with thﬁwe current. Equatiofil2) can also be obtained in the case of
ew values of the conductivities. - - bond damage using similar arguments.
To derive a mean-field theory, it is useful to recast the The average avalanche size) is proportional to the

dynamics of the model in terms of the externally applied.,, NN .
currentl. We can rewrite the energy of E¢p), in full gen- b?gzﬁggw?:“;ﬁ d¢/df [43], and therefore diverges at the

erality, as
2 (m~(fe—f)77, y=1/2. (13

_S 4D2
Siop 2 oo ®

1
E(l{oh)= 2 The exponents we have introduced satisfy the scaling rela-

tion «(2— 7)=1, which is consistent with the values re-
whereG({o}) is the total conductivity of the lattice and is a ported in Eq.(12) and Eq.(13). The mean-field analysis
complicated function of the local conductivities. We can es-indicates that the system is undergoing a first-order transition
timate G({o}) using the effective medium theorj40],  since the order parameter has a discontinuity and the conduc-
which in our case gives tivity at f. has a jump fronG(¢.) >0 to zero. The approach
to this transition is characterized by avalanches of increasing
G{o})=2¢—-1, (7) size, diverging at the transition.
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FIG. 1. Avalanches in the fuse model. As the current is in- FIG. 3. The avalanche size distribution in the fuse model for
creased the bonds break in avalanches of increasing size until thieo values of system size plotted in log-log scale. A line with the
final breakdown occurs. mean-field valuer’ =5/2 of the exponent is plotted for reference.

A similar behavior with the same scaling exponents is \ve simulate the random fuse modg80] on a tilted

observed in the mean-field theory of the driven RFIM ; ; o i ;
. square lattice, with periodic boundary conditions in the trans-
[38,39 for small disorder. In the RFIM, one observes also Qverse direction. As we discussed in Sec. [1l, the current in

second-order transition as the width of the disorder is Infeach bond is obtained solving Kirchhoff equations, which we

creased. A similar transition does not seem to be present i . . > ) .
our system, at least not in the mean-field treatment. It is als ° numer_|c_ally “S'”Qlf;‘ muIt|gr.|tﬂ4'4] rfalaxatlon a'go”‘hm.
interesting to note that the same scaling laws describe meté{‘f”h precision 62.10 .' The_ distribution of thresholds is
stable systems close to a spinodal point. The quasistatic suS?0Sen to be uniform in the intervel — A, 1+ A ] [45]. We

ceptibility diverges as in Eq13) and droplets are distributed MPOSe an external curreitthrough the lattice and we in-

according to Eq(12).

IV. SCALING BEFORE BREAKDOWN IN THE RANDOM

FUSE MODEL

crease it at an infinitesimal rate. When a bond fails, we re-
compute the currents to see if other failures occur. The pro-
cess is continued until a path of broken bonds spans the
lattice and no current flows anymore.

We determine the cluster size distributiafs,|), which

An important issue to address at this point is the validityis defined as the number of clusters formedsimeighboring
of mean-field results in the case of real low-dimensional sysbroken bonds when the applied currentlisThe moments
tems. It is known that scaling does not hold close to thg M,(1)=fs*n(s,1)dsis thekth moment of n(s,!) describe
first-order transition for short-ranged RFIM in dimensionsmuch of the physics associated with the breakdown process.
d=2,3[38,39. Similarly, spinodal singularities are observed we determinen(s,!) by averaging over the various thresh-
when interactions are |Ong ranﬂé?]. Elastic interactions are old distribution Configurations_ The first momem1(|) is
intrinsically long range, which could lead to mean-field be-the total number of broken bonds due to the curteamd is
havior even for low dimensions, as we will next show nu-tyerefore proportional te. According to our mean-field pic-

merically.

1.0

08 | =

0.0

eL=128 |

o L=64
oL=32

8y O o

0.0 05
In

c

ture, the averagém) of the quantitym=dM,(l)/d| should
then diverge close to the breakdown &s<1)~*2 In Fig. 1,

we plot the number of bond® that break for a given value

of the current, in a particular realization of the process. We
see that the breakdown is highly inhomogeneous with ava-
lanches of increasing amplitude. In order to test the scaling,
we plot in Fig. 2(m)~2 as a function of the reduced current
I/1., wherel is the average breakdown current, and we see
that the graph is linear.

We also measure the distribution of avalanche sizes, inte-
grating over all the values of the current. The mean-field
analysis predicts thaP(m,l)~m~*2f(m(1.—1)), which
yields an exponent’=5/2 when the distribution is inte-
grated over the current. In fact we see that our data are con-
sistent with this exponerjfFig. (3)]. We have also checked
that the cutoff of the distribution increases with the system

FIG. 2. The average avalanche size in the fuse model scale@ize. A similar result £=2.7) for smaller lattice sizesL(

with the mean-field exponenty& 1/2) as a function ot/l ., for
different values of the system site The linearity of the plot sup-

ports the validity of the mean-field calculations.

