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In conducting ferromagnetic materials, a moving domain wall induces eddy currents in the sample, which
give rise to an effective retarding pressure on the domain wall. We show here that the pressure is not just
proportional to the instantaneous velocity of the wall, as often assumed in domain wall models, but depends on
the history of the motion. We calculate the retarding pressure by solving the Maxwell equations for the field
generated by the eddy currents and show how its effect can be accounted for by associating a negative effective
mass to the magnetic wall. We analyze the dependence of this effect on the sample geometry and discuss the
implications for the Barkhausen noise measurements.
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I. INTRODUCTION

Soft magnetic materials subject to a slowly changing ex-
ternal magnetic field, respond with a jerky motion of the
domain walls, known as the Barkhausen noise.1,2 Many uni-
versal properties of this noise have been identified and are
correctly reproduced by theoretical models, confirming that,
in analogy to critical phenomena, the statistical features of
the signal only depend on general properties of the physical
mechanism, which govern the magnetization reversal pro-
cess, while they are independent of the microscopic details
of the particular system.3–5

The average shape of the pulse, being a nonscalar quan-
tity, has been successfully identified as a powerful tool to
characterize the universal properties of crackling systems:
pulses of different durations, once properly rescaled, are ex-
pected to collapse onto a universal function.6 In the case of
the Barkhausen noise, pulses from experimental data do ap-
proximately collapse on the same curve;7,8 however, this
curve shows a clear leftward asymmetry, while models that
very accurately reproduce most of the other universal quan-
tities predict a symmetric shape.9

As shown in Ref. 10, the asymmetry in the Barkhausen
pulses is due to the noninstantaneous response of the eddy
current field to the domain wall displacement. The
Barkhausen noise models usually assume this response to be
instantaneous and thus do not capture this asymmetry. Since
eddy currents take a finite time to set up and also they persist
for a finite time after the corresponding wall displacement,
the pressure on the moving domain wall is not strictly pro-
portional to the instantaneous velocity of the wall but de-
pends on the history of the motion. The delay has a charac-
teristic time scale, and therefore, its effect is more evident on
avalanches of comparable duration, and disappears on very
large ones, where the separation of time scales is such that
the response of the field can be assumed to be instantaneous,
and strict universality is recovered. The first order correction
to the instantaneous response approximation can be ac-
counted for by associating a negative effective mass to the
wall in the equation of motion.10

In this paper, we report a detailed calculation of the re-
tarding pressure starting from the Maxwell equations and

obtain the negative effective mass as a first order correction
to the quasistatic approximation. Our approach is similar to
the one of Bishop.11 The resulting nonlocal damping was
previously employed in a domain wall dynamics model in
Ref. 10, where its effect on the Barkhausen pulse shape was
studied and compared with experimental data. Here, we ana-
lyze the role of sample geometry on the eddy current propa-
gation and provide expression for the damping term and the
effective mass as a function of the sample aspect ratio.

The paper is organized as follows. In Sec. II, we solve the
Maxwell equations for the eddy currents in a conducting
sample with a moving domain wall. In Sec. III, we compute
the resulting pressure on the domain wall. In Sec. IV, we
derive the first order correction to the pressure. In Sec. V, we
discuss the role of the sample geometry, and in Sec. VI, we
conclude. Finally, two Appendixes report the details of some
series summation used in the paper.

II. EDDY CURRENT FIELD FROM THE
MAXWELL EQUATIONS

Consider a sample with dimensions x� �−a /2,a /2�, y
� �−b /2,b /2�, and infinite in the z direction, divided in two
magnetic domains by a rigid domain wall on the yz plane,
moving from position x=0, as in Fig. 1. The displacement of
a magnetic wall in a conducting medium induces a flow of
eddy currents that generate a magnetic field, which, in the
geometry indicated in Fig. 1, is parallel to the z axis,

