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Abstract—We draw on a simulationist approach to the analysis
of facially displayed emotions - e.g., in the course of a face-to-face
interaction between an expresser and an observer. At the heart
of such perspective lies the enactment of the perceived emotion
in the observer. We propose a novel probabilistic framework
based on a deep latent representation of a continuous affect
space, which can be exploited for both the estimation and the
enactment of affective states in a multimodal space (visible
facial expressions and physiological signals). The rationale behind
the approach lies in the large body of evidence from affective
neuroscience showing that when we observe emotional facial
expressions, we react with congruent facial mimicry. Further,
in more complex situations, affect understanding is likely to rely
on a comprehensive representation grounding the reconstruction
of the state of the body associated with the displayed emotion. We
show that our approach can address such problems in a unified
and principled perspective, thus avoiding ad hoc heuristics while
minimising learning efforts.

Index Terms—Emotion, human-agent interaction, deep learn-
ing, simulation, Bayesian models

I. INTRODUCTION

SEAMLESSLY, in the course of our entanglements and
conflicts, dealings and struggles, we “perceive” the social

signals brought on by others, and we recognise and understand
their meaning. Yet, gazing at a gesture, glimpsing a smile or
hearing a laugh involves a kind of perception which is different
from the appraisal of the lifeless world.

A large body of evidence [1], [2] shows that alongside the
sensory information concerning others’ social stimuli - actions,
in a wide sense -, one’s own motor and visceromotor represen-
tations of those stimuli are enacted. Humans mirror gestures,
postures, emotions, speech of other perceived humans, at least
neurally, and sometimes bodily and behaviourally. Mirroring
grounds the capability of own reproduction of the action in
question “as if” a similar action were performed or a similar
emotion experienced. Such simulation-based mechanism is
likely to play a crucial role in individual cognition and social
interaction [1], [2].

The rationale behind this study is thus straightforward and
stems from the attempt at answering a deceptively simple,
albeit overlooked question: can we exploit such primitive
and fundamental simulation-based mechanism for designing
artificial agents?
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Answering this question is important as witnessed by the
growing interest for the computational modelling of emotion,
as an attempt to develop and validate computational models of
human emotion mechanisms [3], and it is crucial in the realm
of cognitive and social robotics [4]–[7] (but see Section VI,
for a wider discussion).

Challenges: In this paper we shall focus on the case of the
perception of emotional facial expressions, but in a simulation-
based context also involving the observer’s physiological re-
actions (see [8] and [9] for a review). In particular we address
the issue of facial expression mirroring and mimicry, which is
at the heart of simulationist accounts.

Face perception is likely to be the most developed visual
perceptual skill in humans and, cogently, most face viewing
occurs in the context of social interactions [9]. Undeniably,
part of the ability to extract affective information from faces
can be attributed to visual expertise.

Yet, facial expressions are facial actions; as such, their per-
ception is likely to draw on simulation mechanisms underlying
action perception in general [8], [9]. Beyond visual expertise,
it is increasingly apparent that visuomotor simulation activates
autonomic activities [9], [10]. These participate in building a
deep understanding of the perceived affective expression [8].

Our approach: We propose a novel, probabilistic computa-
tional model for dynamic affective facial expression percep-
tion relying on a mirroring mechanism. The latter involves
both facial gesture and physiological simulation. In brief,
in the course of a dyadic engagement, the observer’s visual
system, while perceiving expresser’s facial display, interacts
with an extended system, which takes in the emotion system.
Interaction is regulated by the mediation of a visuomotor
component for somatic action perception, which transforms
the sensory information of observed facial actions into the
observer’s own motor representation. In turn, a continuous
core affect space [11] characterised by the valence (pleasure-
displeasure) and arousal (sleepy-activated) state variables, trig-
gers autonomic, visceromotor processes. The simulation-based
dynamics involving both the visuomotor and visceromotor
routes can generate observer’s actual responses, namely facial
mimicry and physiological responses.

The overall goal of the approach is to allow the modelled
observer to reach a core affect state similar to that of the
expresser. Indeed, meeting such condition is preliminary, in the
embodied perspective, to ground subsequent processing for af-
fect understanding, e.g. the retrieval of conceptual knowledge
about the emotion signalled by the expresser [8], [9].

Technically, when the observer’s model is put into work,
at the learning stage, inputs are (i) a video clip of facial
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expressions displayed by a subject engaged in spontaneous
interactions along with (ii) subject’s physiological recordings
(cardiac and electro-dermal activities), (iii) the annotated con-
tinuous values of valence (V) and arousal (A); at the testing
stage, only the facial expression clips of new subjects are
provided to the observer’s model (see Fig. 1). Measurable
outputs are the observer’s facial and autonomic mimicry,
together with the trajectories of the observer’s internal V/A
core affect dynamics. For our experiments we exploit data of
spontaneous and natural emotions collected in the RECOLA
dataset [12], a multimodal corpus designed to monitor subjects
as they worked in pairs remotely to complete a collaborative
task. The corpus includes audio, video, electro-cardiogram
(ECG) and electro-dermal activity (EDA) modalities; the data
are manually annotated with the continuous dimensional labels
of arousal and valence (cfr. Fig. 1).

Fig. 1. Inputs available to our model as provided by the RECOLA Dataset.
The centre panel shows an excerpt (few video frames) of an expresser’s
facial action; for completeness, the facial landmarks and head pose (box),
as computed by the model along the perceptual stage, are also overlaid on the
detected face. The bottom panel displays the time course of the expresser’s
physiological signals (HRV and EDA). Continuous V/A annotations (the
attributed core affect state) are shown in the top panel. Arrows indicate the
HRV, EDA and V/A values corresponding to the shown frames.

Methodology: We follow a multilevel approach to set up the
computational model, in order to fully exploit the cross-level
link between the psychological and neurophysiological levels
of explanation [13], [14]. Marr proposed three distinct levels
of description/explanation in the cognitive sciences [13]: the
what/why level (computational theory, i.e. the individuation
of a computable function as a model of a given behavioural
phenomenon), the how level (algorithm) and the realisation
level (implementation). Here, we comply with Chater et al.
proposal [14] arguing that, in the light of the growing ex-
ploitation of Bayesian methods, Marr’s three-fold hierarchy
should be reorganised into two levels: the computational
theory level, formalised in terms of Bayesian theory, and the
implementation theory level, embedding both Marr’s algorith-
mic and realisation levels. Henceforth, we will call the formal
instantiation of these two levels the theoretical model and the
implementation model, respectively.

The rationales behind the model are discussed in Section II.
The theoretical model is presented in Section III, while the
implementation model is outlined in Section IV. In Section V
we show that this model-driven approach, beyond its theoreti-
cal appeal, can address flexible representation and analysis of
facial expressions, that lends itself well to the task of learning

from few as possible examples, while predicting some general
results obtained at the level of psychological explanation.

To the best of our knowledge, not much effort hitherto has
been spent in the course along which we are moving; thus, a
general discussion of the approach and related work is post-
poned and carried out in-depth in the concluding Section VI.

II. BACKGROUND AND RATIONALES

How does affective neuroscience spell out the understanding
of facial expression of emotions? In a nutshell, according
to Adolph’s model [8], upon the onset of an emotionally
meaningful stimulus, observer’s response undergoes the fol-
lowing stages: 1) fast early perceptual processing of highly
salient stimuli (120 ms); 2) detailed perception and emotional
reaction involving the body (170 ms); 3) retrieval of conceptual
knowledge about the emotion signalled by the expresser’s face
(> 300 ms).

Stage 2 and the onset of stage 3 together pave the way to
the understanding of affective expressions. Adolph’s scheme
points at the orbitofrontal cortex (OFC), the amygdala and the
insula, three highly interconnected areas, as the key structures
for central affective control, regulating the development of
an emotional episode (cfr. Fig. 2 for the discussion that
follows). Cogently, the amygdala and the OFC generate an
emotional response in the observer, via connections to the
motor structures, hypothalamus (HYP), and brainstem nuclei,
where components of an emotional response to the facial
expression can be activated. This mechanism contributes to the
elicitation of knowledge about the expresser’s emotional state,
via the process of internal simulation, and would draw on the
insula and somatosensory related cortices for representing the
emotional changes in the observer. The insula cortex integrates
visceral, pain, and temperature sensations and also provides
visceromotor control of both the sympathetic and parasympa-
thetic outputs, [15]. Functional imaging studies suggest that
the posterior insula (PIns) receives topographically organised
interoceptive inputs via the thalamus, and projects to the
anterior insula (AIns). The latter integrates those inputs with
inputs from cortical areas involved in perceptive, emotional,
and cognitive processing [15]. It has been argued [16] that
functional interactions between the amygdala and the OFC
form a potential neural substrate for the encoding of the
psychological core affect dimensions [11] of valence and
arousal (V/A). A similar role is also played by the insula
[15]. The V/A dimensions, can be thought of as “emotion
primitives” supporting at the neurobiological level a central
continuous emotion space [17].