=40) was previously reported by Hansen and Hemé},

who also pointed out the similarity with the predictions of

the FBM.
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FIG. 4. The average avalanche size in the spring network scaled . o . .
with the mean-field exponenty& 1/2) as a function of the applied FIG. 5. Th? avalanche size d|str|but!ons n the_sprlng network
stresgF, for two different values of the system sike The linearity for_syste_ms with two v_alues of system size plotted in Iog-log scale.
of the plot supports the validity of the mean-field calculations. A line with the mean-field value’ =5/2 of the exponent is plotted

for reference.

V. SCALING IN THE FRACTURE OF A SPRING . .

NETWORK real time elapsed iatyAt. One way to speed up the relax-
ation process would be to choose a large valueAforHow-

The study of fractures in an elastic medium is carried outever, there is an upper limit to this value for the iteration
by molecular dynamic$MD) simulation on a lattice model process to remain numerically stable. This limit is propor-
with elastic restoring forces. Our model consists of antional to the convergence time for the fastest developing
LXL (L=20 and 50) square network with central and rota-components of the stress distribution, which is generally very
tionally invariant bond-bending forces. The potential energysmall in disordered systems. We chodse=0.01. In addi-
of the network ig34] tion, we add to the evolution a small viscous force to damp
out excessive oscillations. In the course of evolution, if any
springij stretches beyond its cutoff valug;;, the spring
snaps irreversibly angd;; for that spring is set to zero. We
increase the external foréeby small steps and at each step
where dr;; is the change in the length of the spring betweenwe compute the number of broken bonds, which constitute
the nearest neighbor sité$j) from its equilibrium value an avalanche. To average over disorder, the simulation is
(taken to be unity and &6, is the change in the angle repeated for 50 different configurations of threshold values
between the adjacent springsand jk from its equilibrium ) ) )
value 7/2 which is taken to ensure the square lattice struc- 1he fracture in the network takes place in a series of
ture of the lattice at equilibriumg;; =1 if the springij is bursts of bonc{spnn@ breaking processes. In such a burst,
present and is 0 otherwisa.andb are the force constants of bonds break from different parts of the network and the frac-
the central and the bond-bending force terms, respectivelyure grows. We keep track of the clusters formed by the
In terms of arbitrary length and time scalgsand t,, the connect_ed broken bon_ds which, when spanning the network,
equations of motion in dimensionless variables involve thef@uses its macroscopic breakdown. _
parameters;=at2/m and \,=bt2/mI2, wherem is the We study here the same quantity analyzed in the preced-
mass associated with the lattice sites. We chdogse be the N9 section, namely, the SUSC‘EB“b'“W and the avalanche dis-
lattice spacingmost naturally. The ratiox,/\;=b/al3 is triburtion. In Fig. 4, we plo(m) as a function (.)f the stress
then a characteristic of the system under consideration. \A/%nd we find the linearity as expected. The critical breaking
choose- =1 and\.=0.1. The small value of». much less stress=. can readily be found from the points of intersection.

1= 2—VU.l. 23 . . . .
than the value oh 4, allows the fracture to develop without Next, we consider the distributioR(m) of the value ofm
much deformation of the network. We start with all the Mt€grated over a”_t?,g values of up 1o Fc. We expect the
springs intact so thay;; =1 for all neighboringj’s and with behavior P(m) =m = n the mean-f|eld theory. .Flgure 5.
each spring we associate a random breaking thresbgld compares our simulation _results _W|th the mgan-ﬁeld predic-
chosen from a uniform distributioD < [0,2] tion. The data presented in the figure are binned, where for

We impose a constant external fonéeinn'the sites of the different neighboringn value_s, the correspond?r@{m) val-
boundary and the system is allowed to evolve dynamicallyues are combined in one bin, and the result is plotted as the

a b
V=35 2 (8r?gi+y 2 (863)°gigK. (19
2 ) ij glj 2 o) ijk gljg]k

using Verlet's algorithni34], arithmetic mean of the two extrerma values in the bin.
F(t+A) =21 () —F (t— At) +F,(At)2. (15) VI. CLUSTER ANALYSIS: NUCLEATION OR
PERCOLATION?
Here,F; is the forcelas determined from Eq14)] andﬁ(t) The avalanche size defined in the previous sections does

is the position vector of the siteat timet. The simulation not represent the geometric structure of the cracks, but only
involves discrete timé in steps ofAt. If the simulation runs  counts the number of bonds breaking at each time step. A
for n iterations, then the elapsed timetis nAt while the  geometrical characterization of the damage can be obtained
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FIG. 6. The average cluster size as a function of the current for
different system sizes. Note that the cluster size does not diverge.

by studying the cluster size defined by counting the number
of connected broken bonds.