He
� = He�x,y,t�ẑ . �1�

The magnetic field obeys the Maxwell equation,
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FIG. 1. Horizontal arrows indicate the directions of the magne-
tization in the two domains. The black vertical arrow indicates the
direction of motion of the wall.
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�2He = ��tHe, �2�

with �=��, where � and � are the electric conductivity and
the magnetic permeability of the medium.12 In Eq. �2�, the
displacement currents are neglected with respect to the
Ohmic currents. This equation is usually solved in the qua-
sistatic approximation, where � is negligible within domains,
and the equation reduces to �2He=0. Eq. �2� is a diffusion
equation: there is a finite time delay between the wall dis-
placement and the establishment of the eddy currents. Given
that the typical time scale for diffusion is proportional to �,
the quasistatic approximation �=0 corresponds to assuming
an instantaneous response of the field.

To take into account dynamical effects from eddy currents
in the domain wall propagation, we need to solve Eq. �2�,
with the appropriate boundary condition He=0 on the sample
surface. The discontinuity across the wall is regulated by
the Faraday condition �xHe�0+,y , t�−�xHe�0−,y , t�=2�Iv�t�,
where I is the saturation magnetization and v�t� is the veloc-
ity of the wall.

Let us expand He in its Fourier components,

He�x,y,t� =
1

�2�
�

−�

�

d�F�x,y,��ei�t. �3�

Each component has to satisfy

�F�x,y,�� = r2F�x,y,�� , �4�

with r2= i��. The magnetic field has to be zero on the sample
boundary, which implies the conditions F�x , ±b /2,��
=F�±a /2,y ,��=0. Moreover, the Faraday condition around
the wall imposes �xF�0+,y ,��−�xF�0−,y ,��=2�Iv̂���,
where v̂ is the Fourier transform of the velocity of the wall
v�t�. The solution is of the form

F�x,y,�� = �
n=0

�

An�x,��cos��ny� , �5�

where An satisfies

�x
2An�x,�� = �n

2An�x,�� , �6�

with �n
2=�2+r2, to be solved separately for x	0 and x
0.

The condition on the sample boundary in the y direction
implies cos�±b /2�n�=0 which fixes �n= �2n+1�� /b. The
condition on the other boundary is satisfied by choosing

An�x,�� = Cn���sinh��n��x� − a/2�� , �7�

so that

F�x,y,�� = �
n=0

�

Cn���sinh��n�����x� − a/2��cos��ny� . �8�

The functions Cn��� are fixed by the Faraday condition,

�xF�0+,y,�� = − �xF�0−,y,��

= �
n=0

�

Cn����n���cosh��n���a/2�cos��ny�

= �Iv̂��� . �9�

Multiplying by cos��my�, integrating in �−b /2,b /2�, and
using the orthogonality relations 	−b/2

b/2 dy cos��ny�cos��my�
=�n,mb /2 and 	−b/2

b/2 dy cos��my�= �−1�m2 /�m, we get

Cn��� = �− 1�n4�I

b

1

�n�n���cosh��n���a/2�
v̂��� , �10�

so that finally,

F�x,y,�� =
4�I

b
�
n=0

�

�− 1�n sinh��n�����x� − a/2��
�n�n���cosh��n���a/2�

�cos��ny�v̂��� . �11�

In the next section, we will need the value of the field at
x=0, where F simplifies to

F�0,y,�� =
4�I

b
�
n=0

�

�− 1�n tanh��n���a/2�
�n�n���

cos��ny�v̂��� .

�12�

III. EDDY CURRENT PRESSURE ON THE WALL

To understand how the eddy field affects the motion of the
domain wall, we recall that the equation of motion of the
wall is obtained by balancing the pressure P due to the eddy
field with the total pressure given by the effective force act-
ing on the wall. The equation can be written as

P = Pext + Pdem + Pp, �13�

where Pext=2IHext is the pressure due to the external field
Hext, Pdem=−2Ikx takes into account the stray contribution of
the demagnetizing field, and k takes into account the sample
geometry, and Pp=2IHp is a random contribution of local
origin, with Hp given by a random Brownian process in
space.3 In the approximation of an instantaneous response of
the field, the eddy pressure is proportional to the velocity of
the wall, and the resulting motion is overdamped. We now
calculate the left hand side of Eq. �13� taking into account
the field relaxation.