Adolph’s account does not provide further details about
the explicit involvement of motor mechanisms in the process,
albeit these being acknowledged [8]. This is not a minor issue.
While investigating whether emotion facial expressions mod-
ulate the functional connectivity of the amygdala with the rest
of the brain, it has been shown [18] that all queried emotions
enhanced functional integration with premotor cortices (e.g.,
ventral premotor cortex, vPMC). Also, the amygdala forms
a closed processing loop with cortical motor areas M1, M3,
M4 and supplementary motor areas (SMA) targeting the facial
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nucleus in the brain stem, which hosts the motor neurons that
synapse on the muscles of facial expressions [19]

Facial expressions are facial actions and it has been posited
that a “resonance behaviour” is one such mechanism where
an individual repeats overtly a movement made by another
individual. A striking example is provided by either human
or rhesus monkey newborns imitating adult facial gestures,
[20]. At the neurobiological level, the resonance or mirroring
behaviour has been initially explained in terms of mirror
neuron (MN) activity. The critical feature of MNs is the
functional matching between a motor response and a percep-
tual one. MNs have been first localised in monkeys’ ventral
premotor area F5 and then in the inferior parietal lobule (IPL).
Subsequently, other areas have been endowed with mirroring
capabilities, so that it is currently more appropriate to address
the properties of a MN system (MNS) or network [20].

Crucially, evidence has highlighted that also the human
brain is provided with mirroring capabilities, and internal
simulation has been related to coding the intentions of actions
performed by others [1]. Mukamel et al. [21] have performed
direct recordings of MNs activity in human patients while
executing or observing facial emotional expressions.

The initial studies on the neurobiology of imitation in
humans suggested a core imitation circuitry composed of
three major neural systems [20], [22]: the posterior part of
the superior temporal sulcus (pSTS), the rostral part of the
inferior parietal lobule (rIPL), and the posterior part of the
inferior frontal gyrus and adjacent ventral premotor cortex
(pIFG/vPMC complex). The information processing flow is
likely to occur as follows [23]: the pSTS provides a higher
order visual processing of the observed action by coding an
early visual description of the action; this information is sent to
the rIPL and pIFG/vPMC complex that form a parieto-frontal
mirroring (both motor and visual) system; the posterior parietal
cortex codes the precise kinesthetic aspect of the movement
and sends this information to inferior frontal mirror neurons in
the pIFG; efferent copies of motor plans are sent from parietal
and frontal mirror areas back to the STS; here there would
be a matching process between the visual description of the
observed action and the anticipated outcome of the planned
imitative action. In this perspective Chakrabarti et al. [24]
have proposed that the MNS acts as an intermediate module
for facial action perception. Such scheme represents a starting
point to identify a visuomotor route for the perception and
mirroring of dynamic facial expressions of emotion. The STS
traditionally accounts for changeable visual aspects of faces
and contributes to a core visual system for face perception [25]
by interacting with the occipital face area (OFA, for the
perception of face parts) and the fusiform face area (FFA,
invariant aspects of faces, identity); OFA and FFA receive
inputs from early visual cortices. Crucially, in a mirroring
framework, the STS enables the visual route to the MNs so
to allow matching between sensory predictions of imitative
motor plans and a visual description of observed actions [26].

Recent findings have prompted the idea that a mirror
mechanism is also present in the cortical areas involved in
coding emotions [2], and markedly along affective facial ex-
pression processing [20]. Namely, motor knowledge required

is grounded in visceromotor actions, that is motor command
sequences directed to visceral organs [20], establishing a
visceromotor route to affective expression perception. In both
monkeys and humans, a region much involved in this kind of
output are the insular cortices [20]. Interoceptive experience
may largely reflect limbic predictions about the expected
state of the body that are constrained by ascending visceral
sensations (see, [27], [28]. The anterior insula informs the rest
of the brain (markedly, the amygdala and the OFC) of intero-
ceptive changes by sending predictions based on anticipated
visceromotor consequences and information forwarded by the
posterior insula; meanwhile, the latter propagates prediction-
error signals back to visceromotor regions to modify predic-
tions. At a lower level, as viscerosensory signals undergo
substantial signal conditioning in the brainstem, it is likely
that brainstem and subcortical structures contribute directly
to active inference, for instance, by computing themselves a
prediction error [27], [28].

All the issues touched in the above discussions can be syn-
thetically subsumed under the architecture of the distributed
neural system for perception of dynamic facial expressions of
emotion outlined in Fig. 2. The scheme shows at a glance the
three main routes contributing to affective facial expression
processing: the visual route, the visuomotor route and the
visceromotor route. The affective core is provided by the close
interactions occuring among the amygdala, the insula (AIns)
and the OFC.

Modelling assumptions. To sum up, at the neurobiological
level, core affect dynamics is consequent on the activity of a
complex, open system. Such an open system is more suitably
conceived as subject to stochastic variability resulting from
the entanglement of many internal (and external) activities
that influence it [29]. Cogently, at the psychologic/behavioural
description level, a person always has a core affect and,
moment-by-moment, a person’s emotional state can be de-
scribed in terms of how pleasant or unpleasant (valence) and
how activated (arousal) the person is [17], [30]. Kuppens et al.
[29] have remarkably shown that, across time, the core affect
unfolding can be represented as a trajectory, i.e. a realisation
of a stochastic process reflecting the typical pattern of affective
changes and fluctuations that V/A levels undergo across time
and that characterise an individual.

Neurobiological findings summarised above suggest that at
the heart of the entanglement is the “core affect → action
→ motor” hierarchy replicated in the visuomotor and vis-
ceromotor routes. From a modelling standpoint, the different
components involved in such hierarchy can be conceived as
dynamic input-state-output model. The input or control is
provided top-down (TD) by an upper level component and
the output is an emission to a lower-level component or,
equivalently, a bottom-up (BU) observation of the lower-level
state. Under Markov assumption, we describe each component
as a discrete-time (nonlinear) dynamical system

x(t) = f(x(t− 1), c(t), εx(t)), (1)
xBU(t) = g(x(t), c(t), εxBU

(t)), (2)

where x(t) is the hidden state, c(t) the input signal, xBU (t)
the observation, εx(t) and εxBU

(t) the system and observation
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Fig. 2. Architecture of a distributed neural system for the perception of
dynamic facial expressions of emotion (observer’s side). Two, reciprocal,
heavy arrowheads indicate “forward” and “backward” projections between
areas (boxes). Only the main areas of interest have been included. The
architecture incorporates a module for “action perception” based on the human
MNS, (IPL, IFG/VPMC complex), which mediates between the external
stimuli (expresser’s facial action) as processed along the visual route (retina,
lateral geniculate nuclei,LGN, early Visual cortices, OFA, FFA, STS), and
the internal motor/action representation, provided by the MNS via the STS
interface. The MNS feeds the necessary input to activate the core affect
system, represented by the amygdala (Amy), the anterior insula (AIns) and
the OFC. This system coordinates the dynamics of the activities occurring
along the visuomotor (STS, IPL, IFG/VPMC, cortical motor areas M1/M3/M4,
supplementary motor area, SMA, and subcortical motor nuclei in the brain-
stem), and visceromotor routes (PIns, HYP, brainstem visceromotor nuclei
and the autonomic nervous system ANS) either by modulating perceptual
representations via feedback, and by generating an emotional response in
the subject, via connections to motor structures, hypothalamus (HYP), and
brainstem nuclei, where components of an emotional response to the facial
expression can be activated. Light dotted projections indicate the subcortical
dual route from superior colliculus, SC, and pulvinar to limbic areas (not
included in the current model).

noise at time t, while f and g are the transition and observation
models, respectively. Input signal c(t) represents, in general,
the system control vector, which can be shaped in many
ways; for example, as a function of either TD or BU signals
(e.g. to introduce feedback). A TD signal can also represent
an exogenous input, e.g., labelling sequence provided along
supervised learning. Equations 1 and 2 allow to recursively
estimate the hidden state x(t) at any level of the hierarchy
and to convert the inferred hidden state into predictions about
future observations xBU(t).