In the fuse model, the average cluster sgeM,/M
increases with. However, by plottingS for different system
sizes, we observe that the cluster size is not divergig.

6). To clarify this point, we confirm the®(l.) does not show
scaling with the lattice size. We find similar results for the
spring network, where the cluster size distribution has an
exponential cutoff that does not change with the lattice size.
We also study the number of clusters=M, as a function

of the current and for different system sizZsse Fig. 7. We
observe thah. scales as
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FIG. 7. () The number of clusters as a function of the current in

the fuse model for different system sizé€b) The corresponding

n.=L2g(l/L), (16)
which is expected for a first-order transition. We obtain a
similar scaling plot for the spring netwofkee Fig. 8.

Next we study the behavior of the lattice conductivity in
the fuse model.
conductivity has a discrete jump at the breakdolfig.
9(a)]. We also plot the conductivity averaged over different

scaled plot.

order phase transition close to a spinodal-like instability. The
elastic state is considered to be metastable, as soon as a
nonzero stress is applied. Due to the presence of disorder, the
For a given realization of the disorder theystem evolves through a series of metastable states towards
the final instability. This occurs with the nucleation of cracks
growing up to a critical size, at which theycoalesceform-

realizations of the disorder and we observe a smooth cur/i&d the macroscopic crack. Contrary to percolation, in this

with a slope at the breakdown that becomes sharper as t
system size increas¢Big. 9b)]. In the spring network, we
calculate the lattice elasticity, which shows similar behav-
ior as a function of the applied stre€Sig. 10.

Two principal scenarios have been proposed to explain
the scaling behavior of avalanches prior to rupture. The first
scenario invokes a continuous phase transition with a diverg-
ing characteristic length47]. The various cracks inside the
lattice should grow until one of them finally rules over the
others, becoming the incipient spanning cluster. This is pre-
cisely what happens in percolation when the occupation
probability p is increased toward the percolation threshold
p.. If this scenario is true for fracture, we would expect the
cluster characteristic size to diverge, contrary to our results.
In the random fuse network a percolation transition is ex-
pected only in the limit of infinitely wide disorder distribu-
tions [48], when the strength of the disorder clearly domi-
nates over the interactions.

The second scenario, in favor of which we presented nu-

(@se there is no incipient spanning cluster prior to rupture.
What explains then the scaling in the avalanche statistics
and the susceptibility? We recall that elasfar electrig
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FIG. 8. The scaled number of clusters as a function of the stress
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clusters in a peculiar way, considering each site connected
with all the others within the range of interactiof37].
These fluctuations are therefore different from those encoun-
tered in a second-order phase transition.

The spinodal point is a quite peculiar critical point which,
rigorously speaking, exists only in mean-field theory, but can
be detected when long-range interactions are present. In this
respect, no scaling is observed in the avalanche distributions
when the stress transfer after breaking is local, such as in the
local load-sharing fiber bundle model studied in Refs.
[42,48.

VII. EXPERIMENTAL COMPARISON
AND OPEN PROBLEMS

The above results clarify the nature of the breakdown pro-
cess in the presence of quenched disorder. We have found
that the breakdown is preceded by avalanches distributed as
power laws. The scaling exponents are in quantitative agree-
ment with the prediction of mean-field calculations. We have
discussed that onlyglobally defined quantities such as
(m(f)) and P(m) display scaling, while locally defined
quantities, such aS, do not show any singular behavior. For
a second-order phase transition, we would expect local quan-
tities to show scaling. For instance, in percolation we have
S~(p—pe)~ %, where p is the concentration of broken
bonds. On the other hand, first-order transitions usually do
not show any precursor and scaling is not observed. An ex-
ception to this rule is represented by first-order transitions
close to a spinodal point, for which some global quantities

display scalind37]; we argue that this case is relevant to the

FIG. 9. (@) The conductivity as a function of the current for a behavior observed before breakdofde].