Once the solution of the Maxwell equation with the ap-
propriate boundary condition is given, the average eddy cur-
rent pressure on the wall is obtained by integrating the mag-
netic field over y at the wall position x=0,

P�t� =
2I

b
�

−b/2

b/2

dyHe�0,y,t�

=
2I

b

1
�2�

�
−�

�

d�ei�t�
−b/2

b/2

dyF��0,y� , �14�

or, in terms of the Fourier transform,

P̂��� = − v̂��� f̂��� , �15�

with
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f̂��� =
16I2�

b2 �
n=0

�
tanh��n���a/2�

�n
2�n���

. �16�

In real space, the pressure at time t is given by a convolution
of velocities of the wall at all times prior to t with the re-
sponse function f ,

P�t� =
1

�2�
�

−�

�

dsv�t − s�f�s� . �17�

To simplify the � dependence in Eq. �16�, we use the relation

tanh�z� = 8z�
k=0

�
1

�2�2k + 1�2 + 4z2 , �18�

with z=�n���a /2, which gives

f̂��� =
64aI2�

b2 �
n,k=0

�
1

�n
2�b2�k

2 + a2�n
2����

. �19�

Replacing �n and �n with their expressions, we get

f̂��� =
64I2�

ab2�2 �
n,k=1

�
1

n2�b�k2�a + n2�b + i��
, �20�

where �̄ indicates a summation over odd numbers only,
and �a=a

−1=�2 /�a2 and �b=b
−1=�2 /�b2. Given that

1 / ��0+ i�� has �2� exp�−�0t���t� as inverse Fourier trans-
form �where ��t� is the Heaviside theta function�, it is easy to
obtain from Eq. �20� the expression for f in real space by
antitransforming term to term in the double sum to get

f�t� = �2�
64I2�

ab2�2 �
n,k=1

�
1

n2�b
e−�k,nt��t� , �21�

where �k,n=k,n
−1 =k2�a+n2�b. The response function results

to be the sum of simple exponential relaxations, with differ-
ent relaxation times. The largest and therefore most relevant
relaxation time is 0,0= ��

�2 � 1
a2 + 1

b2 �−1.
Form �21� of the response function gives, through convo-

lution �14�, the explicit solution for the retarded pressure on
the wall.

IV. FIRST ORDER CORRECTION: DAMPING
COEFFICIENT AND NEGATIVE EFFECTIVE MASS

Given the full solution of the response function, we now
want to calculate the first order correction to the quasistatic
approximation �=0 in the retarded pressure. In order to do
this, let us replace expression �21� in convolution �14� and
exchange the sum with the integral,

P�t� =
64I2�

ab2�2 �
n,k=1

�
1

n2�b
�

0

�

dsv�t − s�e−�k,ns, �22�

where the Heaviside function was eliminated by restricting
the domain of integration. For small relaxation times
�note that k,n
0,0 for every k and n�, the exponential func-
tions in the integral decay very fast around s=0, so that the

velocities that sensibly contribute to the convolutions are
only those at time very close to t. We may thus expand
v�t−s�
v�t�−sv��t� around s= t and perform the integrals.
The term proportional to v�t� corresponds the usual instanta-
neous contribution, while the term proportional to v��t� gives
rise to the first order correction to the quasi static approxi-
mation,

P�t� 

64I2�

ab2�2 �
n,k=1

�
1

n2�b
�v�t�

�k,n
−

v��t�
�k,n

2 � . �23�

Replacing the frequencies with their expression,

P�t� 

64I2�

�4

b2

a
�v�t��1�b/a� − v��t�b�2�b/a�� , �24�

where �1���= �̄n,k
1
n2

1
n2+�2k2 and �2���= �̄n,k

1
n2

1
�n2+�2k2�2 . Equa-

tion �24� allows us to identify a damping coefficient,

� =
64I2�b2

a�4 �1�b/a� , �25�

and an effective mass per unit wall area,

M = −
64I2��b4

a�6 �2�b/a� , �26�

which turns out to be negative. Moreover, a characteristic
time  of order � can be identified as the ratio between mass
and damping,