The dynamics of each component defines a trajectory over
time, say {x(t), 1 ≤ t ≤ T}, within a manifold or state-space.
Taking stock of the above discussion and by abstracting from
neurobiological details, the proposed functional model relies
on the following state-space representation (numeration is in
accordance with Fig. 3): a perceptual state-space (1) resulting
from visual facial cue processing (functionally accounting for
the joint activity of early visual cortices, OFA, FFA, and
STS); (2) a somatomotor state-space of the internal motor
representation of facial dynamics (STS, IPL, and motor areas);
(3) a facial action state-space, where trajectories encode facial
actions (IFG /VPMC); (4) a core affect state-space, embedding
internal V/A trajectories (Amy, AIns, OFC); (5) an autonomic
state-space (PIns, AIns), encoding visceromotor actions; (6)

Fig. 3. The functional architecture for face-based emotion understanding.
It provides an high-level decomposition of the neural architecture outlined in
Fig. 2 into major components together with a characterisation of the interaction
of the components. Numbered components are those considered in this study
and numbering follows their presentation in text. To keep to the neural
architecture, 1©→ 2©→ 3©→ 4© and 6©→ 5©→ 4© one-head arrows indicate
“forward”, bottom-up projections; 1©← 2©← 3©← 4© and 6©← 5©← 4© denote
“backward”, top-down projections. The visual system for dynamic facial
expression perception interacts with an extended system, which involves the
emotion system (dotted box) and high level cognitive/conceptual processes.
Interaction is regulated by the visuomotor mediation of a component for action
perception. The latter transforms the sensory information of observed facial
actions into the observer’s own somatomotor representations. The activation
of the visuomotor route in turn triggers visceromotor reactions through the
mediation of the core affect state-space. From there the loop of simulation-
based dynamics involving all components unfolds to support the whole
process. The dashed grey line distinguishes between the hierarchical levels
of control.

a visceromotor state-space, representation of physiological
response generation (HYP, brain stem nuclei, ANS).

At the onset of the process (presentation of stimuli), a
visuomotor mapping links perceived facial cue dynamics to
the internal motor dynamics. The latter is controlled by
facial motor parameters, a parameter trajectory representing a
facial action. Facial actions activate the core affect, which in
turn triggers autonomic actions and eventually visceromotor
responses. Thereafter, resonance between the expresser and
the observer is established, and simulation-based dynamics
unfolds to support the process, jointly involving all the in-
troduced components.

III. THEORETICAL MODEL

To set up the model in a Bayesian framework, it is con-
venient to note that the dynamic stochastic process defined
by Eqs. 1 and 2 can be mapped to the probabilistic gen-
erative model described via the state/observation sampling
x̃(t) ∼ P (x(t) | x(t− 1), c(t)) and x̃BU (t) ∼ P (xBU (t) |
x̃(t), c(t)), where P is a distribution associated to the proba-
bility measure over latent trajectories [31]. State variables of
interest can be devised as follows.

Assume a face-to-face interaction between two agents, an
expresser (E) and an observer (O), that share the common
model underlying the state-spaces and related dynamics in-
troduced in Section II (Fig. 3). The inputs to the model are
provided by the facial display of the expresser, in the form of a
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Fig. 4. The theoretical model at a glance. The conditional dependencies
(arrows) among the core components (cfr. Fig. 3) and their generative
dynamics represented as a dynamic PGM over the time slice (t, t+1). Dashed
grey lines emphasise the hierarchical levels of control of the dynamics.

time-varying random variable (RV) IE(t), and a set of suitable
control variables c(t), which will be used in the learning stage
to account for ground-truth valence/arousal pairs. The outputs
are the facial display or actual mimicry IO(t) of the observer
and a set of physiological responses U(t)O = {u(j)(t)}NV

j=1,
namely a number NV of measurable physiological signals
u(j)(t) originated along the observer’s autonomic activity.

Then, use the following RVs related to the different state
spaces. Core affect and action state-spaces:
• e(t) spans the latent core affect state-space, at time t;
• aM (t) denotes the somatomotor action;
• a

(j)
V (t) represents the j-th visceromotor action.

Somatomotor state-space:
• m(t) captures the facial deformation due to muscle action

“shared” between the two agents;
• θ(t) represents the head pose parameters; in principle

they need not to be shared between the agents, thus
θ(t) = {θO(t),θE(t)}, though here in practice we will
use the same set of pose parameters for both;

• w(t) accounts for somatomotor state-space dynamics;
• sI is a fixed set of static parameters encoding the biomet-

ric characteristics of each individual I ∈ {E ,O}, namely
{sE , sO}; expresser’s sE are inferred by the observer at
the onset of the interaction, while observer’s parameters
are given;

• yE(t) predicts the visual facial cues of the expresser.
Visceromotor state-space:
• v(j)(t) spans the j-th visceromotor state space;
• r(j)(t) represents the internal observation, or feature

vector, of the j-th physiological response u(j)(t).
The above RVs specify the main components of the functional
model presented in Fig. 3. Their probabilistic conditional
dependencies can be formalised in the directed Probabilistic
Graphical Model (PGM, [32]), say G, presented in Fig. 4.

If we denoteM(t),S(t) the time-varying state ensembles of
the visuomotor and visceromotor routes, these are subgraphs

of model G. Then, given a core affect state e(t+1) = e∗(t+1),
the dynamics of the joint distribution represented by G can be
factorised as P (M(t+1),S(t+1) | M(t),S(t), e∗(t+1)) =
P (M(t+1) | M(t), e∗(t+1))×P (S(t+1) | S(t), e∗(t+1)),
that is M(t) and S(t) are conditionally independent given
the current core affect state, i.e., (M(t)⊥S(t) | e(t)) (cfr.,
Koller [32], Theorem 3.1), while the other RVs are marginally
independent, i.e., M(t+ 1)⊥S(t) and S(t+ 1)⊥M(t). Since
each hidden, latent state-space variable partitions the graph
into independent subgraphs, such evolution can be recursively
applied at any level.

The dynamics builds upon the backward/forward hierarchi-
cal information exchange between levels outlined in Fig. 3 and
detailed as follows.

A. Dynamics of affect enactment

The dynamics relies on a nested, double simulation loop.
The outer loop is a perception-action cycle based on the
current observation of expresser’s facial display. The gener-
ative properties of the model are exploited to hierarchically
predict core affect states and in turn visuomotor and vis-
ceromotor states that will eventually determine facial mimicry
and physiological responses. To such end, the inner loop of
measurements and predictions within the central affect state-
spaces implements a kind of “as if” internal simulation [10]
to jointly optimise variables m̃, ṽ. At the end of the inner
loop, optimal m̃∗, ṽ∗ are provided as top-down controls to
motor and visceromotor state-spaces in the outer loop. Such
dynamics, relying on prediction and measurement steps, is
outlined in Algorithm 1.
Evolution of central affective states. The construction of
the latent affect space model grounds in the probabilistic
dependencies that relate visuomotor and visceromotor com-
ponents to the core affect, namely e → aM → m and
e → a

(j)
V → v(j), respectively. The dynamics can be

summarised as sampling a time dependent affect state from
the latent core affect space

ẽ(t+ 1) ∼ P (e(t+ 1) | e(t), c(t+ 1)); (3)

then, due to local independency, sampling in parallel somatic
and visceromotor actions

ãM (t+ 1) ∼ P (aM (t+ 1) | aM (t), ẽ(t+ 1)), (4)

ã
(j)
V (t+ 1) ∼ P (a

(j)
V (t+ 1) | a(j)

V (t), ẽ(t+ 1)), (5)

where j = 1, . . . , NV . This way, a core affect trajectory
{e(t)}Tt=1 generates specific action trajectories {aM (t)}Tt=1

and {a(j)
V (t)}Tt=1 to be taken in the somatomotor and vis-

ceromotor routes. Note that the control variable c(t) in Eq. 3
may represent either exogenous inputs, when given (e.g.
V/A pairs at the learning stage) or bottom-up feedbacks
âM (t), {â(j)

V (t)}, that can be inferred by using posterior
distributions P (aM (t) | m̂(t)) and P ({a(j)

V (t)} | {v̂(j)(t)}),
respectively.
The somatic visuomotor route. A trajectory {aM (t)}Tt=1

in the latent space of facial actions is used to sample a
sequence of facial motor control parameters m(t). These tune
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Algorithm 1 Simulation-based dynamics
Input: - Dynamic sequence of expresser’s facial display lE(t)

at times denoted by t = 1, 2, 3, . . . and corresponding to
multiple of frame interval ∆t
- suitable initialisation of state-space parameters

Output: Predictions ĨO(t′)|t′>t and {ũ(j)(t′)|t′>t} (Eq. 16)

1: t← 1
2: while in interaction do
3: {Visuomotor mapping}
4: Given IE(t) measure l̂E(t), m̂(t), θ̂(t) (Eqs. 12, 13)
5: if t = 1 then
6: Measure sE and scale parameters
7: end if
8: k ← 0; τk ← t
9: {Internal ”as if” simulation}