single realization of the disorder, for different system sizesThe The ob . h field ling i in th
conductivity as a function of/1. averaged over different realiza- eo Servathn that mean-field scaling Is present in t_ e
tions of the disorder. Note that the discrete jump, indicative of afra'Cture of two different network models suggests that this

first-order transition, is smoothed for small system sizes. behavior is rather robust and does not depend on the fine

details of the models, such as the tensorial structure of the
forces are long range. When nucleation occurs close to Kteractions, the dynamics, or the boundary conditions. A
spinodal instability—which is well defined only for mean- More stringent test of our conclusions should come from the
field or long-range interactions—one expects a divergenﬁ”alys's of expen_mental data. In particular, the experimental
susceptibility[5]. This is not naively related to the fluctua- S€tup discussed in ReffL8] resembles some of the features
tion of a geometrical quantities such as the crack size, whicRf 0ur model. An external pressure is slowly increased until
is not diverging at the spinodal. In order to describe geoth® material(wood or fiberglass breaks. In this process

metrically the susceptibility, it is necessary to define theacousti_c energy is released in_bursts, whose amplitude shows
a net increase as the material approaches the breakdown

point [18]. The integrated distribution of burst energiEs

was found to follow a power law with an exponent roughly
050 [ . - —oL=50 equal to—2, which must be compared te=5/2, if one
Te T soe L=20 assumes thahin our paper is proportional t& in Ref.[18].
0.40 e We see that there is a discrepancy in the results, although this
Toma may be due to the statistics. We have also tried to analyze the
Y o3 ! “\q 1 scaling of the average energy released at pred3ubait we
H g could not obtain a firm conclusion due to the large statistical
020 | N uncertainties. Interesting results have been recently obtained
5 kS in three-dimensional simulations of fuse netwofks§).
010 | L In mean-field theory, driven disordered systems behave
‘ | similarly to their homogeneous, thermally driven, counter-
000 - o i 01$5_ parts, if we compare the scaling of avalanches with that of

F : the droplets. This applies to the RFIN8,39, which shows

features similar to those of spinodal nucleatibh and to the
FIG. 10. The elasticity of the spring network as a function of thefracture models we have studied. However, one should be
applied stress. careful not to interpret these analogies too strictly, since in
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odal point, and nucleation are not well defined. In particularsupport from the EC Network under Contract No. ERBFM-

the identification of¢ andf with the order and control pa- RXCT980183. We thank G. Caldarelli, P. Cizeau, S. Cilib-

rameters is justified only in MF theory. In two dimensions, erto, A. Guarino, A. Hansen, H. J. Herrmann, W. Klein, A.

simple homogeneous scaling fails in the presence of disoPetri, S. Roux, and F. Sciortino for interesting discussions

der. The breakdown currehf has a logarithmic size depen- and useful remarks. We are particularly grateful to S. Cilib-

dence[31], erto and A. Guarino who kindly provided us with the data of

L their experiments.
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which cannot be interpreted in MF theory. A similar depen- We derive here the scaling law for the approach to the

dence is also present in the fraction of broken bond beforéstability in mean-field theory. We definé=I/L and

breakdowng, . While for finite systems the picture we have h(#)=+V¢(2¢—1) and we rewrite Eq(9) as

presented is completely consistent, it is not obvious how to h(8)

perform theL — o limit. In order to obtain intensive param- ¢=1—f p(D)dD. (A1)

eters in this limit one should rescdl@nd ¢ by an appropri- 0

ate logarithmic factor. This can be done implicitly analyzing

the data in terms of/f;, as in Ref.[18]. Finally, we note

that in most cases the final breakdown starts from existin

defects in the material. In our simulations, we restricted our d th

attention to the case in which these defects were smaller than dé = p(i/h(¢)) _ (A2)

the discretization unit. df 1—p(f/h(¢))fh’/h( p)?

In conclusion, we have shown that two different models . )

of breakdown and fracture share the same mean-field scaligghe?” the denominator is equal to zero, the system reaches

exponents approaching the rupture point. The behavior oghe |ntsFab|I|ty and the susceptibility diverges, which defines

served in these models is analogous to spinodal nucleation f€ critical valuesp; andfe,

thermally driven homogeneous systems. At the breakdown _ , 2_

point, the macroscopic quantitigglasticity, conductivity 1=p(fe/h(de)Teh’ (de)/n(de)"=0. (A3)

are discontinuous and the characteristic crack Sz#ays The Taylor expansion of EqA1) around (b..f.) yields

finite in the largel limit. In addition, the statistics of global

quantities(i.e., the number of broken bonddisplay clear Sp=¢— dc=p(fc/h(P))fch' (be) dd/h(pe)?

mean-field scaling in analogy with spinodal nucleation. The

direct application of these ideas to experiments still remains — 8t/h(¢c)]+Adg?+B5f 54, (A4)

an open question. where §f=(f—f,) and A,B are two constants. The term

Note adde_d in proomyalanches were studied in the frac- proportional tosé vanishes because of EGA3), leaving an
ture of a spring model similar to ouf$1]. We thank J. V. equation of the form

Andersen for pointing this out to us.

By taking the derivative ovefron both sides of the equation,
dve obtain for the susceptibility

S5t~ 82, (A5)
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