 = �M�/� = b
�2�b/a�
�1�b/a�

. �27�

A similar calculation to get the damping coefficient and
the effective mass may be carried out in frequency space.
From Eq. �20�, which gives the Fourier transform of the full
response function, we can separate the real and the imaginary
parts to get

f̂��� =
64I2�

ab2�2 �
n,k=1

�
k2�a + n2�b − i�

n2�b��k2�a + n2�b�2 + �2�
, �28�

which allows us, by writing f̂���=����− i�M, to formally
identify a frequency dependent damping coefficient,

���� =
64I2�b2

a�4 �
n,k=1

�
k2�a/b�2 + n2

n2�k2�a/b�2 + n2�2 + ��/�b�2�
,

�29�

and an effective mass,

M��� = −
64I2��b4

a�6 �
n,k=1

�
1

n2�k2�a/b�2 + n2�2 + ��/�b�2�
.

�30�

Expanding to the first order in �,

f̂��� 

64I2�b2

a�4 �1�b/a� − i�
64I2��b4

a�6 �2�b/a� , �31�

we recover � and M as in Eqs. �25� and �26�.
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Let us comment on the relevance of the eddy inertial term
with respect to the usual term associated with the Döring
mass MD. The dynamics associated to the Döring mass MD is
much faster than the one reported here, as it is a gyroscopic
precessional effect. The corresponding mass, for a typical
magnetic ribbon, is thus about 4 orders of magnitudes
smaller than the eddy mass M. For the case of a magnetic
ribbon with a thickness of around 10 �m, the eddy current
mass is of order M �10−5 kg / m2, while the Döring mass is
of order MD�10−9 kg /m2. However, since M depends on
the third power of thickness �see the next section�, we can
estimate that the two masses become comparable in samples
1 or 2 orders of magnitude thinner, which is in the case of
thick films.

V. DEPENDENCE OF DAMPING AND MASS ON THE
GEOMETRY OF THE SAMPLE

Equations �26�, �25�, and �27� give the expression correct
to the first order in � of damping coefficient, effective mass,
and characteristic time in a general geometry, defined by the
parameters a and b. The series �1 and �2 can be summed up
for particular geometries. The calculations are reported in the
Appendixes.

For a slab with a�b,

�1�b/a → 0� 

a

b

�

4
�3, �2�b/a → 0� 


a

b

�

8
�5, �32�

where �n= �̄kk
−n, with �3=1.051 79. . . and �5=1.004 52. . .,

so that

� = I2�
16�3

�3 b, M = − I2��
8�5

�5 b3,  = �
�5

2�2�3
b2.

�33�

For a slab with a�b,

�1�b/a → �� 

�4

64

a2

b2 , �2�b/a → �� 

�6

768

a4

b4 , �34�

so that

� = I2�a, M = − I2��
a3

12
,  = �

a2

12
. �35�

For a square rod with a=b,

�1�1� =
�4

128
, �2�1� 
 0.264 ± 0.001, �36�

so that

� = I2�
b

2
, M 
 − I2��0.0175b3,  
 �0.0351b2.

�37�

The results are summarized in Table I.
The dependence on a �b� correctly disappears in the limit

a→� �b→��. The physical quantities �, M, and  all in-
crease with the overall sample size. For example, for a

sample of a given thickness a, both damping coefficient and
effective mass increase with b and b3, respectively. However,
as soon as b becomes larger than a, they saturate to a value
proportional to a and a3, respectively. Since the mass in-
creases faster than the damping with b, the characteristic
time also increases with b and saturates to a value propor-
tional to a2. A similar behavior is observed by varying a at
fixed b, although the role of the two dimensions transverse
and parallel to the wall is not symmetric. Essentially, the
dependence of �, M, and  on the geometry of the sample is
dominated by the smaller sample dimension between a and
b. Thus, the relevance of the eddy current dynamic effect is
controlled by the smaller sample dimension: the thinner the
sample, the smaller the effect, while the rest of the geometry
does not play any relevant role. The characteristic time in �
units is approximately equal to  /�
0.083a2 when a
b,
 /�
0.048b2 when b
a, and has its minimum  /�

0.035b2 for a square rod. In all cases, it stays between 3%
and 10% of the squared relevant sample size.