10: repeat
11: {Forward/bottom-up measure step}
12: âM (τk) ∼ P (aM (τk) | m̂(τk))

13: {â(j)
V (τk)} ∼ P ({a(j)

V (τk)} | {v̂(j)(τk)});
14: ê(τk) ∼ P (e(τk) | âM (τk), {â(j)

V (τ)})
15: {Backward/top-down core affect step}
16: c(τk)← ê(τk)
17: Predict ẽ(τk+1) (Eq. 3)
18: {Backward/top-down visuomotor step}
19: Predict ãM (τk+1), then m̃∗(τk+1) (Eqs. 4, 6);
20: {Backward/top-down visceromotor step}
21: Predict ãV (τk+1), then {ṽ(j),∗(τk+1)} (Eqs. 5, 14)
22: Save pred. m̃∗, ṽ∗ as the current observed m̂, v̂
23: k ← k + 1; τk ← t+ kδt
24: until τk − t ≤ ∆t
25: Use predicted states as the current ones
26: {Backward/top-down visuomotor step}
27: Predict θ̃(t+ 1)
28: Predict w̃(t+ 1) (Eq. 8), then ỹE(t+ 1) (Eq. 9);
29: {Backward/top-down visceromotor step}
30: Use predicted {ṽ(j),∗} as control parameters and predict

actual {ṽ(j)(t+ 1)} (Eq. 14)
31: Predict {r̃(j)(t+ 1)} (Eq. 15)
32: {Mimicry and physiological responses};
33: Predict ĨO(t+ 1)
34: Predict {ũ(j)(t+ 1)} (Eq. 16)
35: t← t+ 1;
36: end while

the facial action unfolding in the motor state-space spanned
by w(t), namely the observer’s internal representation of the
face. To such end, we assume a parametric representation
w(t) = w(sI ,m(t),θ(t)). Parameters sI encode the invariant
facial biometric traits of the agent I = {O, E}: thus, sO
are used for building the observer’s inner representation of
his own face, whilst sE are adopted for predicting expresser’s
facial action. The motor parameters m(t) and θ(t) control the
facial deformation due to muscle action and the head pose, re-
spectively, and are “shared” between the two agents. They are
inferred/perceived by O looking at E and used as observer’s
own parameters, a process which we address as visuomotor

mapping. Assume that an estimate of face deformation and
global head motion parameters, m̂(t) and θ̂(t) respectively, is
available at time t after the perceptual stage. The somatomotor
space will be characterised by the following dynamics. First,
sample facial action control parameters:

m̃(t+ 1) ∼ P (m(t+ 1) | m̂(t), ãM (t+ 1)), (6)

θ̃(t+ 1) ∼ P (θ(t+ 1) | θ̂(t)). (7)

By using sampled control parameters, set w(t+1) = w(m̃(t+
1), θ̃(t+ 1), sE), predict the facial configuration of E ,

w̃(t+ 1) ∼ P (w(t+ 1) | w(t), m̃(t+ 1), θ̃(t+ 1)), (8)

and sample a predicted observation of E’s facial cues (land-
marks)

ỹE(t+ 1) ∼ P (yE(t+ 1) | T (w̃(t+ 1))), (9)

where T (·) is a projection of the internal face model in
the 2D visual space where (retinal) sensing of the expresser
occurs. Facial mimicry is obtained by setting w(t + 1) =
w(m̃(t + 1), θ̃(t + 1), sO), using Eq. 8, and generating O’s
facial expression:

ĨO(t+ 1) ∼ P (IO(t+ 1) | w(t+ 1), IO(t)) (10)

The observer’s perception of the expresser. The goal for O
is to estimate: i) E’s actual facial landmarks lE(t), conditioned
on the set of facial patch feature responses XE(t) computed on
frame IE(t), and on the currently predicted facial shape state
w̃E(t); ii) the hidden motor control parameters θ(t) (facial
pose) and m(t) (facial deformation) that most likely modulate
the visible facial configuration of the expresser. Inference
relies on the joint posterior

P (lE(t),θ(t),m(t) | ỹE(t),XE(t), IE(t)) =

P (θ(t),m(t) | lE(t), ỹE(t))× P (lE(t) | XE(t), IE(t)). (11)

The first factor on the r.h.s substantiates the visuomotor
mapping; the second factor supports the visual processing of
facial landmarks. Hence, the perception stage boils down to
the following.

1) Compute the most likely configuration of actual land-
marks:

l̂E(t) = arg maxP (lE(t) | XE(t), IE(t)); (12)

2) Back-project into the expresser’s image space the
current predicted observer’s facial state ỹE(t)) =
w(m̃(t), θ̃(t), sE) for estimating control parameters that
best explain observed landmarks l̂E(t):

(m̂(t), θ̂(t)) = arg max
m,θ

P (̂lE(t) | ỹE(t)). (13)

The visceromotor route. In this case, we deal with a
number NV of measurable physiological signals U(t)O =
{u(j)(t)}NV

j=1. Typically, u(j)(·) are 1-D time-series, that can
be assumed to be the realisation of NV independent stochastic
processes. Prediction and observation steps can be performed
for the j = 1, · · · , NV spaces as follows:
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• predict the autonomic visceromotor state conditioned on
the current action ã

(j)
V

ṽ(j)(t+ 1) ∼ P (v(j)(t+ 1) | v(j)(t), ã
(j)
V (t+ 1)), (14)

• predict the observation of physiological features

r̃(j)(t+ 1) ∼ P (r(j)(t+ 1) | v(j)(t+ 1)), (15)

• predict a physiological response

ũ(j)(t+ 1) ∼ P (u(j)(t+ 1) | r̃(j)(t+ 1)). (16)

IV. IMPLEMENTATION MODEL

Exact Bayesian inference of states and parameters on
complex models such as the one we are dealing with is
computationally intractable [33] (but see [34] for a gen-
eral discussion). We thus exploit the PGM compositionality
to devise apt approximations for the subgraphs of interest,
which correspond to the main components of the underlying
functional architecture. Meanwhile, we give precise form to
the assumption that the involved state-spaces are associated to
input-output state-space models.
Multimodal action and core affect latent spaces. The
requirements here are: i) to devise an effective and efficient
nonlinear mapping such that trajectories of similar control
parameters and, in turn, of actions, are placed nearby in the
core affect space whilst dissimilar trajectories are far away;
ii) to functionally account for the entanglement, at the neural
level, of somotamotor and visceromotor components. To meet
such requirement, we use a Deep Gaussian Process (GP)
approach [35].

A Deep GP is a deep directed graphical model that consists
of multiple layers of latent variables and employs GPs to
govern the mapping between consecutive layers. Precisely,
a single layer of the deep GP is a Gaussian process latent
variable model (GP-LVM). Denote: {Z(h)}Hh=2 the layers of
latent, hidden variables where Z(h) ∈ RN×Q(h)

, Q(h) being
the dimension of the layer at level h and N the sample
size; Y ∈ RN×D the down-most layer, being D the input
space dimension. Each hidden layer can be modelled as
a GP-LVM employing a product of Q(h) independent GPs
as prior for the latent mapping F(h) = {f (h)q }Q

(h)

q=1 , which
component f (h)q,n = f

(h)
q (z

(h)
n ) represents the n-th sampled

value (1 ≤ n ≤ N ). Thus, f (h)q ∼ GP(0, k(h)(z
(h)
i , z

(h)
j )),

where k(h)(z(h)i , z
(h)
j ) is the kernel function at level h. For the

down-most layer, F(1) = {f (1)d }Dd=1, and f
(1)
d,n = f

(1)
d (z

(1)
n ).

The generative process from the upper-most to the down-most
layer is given by the following state-space model:

z(h−1)q,n = f (h)q,n + ε(h)q,n, q = 1, . . . , Q(h), (17)

yd,n = f
(1)
d,n + ε

(1)
d,n, d = 1, . . . , D. (18)

where ε
(h)
q,n ∼ N (0, (σ

(h)
q,n)2) and ε

(1)
d,n ∼ N (0, (σ

(1)
d,n)2).

Clearly, the size of each latent layer is crucial but does not
need to be a priori defined. It has been shown [35] that
it is possible to define automatic relevance determination
(ARD) covariance functions for the GPs, k(h)(z(h)i , z

(h)
j ) =

σ2
ARD exp{− 1

2

∑Q(h)

q=1 w
(h)
q (z

(h)
q,i −z

(h)
q,j )2}, such that a different

weight w(h)
q is assumed for each latent dimension. This can

be exploited at the training stage in order to prune irrelevant
dimensions by driving their corresponding weight to zero.
Nonlinearities introduced by such a covariance function are
treated via non-standard variational inference methods that
allow to define analytically an approximate Bayesian training
procedure (see [35] for details).

