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We analyze the effect of disorder and notches on crack roughness in two dimensions. Our simulation results
based on large system sizes and extensive statistical sampling indicate that the crack surface exhibits a
universal local roughness of �loc=0.71 and is independent of the initial notch size and disorder in breaking
thresholds. The global roughness exponent scales as �=0.87 and is also independent of material disorder.
Furthermore, we note that the statistical distribution of crack profile height fluctuations is also independent of
material disorder and is described by a Gaussian distribution, albeit deviations are observed in the tails.
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I. INTRODUCTION

The statistical properties of fracture in disordered media
are interesting for theoretical reasons and practical applica-
tions �1,2�. An important theoretical issue is represented by
the scaling of crack surfaces. Experiments on several mate-
rials under different loading conditions have shown that the
fracture surface is self-affine �3� and, in three dimensions,
the out-of-plane roughness exponent displays a universal
value of ��0.8 irrespective of the material studied �4�. The
scaling regime is sometimes quite impressive, spanning five
decades in metallic alloys �4�. In particular, experiments
have been done in metals �5�, glass �6�, rocks �7�, and ce-
ramics �8�, covering both ductile and brittle materials. Later
on, a smaller exponent �=0.4–0.6 was observed at smaller
length scales. It was conjectured that crack roughness dis-
plays a universal value of ��0.8 only at larger scales and at
higher crack speeds, whereas another roughness exponent in
the range of 0.4–0.6 is observed at smaller length scales
under quasistatic or slow crack propagation �4�. It was re-
cently shown that the short-scale value is not present in silica
glass, even when cracks move at extremely low velocities
�9�. In addition, in sandstone and glass ceramics, one only
measures a value of 0.45 even at high velocities �10–12�. The
current interpretation associates the value ��0.8 with rup-
ture processes occurring inside the fracture process zone
�FPZ�, where elastic interactions would be screened, and the
value ��0.45 with large-scale elastic fracture �9,13�. In two
dimensions, the available experimental results, mainly ob-
tained for paper samples, indicate a roughness exponent in
the range ��0.6–0.7 �14–17�.

In this work, we investigate the influence of fracture pro-
cess zone on crack roughness in two dimensions through two
key variables: material disorder, expressed as a distribution
in breaking thresholds, and preexisting notches. Material dis-

order and the size of preexisting notches play a significant
role in determining the size of the FPZ ahead of the crack tip.
When the disorder is weak, the size of the FPZ is small and
the material fracture response is dictated by the stress con-
centrations around the notches. On the other hand, when the
disorder is strong, a relatively large fracture process zone is
generated ahead of the crack tips. Similarly, the influence of
preexisting notches on the FPZ in the presence of disorder is
nontrivial. This is especially the case when the initial notch
size is small and disorder is sufficiently strong to allow for
significant damage accumulation. As the damage starts
evolving, multiple cracks develop, which in turn influence
the stress concentration around the initial preexisting notch.
Even in the simplest case of noninteracting cracks, the stress
fields become additive and hence the proportionality with
respect to inverse of square root of the initial notch size is
lost. The presence of interacting cracks further complicates
this scenario and the stress concentration around notches de-
pends in a nontrivial fashion on the initial notch size. For
large notches, the effect of disorder should be weaker since
the fracture process is dominated by a single crack.

The question we would like to address is how the rough-
ness of the fracture surfaces depends on the material disorder
and the relative sizes of the preexisting notches, given their
influence on the fracture process zone. Studies on the ran-
dom fuse model with uniform and power law disorder have
indicated that spatial correlations in the damage accumulated
prior to the peak load �the maximum load before catastrophic
failure� are negligible, and that the damage is accumulated
more or less uniformly up to the peak load �18�. This sug-
gests that the origin of self-affine roughness in the random
fuse model should not depend on whether there is strong or
weak disorder, since the spatial correlations are built in the
system only at the final stage of macroscopic failure. Earlier
studies that investigated the effect of disorder on crack
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roughness are controversial: based on two-dimensional dis-
ordered beam lattice simulations, Ref. �19� suggested a uni-
versal roughness exponent of �0.86, whereas using two-
dimensional disordered fuse lattice simulations, Ref. �20�
argued against the universality of the roughness exponent.
Clearly, the situation warrants further investigation espe-
cially in light of the role played by the FPZ in the current
interpretation for different values of the roughness expo-
nents.