Figures 2–4 show the behavior of �, M, and  both as a
function of parallel dimension b, for a=1, and of the trans-
verse dimension a, for b=1. The straight lines are fits with
the asymptotic behaviors calculated for the large a and b
limits.

TABLE I. Values of �, M, and  for various geometries. x de-
notes the smaller dimension between a and b.

a�b a�b a=b

� / �I2�x� 0.54 1 0.5

M / �I2��x3� 0.026 0.083 0.0175

 / ��x2� 0.048 0.083 0.035
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FIG. 2. �Color online� Log-log plot of the damping coefficient �
in I2� units as a function of b for a=1 �black line� and as a function
of a for b=1 �red �dark gray� line�. The fits correspond to the
analytic calculation.

COLAIORI, DURIN, AND ZAPPERI PHYSICAL REVIEW B 76, 224416 �2007�

224416-4



VI. COMMENTS AND CONCLUSIONS

The asymmetry in the Barkhausen pulses is due to the
noninstantaneous response of the field to the domain wall
displacement. Most treatments of the Barkhausen noise as-
sume the eddy current drag on the magnetic domain wall to

be instantaneous, which corresponds to assuming �=��=0
within the magnetic domains. However, eddy currents take a
finite time to set up after the magnetic reversal, and persist
for a finite time after the corresponding wall displacement.
This time delay causes the eddy pressure on the wall at a
given time t not to be strictly proportional to the instanta-
neous velocity of the wall but to depend on a weighted av-
erage of velocities of the wall up to time t. This quasi-inertial
effect is responsible for the asymmetry in the pulse shape
observed in the Barkhausen experiments. The delay has a
characteristic timescale , and therefore, its effect is more
severe on avalanches of comparable duration. For very long
avalanches, the separation of time scales is such that the
response of the field can be assumed to be instantaneous;
therefore, the asymmetry disappears, and strict universality is
recovered.

Starting from the full Maxwell equation, which includes
the dynamic eddy current effects, we calculate the retarded
pressure on the wall. The first order correction to the quasi-
static ��=0� solution leads us to identify a damping coeffi-
cient, which survives to the �→0 limit and coincides with
the one calculated assuming an instantaneous response, and
an effective mass, which vanishes in the �→0 limit. A damp-
ing coefficient and an effective mass can be formally defined
beyond the first order approximation; however, they both re-
sult to be frequency dependent. Damping coefficient, effec-
tive mass, and characteristic time depend on the sample ge-
ometry; however, it turns out that the only geometrical
parameter that significantly affects them is the smaller
sample dimension.

The effective mass results to be negative at all frequen-
cies. The leftward pulse asymmetry observed in the
Barkhausen experiments is indeed consistent with a negative
effective mass: the avalanche starts fast and end slowly,
which is exactly the opposite of what one would expect from
standard inertia. This may be understood by observing that
the retarded pressure at time t is proportional to an average
of previous velocities of the wall up to time t. When the wall
is accelerating, the effective average velocity is smaller than
the instantaneous one, thus, the wall experiences less retar-
dation than it would if it was moving at constant velocity,
and the drag �v has to be corrected with a negative term
Mdv /dt to account for this. The opposite is true when the
wall decelerates. However, to understand the physical mean-
ing of the negative mass, one has always to keep in mind that
the inertial term has been introduced as a convenient way to
account, to the first order, for the history dependent damping
on the wall. Therefore, it cannot describe, for example, the
very short time dynamics of a wall starting to move from
rest: in this case, a negative mass would cause the wall to
move backward. However, since when the wall starts to
move, there is no previous history of motion, both eddy
damping and eddy inertial terms are zero, and the short time
dynamics is governed instead by the positive Döring mass.