Crucially, such deep structure can be naturally extended
“horizontally” by segmenting each layer into different parti-
tions. Thus, the latent space at level h is partitioned into π(h)

conditionally independent subsets, matching exactly the condi-
tional independence statements assumed from the beginning to
design the PGM representation provided in Fig. 4. Eventually,
it allows to handle in a principled and efficient way the multi-
modal nature of visual cues and of the different physiological
signals. This can be achieved by defining the down-most layer
of the deep GP as a N×D matrix Y = [m | v(1) | v(2) | · · · ],
D being the sum of the dimensions of state/control parameters
of each modality.

It is worth noting that the deep GP has the expressive
power that indeed we need to map the trajectories taking
place in the core affect state-space, onto trajectories at the
motor state-space level. Because of the recursive warping of
latent variables through the core affect → action → motor
hierarchy, deep GP allows for modeling non-stationarities and
cumbersome non-parametric functional properties [35].

In the supervised learning scenario, which is the one ad-
dressed here, the inputs of the top hidden layer Z(H) is
observed, namely is the valence/arousal time sequence or
trajectory e(t) provided at the learning stage. When the latent
space is set up, then new estimated controls m̂, {v̂(j)} can
be stochastically backprojected through the latent space layers
up to the core affect state-space, namely, âM (t) ∼ P (aM (t) |
m̂(t)), {â(j)

V (t)} ∼ P ({a(j)
V (t)} | {v̂(j)(t)}), allowing the

estimate ê(t) ∼ P (e(t) | âM (t), {â(j)
V (t)}). This is achieved

by using variational posteriors available from the model learn-
ing stage [36], but, different from [36], by using a bottom up
sampling-like approach, in order not to disregard the uncer-
tainty predicted at each time. As to pose evolution formalised
in Eq. 7, we simply put P (θ(t+1) | θ̂(t)) = δ(θ(t+1), θ̂(t)),
hence we straightforwardly exploit the inferred θ̂(t).
Somatic motor space and visuomotor mapping. We in-
stantiate w(t) as a 3D deformable shape model. Thus, w(t)
is a vector of vertices such that the evolution of the face
model at time t is represented by the ensemble of vertex state
vectors wi(t) = [Xi(t), Yi(t), Zi(t)]

T . To give a precise form
to the parametric face model w(t) = w(Θ(t)), being Θ(t)
the vector of all involved parameters, we exploit the 3D face
model Candide-3 [37]. This is a 3D deformable wireframe
model consisting of approximately 113 vertices wi and 184
triangles (cfr. Fig. 5). The face shape wI can be generated
from the standard mean shape w, which is deformed by
both individual biometric characteristics and the facial action
(expression) performed at time t.

Denote dWS
i and dWM

i , biometric and facial action-based
deformations. Precisely, dWS

i =
[
dwS

i,1, · · · ,dwS
i,Ns

]
and
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dWM
i =

[
dwM

i,1, · · · ,dwM
i,Nm

]
are constant 3 × Ns and

3 × Nm matrices, respectively, where each 3 × 1 vector
dwS

i,j and dwM
i,k represents the single Shape Unit (SU)

and Action Unit (AU) deformation at vertex i, respectively.
Here, Ns = 14 and Nm = 11. The columns of dWS

i

are vectors of control point displacements due to biometric
traits of the individual (mouth width, eye distance, etc.). The
columns of dWM

i encode vectors of point displacements, each
vector corresponding to AUs related to Ekman’s FACS (Facial
Action Coding System [38]); these describe the change in face
geometry when the corresponding AU is enabled due to the
motor activation of facial muscles. The effect of the SUs and
AUs is controlled via the shape and motor/action parameter
vectors sI = [s1, · · · , sNs

]
T
,mI = [m1, · · · ,mNm

]
T .

Under the face-to-face interaction assumption, the shape
model dynamics is that of a deformable (i.e., not rigid) body
and by assuming small rotations, it can be shown that at any
time t, facial movement will locally move a 3D vertex wi

to position wi(t + δt) = wi(t) + dwi (for unitary time step
δt = 1, without loss of generality) according to the law:

wi(t+1) = wi(t)+R(t)wi(t)+dWS
i sI+dWM

i m(t)+t(t),
(19)

where R and t represent the rotation matrix R = R(ω),
ω = [ωx, ωy, ωz]

T , and the translation vector, respectively,
that is the global rigid motion constrained by cranial pose
dynamics. Eq. 19, applied to all vertices i, represents the
state equation of the 3D face model evolving in time, i.e.
the forward model, which is used in the action stage (Eq.
8). Its dynamic control parameters are the pose parameters
θ(t) = (R(t), t(t)) and deformation parameters m(t). Indi-
vidual biometric control parameters sI are considered fixed
along the interaction.

Recall that, in order to estimate parameters (m̂(t), θ̂(t)),
given the computed landmarks ŷE(t) (visuomotor mapping),
the second step of the perceptual stage (Eq. 13) relies on
projecting into the image space the predicted facial config-
uration of the expresser, namely ŵE . The latter is obtained
by sampling in the action stage the current state of the face
model w̃(m,θ), and assigning expresser’s identity parameters,
i.e. w̃E(t)) = w̃(m(t),θ(t), sE). Then, as to projection T
of the 3D vertices on the 2D image coordinate system, a
weak perspective projection can be adopted given the small
depth of the face (see, e.g., [39] for details), thus ỹE,l =
Ts(w̃E,l), s being the weak-perspective scale parameter, and
l ∈ (1, ..., L) the index of the extracted facial landmarks.
Denote Θ = s[1,ωT , sT ,mT , tT ]T the full parameter vector.
Under Gaussian noise assumption, the observation equation is

l̂E,l = ỹE,l + εỹ, (20)

and parameter estimation via Eq. 13 boils down to the neg-
ative log-likelihood minimisation problem, (m̂(t), θ̂(t)) =
arg minΘ 1/(2σ2

yE
)
∑L

l=1 ‖̂lE,l − ỹE,l‖2 + L log(2πσ2
yE

),
which can be easily solved in closed matrix form. Note that
the full parameter vector Θ needs to be estimated only at the
onset of the interaction; in subsequent steps only (m̂(t), θ̂(t))
are needed.

Perceptual state-space. We adopt the Constrained Local
Neural Field (CLNF) undirected graphical model (see [40], for
details). The model uses the multivariate normal distribution

P (lE(t) | XE(t), IE(t)) = N (lE(t);µX,Σ) (21)

to specify the landmark prediction probability at locations
lE(t) = [`1, · · · `L] given patches XE(t) = [x1(t), · · · ,xL(t)]
selected at frame IE(t). The mean vector µX captures the
feature extractor responses on patches, after preliminary face
detection [40].

Fig. 5. Example of backward / top-down generative sampling of trajectories in
the relevant state-spaces of the implementation model. Generation is induced
by an initial tiny trajectory in the core affect and propagated down to
produce actual facial mimicry (smile) and physiological responses (EDA and
HRV). For visualisation purposes, the core affect, facial action and autonomic
state-spaces are displayed as grey level images, higher brightness indicating
higher probability (trajectories are derived as posterior means); somatomotor
evolution w(t) is shown in frontal pose and before assigning biometric
parameters; also, only 3 of the k dimensions of the visceromotor state-spaces
spanned by v(j) are shown. Actual facial mimicry has been obtained by
exploiting the publicly available simulator of the iCub humanoid robot.

Visceromotor state-space For what concerns physiological
signals U(t)O = {u(j)(t)}NV

j=1, in order to implement the
predict and update step of Eq. 14, 15, we use an input driven
linear dynamical system model [41]

v(j)(t+ 1) = Av(j)(t) + Bc(j)(t+ 1) + ε(j)v (t+ 1), (22)

r(j)(t+ 1) = Cv(j)(t+ 1) + ε(j)r (t+ 1), (23)

with ε
(j)
v (t) ∼ N (0,Σ(j)

v ), ε(j)r (t) ∼ N (0,Σ(j)
r ), and,

assuming v is a k-dimensional state vector, A is the (k × k)
state dynamics matrix, B is the (k × d) input-to-state matrix,
and C is the (p×k) observation matrix. In current implemen-
tation, the p-dimensional feature vector r(j)(t) is obtained via
the wavelet transform of the physiological response u(j)(t)
(further details in Experimental setting, Section V).