II. MODEL

In this paper, we study the effect of disorder and notches
on the crack roughness, by numerical simulations of the two-
dimensional random fuse model �RFM�, where a lattice of
fuses with random threshold is subject to an increasing ex-
ternal voltage �21,22�. The results show that the roughness
exponent does not depend on the breaking threshold’s disor-
der strength or on the presence of a notch. We consider a
triangular lattice of linear size L with a central notch of
length a0. All of the lattice bonds have the same conduc-
tance, but the bond breaking thresholds t are randomly dis-
tributed based on the threshold probability distribution p�t�.
The burning of a fuse occurs irreversibly, whenever the elec-
trical current in the fuse exceeds the breaking threshold cur-
rent value t of the fuse. Periodic boundary conditions are
imposed in the horizontal directions �x direction� to simulate
an infinite system, and a constant voltage difference V is
applied between the top and the bottom of the lattice system
bus bars.

A power-law threshold distribution p�t� is used by assign-
ing t=XD, where X� �0,1� is a uniform random variable
with density pX�X�=1 and D represents a quantitative mea-
sure of disorder. The larger D is, the stronger the disorder.
This results in t values between 0 and 1, with a cumulative
distribution P�t�= t1/D. The average breaking threshold is
�t�=1/ �D+1�, and the probability that a fuse will have a
breaking threshold less than the average breaking threshold
�t� is P��t��= �1/ �D+1��1/D. That is, the larger D is, the
smaller the average breaking threshold and the larger the
probability that a randomly chosen bond will have breaking
threshold smaller than the average breaking threshold.

Numerically, a unit voltage difference, V=1, is set be-
tween the bus bars �in the y direction�, and the Kirchhoff
equations are solved to determine the current flowing in each
of the fuses. Subsequently, for each fuse j, the ratio between
the current ij and the breaking threshold tj is evaluated, and
the bond jc having the largest value, maxj�ij / tj�, is irrevers-
ibly removed �burnt�. The current is redistributed instanta-
neously after a fuse is burnt, implying that the current relax-
ation in the lattice system is much faster than the breaking of
a fuse. Each time a fuse is burnt, it is necessary to recalculate
the current redistribution in the lattice to determine the sub-
sequent breaking of a bond. The process of breaking bonds,
one at a time, is repeated until the lattice system falls apart.

Using the algorithm proposed in Ref. �23�, we have
performed numerical simulation of fracture up to system
sizes L=320. Our simulations cover an extensive parametric
space of �L, D, and a0� given by L= �64,128,192,256,320	;

D= �0.3,0.4,0.5,0.6,0.75,1.0	; and a0 /L= �1/32,1 /16,
3 /32,1 /8 ,3 /16,1 /4 ,5 /16,3 /8	. A minimum of 200 realiza-
tions has been performed for each case, but for many cases
2000 realizations have been used to reduce the statistical
error.

III. CRACK ROUGHNESS

Once the sample has failed, we identify the final crack,
which typically displays dangling ends and overhangs �see
Fig. 1�. We remove them and obtain a single-valued crack
line hx, where the values of x� �0,L�. For self-affine cracks,
the local width w�l�
��x�hx− �1/ l��XhX�2�1/2, where the
sums are restricted to regions of length l and the average is
over different realizations, scales as w�l�� l� for l�L and
saturates to a value W=w�L��L� corresponding to the glo-

bal width. The power spectrum S�k�
�ĥkĥ−k� /L, where ĥk


�xhx exp i�2�xk /L�, decays as S�k��k−�2�+1�. When
anomalous scaling is present �24–26�, the exponent describ-
ing the system size dependence of the surface differs from
the local exponent measured for a fixed system size L.
In particular, the local width scales as w������locL�−�loc, so
that the global roughness W scales as L� with ���loc.
Consequently, the power spectrum scales as S�k�
�k−�2�loc+1�L2��−�loc�.

In the following we investigate the influence of disorder
D and initial notch size a0 on crack roughness. Figure 2�a�
presents the scaling of local and global crack widths in sys-
tems with different disorder values and an initial relative
notch size of a0 /L=1/16. The slopes of the curves presented
in Fig. 2�a� suggest that the local roughness exponent �loc
=0.71 and is independent of the disorder. The global rough-
ness exponent is estimated to be �=0.87, and differs consid-
erably from the local roughness exponent �loc. The collapse
of the data in Fig. 2�b� clearly demonstrates that crack widths
follow an anomalous scaling law. The inset in Fig. 2�b� re-
ports the data collapse of the power spectra based on anoma-
lous scaling for different disorder values. This collapse of the
data once again suggests that local roughness is independent
of disorder. A fit of the power-law decay of the spectrum
yields a local roughness exponent of �loc=0.74. This result is
in close agreement with the real space estimate, and we can
attribute the differences to the bias associated with the meth-
ods employed �27�.