APPENDIX A: SUM OF THE SERIES �1„�… FOR �=1 AND
IN THE LIMIT �\�, �\0

We here calculate the sum of the series,

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a,b

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

|M
|/

(I
2 σε

) 8 λ5 /π5
b

3

1/12

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
310

-10

10
-8

10
-6

10
-4

10
-2

10
0

|M
|/

(I
2 σε

)

1/12 a
3

8 λ5 /π5

a=1

b=1

FIG. 3. �Color online� Log-log plot of the absolute value of the
effective mass M in I2�� units as a function of b for a=1 �black
line� and as a function of a for b=1 �red �dark gray� line�. The fits
correspond to the analytic calculation.
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in � units as a function of b for a=1 �black line� and as a function
of a for b=1 �red �dark gray� line�. The fits correspond to the
analytic calculation.
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�1��� = �
n,k=1

�
1

n2

1

n2 + �2k2 , �A1�

for some specific values of �. The value of �1 for �=1 can
be obtained by writing a closed equation for �1�1� as fol-
lows:

�
n,k=1

�
1

n2

1

n2 + k2 = �
n,k=1

� � 1

n2 −
1

n2 + k2� 1

k2

= �
n,k=1

�
1

n2

1

k2 − �
n,k=1

�
1

k2

1

n2 + k2 , �A2�

which gives

2 �
n,k=1

�
1

n2

1

n2 + k2 = � �
n,k=1

�
1

k2�2

= ��2

8
�2

, �A3�

so that

�1�1� = �4/128. �A4�

To calculate �1��� in the limit �→0, we use Eq. �18� with
z=n� /2� to write

�
n,k=1

�
1

n2

1

n2 + �2k2 =
�

4�
�
n=1

�
tanh�n�/2��

n3 , �A5�

which, in the limit �→0, gives

�1�� → 0� 

�

4�
�3. �A6�

In the opposite limit �→�, using again Eq. �A5� and the

sum of �n= �̄kk
−2=�2 /8, we get

�1�� → 0� 

�4

64�2 . �A7�

APPENDIX B: SUM OF THE SERIES �2„�… IN THE LIMIT
�\�, �\0

We here calculate the sum of the series,

�2��� = �
n,k=1

�
1

n2� 1

n2 + �2k2�2

, �B1�

for some specific values of �. To calculate �1��� in the limit
�→0, let us write �2 as

�2��� = lim
�→0

1

�
�

n,k=1

�
1

n2� 1

n2 + �2k2 −
1

n2 + �2k2 + �
� ,

�B2�

and then use Eq. �18� in both terms with z=n� /2� and
z=�n2+�� /2�, respectively,

�2��� = lim
�→0

1

�
�

n

�
1

n2

�

4�
� tanh��n/2��

n

−
tanh���n2 + �/2��

�n2 + �
� . �B3�

Expanding for small � and taking the limit, one gets

�2��� =
�

8�
�

n

�
tanh��n/2��

n5 −
�2

16�2�
n

�
1 − tanh2��n/2��

n4 .

�B4�

Now, we can finally take the limit �→0 to get

�2�� → 0� 

�

8�
�

n

�
1

n5 =
��5

8�
. �B5�

The limit �→� can also be obtained from Eq. �B4� by using
the expansion tanh�x�
x−x3 /3 for small arguments, which
gives

�2�� → �� 

�

8�
�

n

� � �

2�

1

n4 −
�3

3�8��3

1

n2�
−

�2

16�2�
n

� � 1

n4 −
�2

�2��2

1

n2� =
�6

768�4 . �B6�
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the medium. In principle, one should use the permeability of the
medium where eddy currents occur; therefore, neither the
vacuum permeability nor the reversible permeability is appropri-
ate, since the process we deal with involves a real soft magnet
during the irreversible domain wall displacement and far from
saturation. In this case, the value which better represents the

permeability of the medium is rather the average linear perme-
ability of the hysteresis loop around the coercive field, which
indeed properly takes into account the multidomain configura-
tion, the intrinsic damping, and the average effect of the eddy
currents.
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