The input driven model is able to incorporate a displacement
for the hidden state dynamics c(j)(t+ 1) = (Av(j)(t+ 1)−
ṽ(j)(t+ 1)), where ṽ(j)(t+ 1) ∼ P (v(j)(t+ 1) | ã(j)

V (t+ 1))
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is the current emission predicted by the sampled visceromotor
action; (A,B,C,Σ(j)

v ,Σ(j)
r ) is performed via the variational

Bayesian EM algorithm (see [41], for details).
At any time t the estimates of the mean µ

(j)
v (t) and

covariance Σ(j)
v (t) of the hidden state v(j) can be obtained

via forward recursion (filtering), P (v(j)(t) | r
(j)
1:t , c

(j)(t)) ∝
P (r(j)(t) | v(j)(t)) ×

∫
dv(j)(t − 1) × P (v(j)(t − 1) |

r
(j)
1:t−1, c

(j)(t − 1)) × P (v(j)(t) | v(j)(t − 1), c(j)(t)). The
mean µ

(j)
v (t) is provided at inference time in input to the

j-th autonomic state-space as the observation of the current
visceromotor state v(j)(t).
Facial mimicry and physiological signal generation The
quality of facial mimicry animation is not a crucial concern
in our current research work, the model being agnostic to the
adopted output. Here, for visualisation purposes, Eq. 10 might
be exploited to drive either a synthetic avatar animation or an
actual agent (Fig. 5 shows one example using the simulator
of the iCub humanoid robot).

As to physiological sampling, by inverting the wavelet
transform we reconstruct the physiological responses. In this
work we do not focus on the use of such signals, so we simply
plot their dynamics (cfr. Figs. 6a, 6b).

V. EXPERIMENTS

The focus here is on assessing the hypotheses that (i)
the model suitably supports observer’s affective mirroring of
the expresser’s affective state and that (ii) the simulation-
based mechanism together with the extra autonomic activity
information available during learning can improve the analysis
of facial expressions when only visual information is available.
Three experiments are taken into account: I) the generation of
both physiological signals and visible cues given a learnt core
affect state space; II) the assessment of observer’s capability
to reach a core affect state similar to that of the expresser,
measured in terms of “internal” V/A values on the basis of
his autonomic activity information and only relying on the
visible facial cues of a novel expresser; III) the predictive
capability of the model with respect to the results obtained by
Kuppens [29], in terms of “external” V/A values, as provided
by data annotation.

The observer’s training stage exploits both visible facial
expressions displayed by one subject serving as the teaching
expresser along with subject’s physiological recordings; at the
testing stage, only the expresser’s facial actions are provided to
the observer. We recall that training entails parameter learning
to set up the latent core affect space, which is performed via
Variational Bayes optimisation of the Deep GP (embedding
core affect, facial action and autonomic state-spaces) and the
variational Kalman filter (visceromotor state-space). The so-
matomotor state-space relies upon an online filtering procedure
based on M-L estimation (accounting for prediction error
l̂E,l−ỹE,l), which does not require specific learning. The early
visual stage processing (landmark extraction) is trained offline
since independent of the nature of facial actions performed.

Dataset. Experiments have been conducted on the public
available dataset RECOLA [12] which is a multimodal cor-
pus of spontaneous collaborative and affective interactions in

French. Aiming at studying the impact of emotional feedback
on teamwork quality and efficiency, 46 participants took part
in the test where several multimodal data, i.e., audio, video and
physiological signals (specifically, electrocardiogram ECG,
and electrodermal activity EDA) were recorded continuously
and synchronously. In addition to these biosignals, 6 annota-
tors measured emotion continuously on the two dimensions of
arousal and valence.

Experimental setting. Given the dataset at hand, we con-
sider as physiological signals u(j)(t) the EDA, and the heart
rate variability (HRV), derived from the ECG, being a good
indicator of the autonomic nervous system. HRV is obtained
by measuring the variation in the beat-to-beat interval in ECG.
Since these kind of signals are dynamic and exhibit time-
varying statistics in both the time and frequency domain, in
all experiments we extract the features r(j)(t) (Eq. 23) using
discrete wavelet transform (DWT). This approach allows for
the analysis of non-stationary signals at multiple scales making
use of an analysis window to extract signal segments.

Procedurally, for EDA we perform a standard continuous
decomposition analysis aiming at unbiased scores of phasic
and tonic activity, thus retaining only the phasic data. In
regards to the HRV signal, once denoised the ECG signal,
we achieve the beat-to-beat fluctuations as RR-interval time
series from ECG using standard techniques [42]. After pre-
processing stage, including signal segmentation which divides
the signal into 4-sec overlapped windows, we select empiri-
cally a suitable level of Daubechies 3 (db3), following the rule
Lmax = (log2N)− 1, where N is the signal length, and we
retain only the approximate coefficients as feature vector both
for EDA and HRV, respectively.

During the learning stage, the resulting facial deformations
m(t) and autonomic states v(j)(t) are placed in the down-
most layer (h = 1) of a 3-layer deep GP model (cfr. Eqs.
17, 18), treated as different “modalities”. Such modalities
share the same latent space while keeping private some of
their dimensions, resulting at the h = 2 level in the aM (t)

and a
(j)
V (t) state-spaces, respectively. In this setting, the V/A

annotations, obtained as the result of the Evaluator Weighted
Estimator [43], perform the role of control variables c(t)
placed as inputs of the top layer (h = 3). The dimensionality
of such architectural setting is the following: r(j), p = 14;
v(j), k = d = 7; m, Nm = 11; m, v(EDA) and v(HRV )

are preprocessed through a standard PPCA stage [44] so that
the input Deep GP layer is partitioned in three subspaces,
each having dimension D = 4; action state-spaces aM (t) and
a
(j)
V (t) have dimension Q(2) = 2× 3, mirroring the Q(3) = 2

dimensional core affect state-space. The latter is chosen akin
to Russell’s core affect [11].

Experiment I. The aim is to assess the generative capability
of the system. To such end, in Fig. 6 we report the comparison
between the original multimodal data and their generation via
the learnt model on one subject’s session randomly chosen.
The experiment starts from a known V/A sequence in the
top layer, which is generatively propagated to the bottom
ones. For the sake of comparison, all the generated values
v(j)(t) and m(t) are brought to their original 1-dimensional
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representation. In the former case, the feature vector r(j)(t)
is obtained through Eq. 23 and, thanks to the orthogonal
property of the considered wavelet transformation, we are
able to generate back the physiological responses u(j)(t)
via inverse discrete wavelet transform (IDWT). In the latter
case, generated facial deformation controls m(t) are simply
reshaped according to the AU cardinality, Nm = 11, and
plotted against time as the corresponding ground truth.

To give a quantitative evaluation of the system generative
capability, we compute the mean square error (µMSE)
and mean Pearson’s correlation coefficient (µr), at the
0.05 significance level, between the ground truth and the
predicted sequences obtained as the result of 10 sampling
processes. In particular, for the EDA signal (Fig. 6a)
we obtained a µMSE = 0.2341 and a µr = 0.8829
(p < 0.001). A similar result is achieved also for the
HRV (Fig. 6b), where µMSE = 0.2755 and µr = 0.8618
(p < 0.001). In both cases the correlation is statistically
significant. Finally, for the action units activation values
(Fig. 6c), we obtained µMSE = 1.1011 and µr = 0.4419
as a result of evaluation over the 11 considered AUs,
where AUk , k = {2, 4, 5, 7, 9, 10, 15, 20, 23, 26, 45}.
The correlation coefficients were respectively rk =
{0.43, 0.24, 0.23, 0.07, 0.34, 0.38, 0.17, 0.24, 0.49, 0.87, 0.63}.
In all cases the p-value was under significance level (0.05),
apart for AU7 and AU15 where p = 0.57, 0.15, respectively.

(a) EDA signal (b) HRV signal

(c) Action Unit activation values. From top-left to bottom-right: AUk , k =
{2, 4, 5, 7, 9, 10, 15, 20, 23, 26, 45}

Fig. 6. Generation of a session of physiological signals u(j)(t) (a), (b) and
facial actions m(t) (c) (red) compared to the ground truth (dashed blue). In
shaded light blue the 95% prediction confidence interval.

Experiment II. The goal here is to evaluate the aptness
of the multimodal simulation-based mechanism to provide
the observer an internal core affect dynamics, which mirrors
that of novel expressers. In this case, the observer can only
rely on the visual information displayed by the expresser,
whilst autonomic activity is at this point “innate”, i.e. learnt
previously from an expresser different from the new ones.