FIG. 1. �Color online� A typical final crack in a system of size
L�L with L=320 and initial notch size a0=80. Note that the crack
shows dangling ends and overhangs, which are removed to obtain a
single-valued crack line. The initial central notch is not considered
in the roughness calculations.
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The influence of initial notch size on crack roughness is
presented in Fig. 3�a�. The curves presented in Fig. 3�a� rep-
resent the scaling of local and global widths for various
notch sizes a0. Once again, the local roughness exponent is
estimated to be �loc=0.71 and is independent of the initial
notch size, whereas the global roughness exponent �=0.87.
Figure 3�b� presents the data collapse of crack widths based
on the anomalous scaling law, which once again confirms
that crack roughness follows anomalous scaling. The col-
lapse of the power spectra in the inset of Fig. 3�b� for differ-
ent notch sizes confirms that the local roughness is indepen-

dent of the initial notch size. A fit of the power-law decay of
the spectrum yields a local roughness exponent value of
�loc=0.77. The close agreement of these results with the
�loc=0.72 obtained for the unnotched, strong disorder case
�28� indicates that the crack roughness is universal and is
independent of disorder and initial notch size. The global
crack width W, however, scales as W
���hb−hb�2��1/2�L�

with �=0.87±0.03, and is also independent of disorder and
crack size.

The scaling properties of the crack profiles h�x� can also
be studied using the probability density distribution p��h����
of the height differences �h���= �h�x+��−h�x�� of the crack
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FIG. 2. �Color online� �a� Scaling of local and global widths
w�l� and W of the crack for different system sizes L
= �64,128,256,320	, disorder values D, and a fixed a0 /L=1/16
value �top�. The local crack width exponent �loc=0.71 is indepen-
dent of disorder and differs considerably from the global crack
width exponent �=0.87. �b� Collapse of the crack width data using
the anomalous scaling law �bottom�. Lc= �L−a0� is the effective
length of the crack profile. Collapse of the data for a given disorder
value implies that local and global roughness exponents are inde-
pendent of disorder. The inset shows collapse of the power spec-
trum S�k� using the anomalous scaling law with �loc=0.71 and
�=0.87. The slope in the inset defines the local exponent via
−�2�loc+1�=−2.48. �a� and �b� present a total of 20 data sets.
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FIG. 3. �Color online� �a� Scaling of local and global widths
w�l� and W of the crack for different system sizes L
= �64,128,256,320	, notch sizes a0 /L= �1/32,1 /16,3 /32,1 /8 ,
3 /16,1 /4 ,5 /16,3 /8	, and a constant disorder of D=0.6 �top�.
Once again, the local crack width exponent �loc=0.71 is indepen-
dent of notch size a0 and differs considerably from the global crack
width exponent �=0.87. �b� Collapse of the crack width data using
the anomalous scaling law �bottom�. Lc= �L−a0� is the effective
length of the crack profile. The inset shows collapse of the power
spectrum S�k� using the anomalous scaling law with �loc=0.71 and
�=0.87. The slope in the inset defines the local exponent via
−�2�loc+1�=−2.53. �a� and �b� present a total of 32 data sets.
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profile between any two points on the reference line �x axis�
separated by a distance �. Recently, there has been a debate
over the scaling of this p��h���� distribution �29–31�, i.e.,
whether the scaling properties of p��h���� can be described
by a single scaling exponent � or multiple scaling exponents
are required to describe the scaling of p��h����. The self-
affine property of the crack profiles implies that the probabil-
ity density distribution p��h���� follows the relation

p��h���� � �−�locf�h���
��loc

� , �1�

whereas multiscaling of fracture surface implies that Eq. �1�
is not valid. Although multiscaling of p��h���� was argued
in Ref. �29�, it has been shown in Refs. �30,31� that p��h����
follows a self-affine monoscaling relation given by Eq. �1�
and that multiscaling is an artifact that results at small scales
due to the removal of crack profile overhangs. In the follow-
ing, we investigate whether disorder has any influence on the
scaling of p��h����.

First, we present the probability distributions p��h���� of
the height differences �h���= �h�x+��−h�x�� for various bin
sizes �=4,8 ,16,32,64 for a disorder of D=0.75, a system
size of L=320, and a relative crack size of a0 /L=1/16. Fig-
ure 4 shows the collapse of the central parts of the probabil-
ity distributions p��h���� for larger � values, but still within
the local width scaling regime. The deviation for smaller �
values may be attributed to steps in the single-valued crack
height profiles, which inevitably arise due to the removal of
overhangs on the crack surface. For larger � values, the cen-
tral parts of these distributions approach Gaussian, but clear
deviations can be observed in the tails of the distribution

from a Gaussian distribution. Similar deviations in the tails
were observed for the uniform disorder case as well �30,31�.