SM SM-VM
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All
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Fig. 7. Results of Experiment II, for each of the considered settings:
only somatomotor route (SM), somatomotor and electrodermal routes (SM-
VMEDA), somatomotor and heart-rate routes (SM-VMHR) and all somato- and
viscero- motor routes.

This experiment has been conducted adopting a one vs. all
strategy. In order to assess the observer/expresser congruence
of the internal core affect state, at the learning stage, a model
for each subject of the RECOLA dataset is learnt; at the
testing stage, one learnt model is used as the observer, while
all the others are exploited as expressers interacting with the
chosen observer; this procedure is repeated for all subjects
in the dataset. The use of internal core affect values allows
a fair comparison, since, as made clear from the beginning,
the current model does not account for the cognitive level.
In fact, it is worth remarking, that “external” V/A values
are usually derived in psychological experiments through
attribution. This can be accomplished by experts (annotators)
as in RECOLA [12] or by participants themselves, who self-
report felt valence and arousal according to an established
protocol (e.g., [29]). Either way, affect attribution entails a
cognitive step, which is in principle out of the scope of the
model proposed here.

The interaction process is driven on the expresser’s side
by random sampling of internal core affect trajectories from
which via top-down forward sampling, visible and physio-
logical cues are generated (cfr. Fig. 5). The observer can
only rely upon expresser’s visible cues inferred from the
facial expression. Along the interaction, observer’s affective
dynamics unfolds as described in Algorithm 1.

In order to assess the effectiveness of the different visible
and hidden cues in determining an observer core affect state
(that is predictive of that of the expresser), four different set-
tings were adopted. In particular, we simulated the prediction
process by relying 1) only on the observer’s somatomotor route
(SM), 2) combining SM and the electrodermal route (VMEDA),
3) combining SM and heart-rate route (VMHR), 4) considering
SM and all available visceromotor routes VMEDA, VMHR. The
results, shown in Fig. 7, provide evidence of the importance of
physiological internal cues in the prediction of other’s internal
core affect state. In particular it is shown that for arousal, the
root mean square error (RMSE) value between expresser’s and
observer’s trajectories improves from 0.987 of the first setting
to 0.73 of the last one. A similar behaviour can be noticed
also for the valence, from 1.276 for the first setting to 0.987
for the “complete” setting.

Experiment III. We started out on the assumption that core
affect dynamics is consequent on the activity of a complex,
open system subject to stochastic variability resulting from the
many internal and external events, that influence it. Kuppens
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et al. [29] have remarkably shown that “external”, actually
observable V/A trajectories from a single subject, say eext(t),
can be modelled with an Ornstein-Uhlenbeck (OU, [45]) state-
space process. The OU process can be written in discrete time,
via the Euler-Maruyama representation of the continuous time
stochastic differential equations [31], as

e(t) = B (m− e(t− 1)) + D1/2εe(t− 1), (24)
eext(t) = e(t) + εeext(t), (25)

where m is a vector with two components and B and D are
positive-definite 2 × 2 matrices. The measurement error in
Eq. 25 is represented by εeext ∼ N (0,Σeext), i.e. random
draw from a bivariate normal distribution; the state error
εe ∼ N (0, I) derives from the standard bivariate Wiener
process. Equation 24 shows that the state dynamics is a mean-
reverting process with m playing the role of steady state or
attractor (the affective “home base” of the individual, [29]).

For the OU process we know the exact solution for the
stationary covariance kernel of Eq. 24, which is the expo-
nential kernel induced by the corresponding prior Gaussian
Markov process [31], [46]. We can thus perform standard GP
regression to learn kernel parameters and compute the exact
posterior process and make prediction on unseen data.

Under such circumstances, we can proceed analogously to
Experiment I. In this case at the learning stage we also learn
the e 7→ eext mapping (i.e., Eq. 24 parameters). Then, at the
testing stage, the observer’s internal core affect trajectories are
mapped into the external V/A trajectories and the latter are
directly compared with the corresponding dataset annotated
V/A sequences. In simple terms, we use Equation 24 as a
proxy for bridging the gap between the internal core affect
values and the cognitively attributed V/A values. Remark-
ably, the generative OU process driven by the observer’s
internal core affect predicts the external V/A behaviour of
the expresser. The mean Pearson’s correlation coefficients,
over all subjects, obtained for V and A are µV

r = 0.77 and
µA
r = 0.78, respectively (0.05 significance level, p < 0.001).

One typical example of the model fitting expresser’s external
V/A trajectory is shown in Fig. 8.

VI. DISCUSSION

Results of the first two experiments show that the modelled
observer after learning, is endowed with a core affect repre-
sentation that allows enactment, i.e. the activation within the
observer of the emotional state underlying the facial action of
the expresser, or a relevantly similar state. In turn, the genera-
tive capability of the model yields to mimicry; also, in the case
of overt facial mimicry, the continuous representation entailed
by the model, does not limit its expressive capability to the
six typical basic emotions, the output only being constrained
by the “faceware” of the addressed agent. Experiments bear
witness to the fact that exploiting a multimodal representation,
which is sophisticated to model the intricate nonlinear time-
varied relationships between the different modalities, provides
more accurate results than unimodal counterparts. This is
consistent with results reported in the affective computing

literature [47]. More important, it substantiates empirical find-
ings reported in the psychological literature, that impairments
in motor or limbic areas hamper the recognition of affective
expressions [10]. On the other hand, the fact that inducing a
concurrent motor load reduces expression understanding [48],
may have concrete relevance in designing actual agents, e.g.
robots. The third experiment indicates that the model can
predict some remarkable result obtained, at the psychological
level, by [29], namely, that empirical core affect trajectories
in the arousal/valence dimensions can be captured by an OU
process, reflecting the typical pattern of affective changes
and fluctuations that characterises an individual [29]. This
achievement should anyway be handled with caution. On the
one hand, we have bridged the gap between the core affect and
the cognitive levels by a straightforward regression procedure,
which is a proxy for the complex processes occurring across
levels. On the other hand, and more subtly, V/A values at
the behavioural level, used as a ground truth, are always the
empirical result of a human-based attribution process. The
latter, though performed with established protocols and tools,
is not granted in general to determine the very emotion felt
by others [49]. Such issue is an open problem and is largely
overlooked in the literature, and benchmarking procedures, e.g.
those borrowed from the computer vision community [50],
may turn to be inappropriate in these circumstances.

Mimicry (either covert or overt) that we have mainly
addressed here is assumed to be a privileged route to af-
fective empathy [6], [51]. However, the link to cognitive
empathy, which requires higher levels of cognition [52] is left
open. When coming to concrete fields of application such as
robotics, dealing with such issue can be crucial [6]. In general,
the integration of cognitive components compels attention
since the meaning of complex expressions may be context-
dependent. Yet, extending towards higher levels of cognition
can be done in a principled way relying on the probabilistic
framework we have set up (as discussed below). In brief,
the proposed model makes a step forward in the emergent
direction of going beyond detecting affect so to dynamically
responding to the sensed affect, thereby closing the affective
loop [47].

While addressing a flexible, embodied representation of
perceived facial actions, the model lends itself well to the task
of learning from few as possible examples; actually, in the
experiments reported here just one expresser example, much
like as in a mother/infant interaction. This can be particularly
advantageous in terms of learning performance. Realms where
the model could be applied (e.g. robotics, virtual agent design)
it is unlikely to deal with a huge amount of training data.
In Experiment II we have adopted a one vs. all strategy
to marginalise possible biases (either positive or negative)
depending on the chosen expresser. On the other hand in more
practical exploitations, such issue should be taken into account
when training for instance a model-based agent.

More generally, our work builds upon integrative knowledge
from various fields, combining current insights provided by
social and affective neuroscience [53] to the psychology of
emotion [9]. The premise of our model, i.e., that people engage
in motor simulation of each other’s emotional expressions
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(a.k.a., the Simulation-Theory, ST, account, but see Goldman
et al. [10]) has received considerable support [9], [54]. This
assumption is not without challenges [55]; however, findings
at the neurobiological level are likely to reconcile the initial
dispute between the ST and the Theory-Theory account (TT
or naı̈ve theory of mind) where the mindreader selects a
mental state for attribution to a target based on inference;
e.g., for facial expressions by direct mapping the representa-
tions of particular facial configurations to names for emotion
states [10]. Indeed, a simulation-based mechanism (mainly
concerning social detection) may be necessary in development
as part of the input to later theory-building relying upon
observer’s beliefs, judgment and reasoning (social evaluation
system) [52], [55]. What is clear is that perceiving an emo-
tional response of another person elicits the same emotional
response in ourselves, and cogently overt or covert mimicry
facilitates physiological and motor feedback inducing emotion
in the observer. Emotional contagion allows us to share the
emotion of the person we are observing, a prerequisite of
empathy [2], [51], [56], [57].

The construction of the theoretical model, in particular the
PGM structure, hinges on the distributed neural architecture
(Fig. 2) devised in Section II, which calls for symmetrical
and intertwined activities of somatomotor and visceromotor
components and shares many features with other contemporary
neural models of emotional unfolding, e.g. [28], [51]. As to
the implementation model, inference on states and parameters
mostly relies on the Variational Bayes optimisation procedure
that at heart depends on free energy maximisation [33]. A key
observation here is that the optimisation of the free energy in
stochastic input-output state-space dynamical systems involves
the optimisation of the prediction error on states and param-
eters, and this also holds when such systems are layered in a
hierarchical structure [58]. In such terms, the implementation
model can be conceived as realising a form of hierarchical
predictive coding [58], [59]. An alternative option could have
been an implementation of Bayesian inference relying upon
sampling, Monte Carlo based approximation [34]. The neural,
realisation level plausibility [13] of either approach is currently
matter of debate [34], [58].

Relations of our proposal with more technically oriented
computational models can be devised by considering the
areas of artificial intelligence (AI) oriented models, machine
learning-based models and robotics. As to AI oriented models,

work in this field does not specifically address the issue of
affective facial expressions; however, by and large (see the
in-depth review by Reisenzein et al. [3]) they do address
the theoretical level, by formalising emotion theories in an
implementation-independent formal language (e.g., [60]). The
implementation level concerns the instantiation of emotion
theories in general-purpose cognitive or agent architectures
(e.g., belief-desire-intention or BDI architecture). At the heart
of these proposals lies the TT approach; by and large the issue
of embodiment and the neurobiological basis of affect con-
struction. However, in a two-stage or hybrid perspective [52],
[55], a viable path to address the cognitive level could be
provided by probabilistic approaches [61], [62]. The latter
share with us the effort in devising a theoretical model, which
is well grounded in probabilistic structures at least informed
by psychological theoretical constraints.

Machine learning based analysis of facial affect has fostered
a wealth of approaches (for in-depth reviews, see [50] and
[47]). Overall, these approaches share the assumption that
understanding affective states from facial expressions can be
accomplished through direct mapping, in the form of a com-
puter vision and pattern recognition “pipeline” [50]: namely,
visual feature extraction/reduction followed by classification
(discrete emotion recognition) or regression (continuous affect
detection). For these approaches affect detection basically
boils down to a pattern recognition problem [47]. Remarkably,
facial expression analysis recognition plays an important role
[47], [50], [63], [64]. However, computational modelling as an
attempt to develop and validate computational models of hu-
man emotion mechanisms [3] is, in general, not at stake neither
at the computational theory level nor at the implementation
modelling level; ST approaches are by and large overlooked. It
is reasonable that, for specific applications (e.g., facial expres-
sion recognition on the Web [65] social behavioural biometrics
[66], etc.), systems that can conceivably perform the task of
direct mapping input data (image/video, physiological signals,
etc) to affective states (discrete or continuous via classifi-
cation/regression), need not to be biologically inspired, just
technologically capable of producing the desired output. Yet,
even in such cases this approach is not without challenges [67],
whilst in other contexts the assumption that understanding
affective states from facial expressions can be accomplished
through the classic “pipeline” [50] is at best questionable.

A different state of affairs is tangible in robotics, markedly
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in social robotics [6], [7]. Clearly, since part of the ability
to extract affective information from faces can be attributed
to visual expertise, current computer vision techniques can
provide flexibility and adaptivity to robotics systems [68]. Yet,
roboticists do address embodiment and enactment, though the
“bodyware” puts severe constraints (degree of freedom, real-
time, etc.) and limitations [7]. Asada argued that the design
of artificial empathy is one of the most essential issues in
social robotics [6]. Motor mimicry, mirroring mechanisms,
accounting for the functional roles of the amygdala and the
insula are among the essential requirements [6]. The effort
of embodiment has fostered valuable studies on the physical
grounding of emotion display and perception. Indeed, there
is a tradition of robotic research that utilised neuroscience
studies as a starting point, e.g. [69]–[71]. These approaches
led to accurate models of muscular-skeletal systems, and in
particular of facial features appearance [72], [73]. Early work,
e.g., by Ogata and Sugano [74], Breazeal and Scassellati
[75], has attempted to ground affective behaviour in robot’s
drives. By reason of “bodyware” being a major concern,
implementation models and architectures play prominent role;
the computational theory level is seldom addressed. However,
proposals that, prima facie, might seem very different at the
implementation level, can be reconciled at the theoretical
model level. For instance, a cross-modal, long-term associative
memory for encoding feelings has been proposed by Lim
and Okuno [76] in the shape of a Gaussian Mixture Model
(GMM), whose parameters are learned via the EM algorithm,
whilst [77] address a similar issue by resorting to a Self-
Organizing Map (SOM). Though apparently different at the
implementation level (SOMs being nothing but regularised
GMM (as formally shown in [78]), they basically involve
the same model when considered at the computational theory
level: emotion encoding as a discrete latent variable model
representation solving an (unsupervised) clustering problem.
These two significant works are thus related to work described
here (projecting into a latent space), albeit our core affect
state-space is a continuous one, and builds upon a more
complex, nonlinear implementation model (deep GP). In other
cases [77], [79], much like in machine learning approaches,
a direct mapping via deep neural networks is pursued, from
the latent space of affective expressions learnt in a bottom-up,
feed-forward sweep to facial gestures, synthetic speech etc.
Indeed the use of deep architectures, can lead to efficient im-
plementation models capable to handle the multimodal nature
of emotion [80]. Though, for the reasons we have discussed,
these can be hardly assumed as models tout court, and deep
networks per se should not be viewed as an implementation
model accounting for brain mechanisms [81].

An interesting departure from such trend has been put
forward by Horii et al. [49]. Their work builds on [80] and ex-
ploits a Restricted Boltzmann Machine (RBM) generative ar-
chitecture to actualise mental simulation for inferring emotion
from multimodal signals. This approach is the most related
to ours, at least at the implementation modelling level (deep
construction and simulation), whilst their theoretical model can
be assumed to coincide with the generative RBM description.
Multimodal signals are those arising from facial expressions,

hand movements, and speech, but rely on an acted dataset
(IEMOCAP) where facial expressions have been recorded with
a motion-capture system, thus avoiding cumbersome issues
related to actual processing of visual cues. Also, physiological
signals, a fundamental aspect of emotional unfolding, are not
taken into account. In other proposals, such as that by [82]
there is an attempt to address the computational theory level so
to frame a ST approach, but constraints from neuroscience are
overlooked. Motor representation is not explicitly addressed
and the latent space of actions is assumed as the affective space
tout court; only static images are considered and visuomotor
mapping is instantiated as a projection to a GP-LVM latent
space, which is achieved through a simple variant of the PCA.

A remarkable effort to bridge the different levels of ex-
planations is made in very recent work by Ahmadi and Tani
[83]. Though not directly addressing the issue of emotion,
cogently, they aim at framing in a general Bayesian setting
at the computational theory level, previous work (at the
implementation modelling level) on sensorimotor learning via
multiple timescale Recurrent Neural Network for robotic imi-
tative interaction with human subjects [84], [85]. Interestingly,
bridging across levels brings in the idea, that has recently
gained currency, of dealing with complex Bayesian inferential
steps via deterministic approximations. Exact inference on
directed nonlinear probabilistic models is typically intractable
due to the required marginalisation of the latent compo-
nent [33]. These circumstances are leading to the development
of probabilistic generative models relying on mainstream deep
neural networks, e.g. [86]–[90]. Such a strategy could also
be pursued to cope with a current limitation of our imple-
mentation model concerning scalability issues in the adopted
Deep GP architecture [89]. This is indeed related to backward
inference and should be taken into account when dealing with
larger datasets.

Another limitation of the model, referring to Fig. 2, is
that we are not currently considering the subcortical, dual
visual route from SC/Pulvinar to emotion-related structures
(e.g. the amygdala, cfr. light dotted projections). These short-
cut pathways are generally deemed to be important to rapidly
trigger emotional response before full-fledged processing of
the visual stimuli, although this assumption is not without
challenge [91], [92]. In our context, such information could
be used as an empirical Bayesian prior on the core affect
space [93] an aspect which has not been integrated in the
model.

Beyond current limitations, the probabilistic model pre-
sented here is an attempt to account for multimodal mirroring
and enactment mechanisms in a novel and unified way. These
are likely to be at the heart of face-based emotion understand-
ing and, more generally of affective interactions [8], [9], and
to gain currency in the design of artificial agents [6], [7].
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