Second, we present the collapse of p��h���� distributions
in Figs. 5�a�–5�d� for various bin sizes � and disorders. The
collapse of these p��h���� distributions for various disorders
D at each bin size � indicates that p��h���� distributions and
the roughness exponent �loc are unaffected by the material
disorder.

IV. DISCUSSION

In summary, the evidence presented in this paper indicates
that the crack surface roughness is unaffected by the material
disorder and the presence of preexisting notches. This can be
inferred from the fact that material disorder, whether strong
or weak, has a significant influence on the amount of damage
accumulated prior to the peak load; however, the spatial cor-
relations in the damage accumulated prior to the peak load
are negligible �18�. Indeed, Figs. 6�a�–6�d� show the snap-
shots of damage and crack propagation at peak load in typi-
cal fracture simulations of system size L=320 having weak
to strong disorder and small to large preexisting notches. By
following the damage growth process, one can easily see
from these figures that there is very little crack extension at
peak load whether the material is strongly disordered or
weakly disordered. In addition, Fig. 6 shows that the FPZ
cannot be defined from a single damage snapshot, but it is
necessary to average the damage over many realizations of
the disorder. When this is done, we find that �FPZ depends
strongly on disorder D �ranging from one to 12 lattice units
for the values considered� but only weakly on a0 and L �32�.
The independence of the roughness exponent on D suggests
that self-affinity in the random fuse model is not related to
the FPZ.

This is further corroborated by our numerical simulations
on a simplified random fuse model, in which failure events
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−100 0 100
0

0.05

0.1

0.15

∆h

p(
∆h

)

(a)

−100 0 100
0

0.05

0.1

∆h

p(
∆h

)

(b)

−100 0 100
0

0.05

0.1

∆h

p(
∆h

)

(c)

−100 0 100
0

0.05

0.1

∆h

p(
∆h

)

(d)

FIG. 5. �Color online� Collapse of the probability density distri-
butions p��h���� of the crack profiles for various disorder values
D=0.3 ���, D=0.4 ���, D=0.5 ���, D=0.75 ���. �= �a� 32, �b� 64,
�c� 96, and �d� 128. The results are obtained for a system size of
L=320.

NUKALA et al. PHYSICAL REVIEW E 76, 056111 �2007�

056111-4



form a connected crack thereby excluding damage nucleation
in the bulk �30�. In this model, after breaking the weakest
fuse, successive failure events are only allowed on fuses that
are connected to the crack. Otherwise, the rules of this sim-
plified model strictly follow those of the usual RFM. Conse-
quently, this model tracks only the connected crack along
with its dangling ends in a disordered medium, and hence
forms the most simplified model to study the effect of disor-
der on crack roughness. As was shown in Ref. �30�, this
simplified model exhibits the same roughness and height-
height correlation characteristics as that of a conventional
RFM. Even for this simplified model, the collapse of the
power spectrum and local width of crack profiles for differ-
ent disorders �D= �0.25,0.4,0.5,0.6,0.75,1.0	� results in a
roughness exponent value of �loc=0.7, which clearly demon-
strates once again that disorder is irrelevant for identifying
the crack roughness exponent.

As also shown in Ref. �30�, when the branching of the
cracks or damage within the fracture process zone is not

allowed, thereby limiting the crack extension to only the
crack tips, a local roughness exponent of 0.5 is obtained.
But, as soon as branching was present, the value of the
roughness exponent was increased from �loc=0.5 to �loc
�0.7. This may also explain why there is no transition in the
value of the roughness exponent from strong to weak disor-
der in the presented simulations, since damage is always
present even for the lowest values of disorders considered. A
similar conclusion was reached by Bouchbiner et al. study-
ing a model for crack growth with damage nucleation �33�.
According to this work, as soon as a FPZ was introduced in
the model the roughness exponent increased from �loc=0.5 to
a higher value. Thus it appears that the roughness exponent
in two dimensions does not depend on the size of the FPZ,
but only on whether or not a FPZ is present. In three dimen-
sions the situation should be different, since experiments
suggest that the roughness exponent displays a crossover
precisely at the FPZ size. It would be interesting to investi-
gate this issue using three-dimensional simulations.

FIG. 6. �Color online� Snapshots of damage and crack evolution in disordered notched specimens of size L=320. �a� D=0.3 and
a0=20; �b� D=0.6 and a0=20; �c� D=0.3 and a0=80; �d� D=0.6 and a0=80.
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