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Renormalization Group Approach to the Critical Behavior of the Forest-Fire Model
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We introduce a renormalization scheme for the one- and two-dimensional forest-fire model in order
to characterize the nature of the critical state and its scale invariant dynamics. We show the existence
of a relevant scaling field associated with a repulsive fixed point. This model is therefore critical in the
usual sense because the control parameter has to be tuned to its critical value in order to get criticality.

It turns out that this is not just the condition for a time scale separation.

The critical exponents are

computed analytically and we obtain » = 1.0, 7 = 1.0 and » = 0.65, 7 = 1.16, respectively, for the
one- and two-dimensional cases, in very good agreement with numerical simulations.

PACS numbers: 64.60.Ak

The forest-fire model (FFM) [1,2] has been intro-
duced as a possible realization of self-organized critical-
ity (SOC) [3]. The model formulated first by Bak, Chen,
and Tang [1] contains a tree growth probability p and fire
spreading to nearest neighbors. In the limit of very slow
tree growth, this model becomes more and more deter-
ministic [4] and shows spiral-shaped fire fronts. For this
reason, the original model was modified by Drossel and
Schwabl [2] by introducing an ignition parameter f, the
lightning parameter. This parameter is the probability that
during one time step a tree without burning nearest neigh-
bors becomes a burning tree. In this case a critical behav-
ior, in the sense of anomalous scaling laws, is observed
in the double limit & = f/p — 0 and p — 0. These two
limits describe a double separation of time scales: Trees
grow fast compared to the occurrence of lightning in the
system and forest clusters burn down much faster than
trees grow. This means that each fire triggered by indi-
vidual lightning does not overlap with other fires; thus,
clusters destroyed by fire are well defined objects. The
critical state is characterized by a power law distribution
P(s) ~ s~ 7 of the forest clusters of s sites and the av-
erage cluster radius scale as R ~ 6~ ¥. Sine this criti-
cal state is reached independently on the initial conditions
and for a wide range of parameter values, it is called self-
organized critical state. This statement, however, is am-
biguous in that SOC refers to the tendency of large dy-
namical systems to evolve spontaneously in a critical state
without the fine tuning of any critical parameter. From
this point of view, the role played by the parameter 6 is
not clear. In fact, it seems an effective relevant parameter,
as the reduced temperature in thermal phase transitions, in
that it allows criticality just for its critical value § = 0.

Usually the limit § — O refers to the existence of a
slow driving of the system or, in other words, a time
scale separation, also present in the definition of SOC
models. It is worth stressing that in the SOC models
the requirement of a slow driving of the system is

0031-9007/95/75(3)/465(4)$06.00

essentially different. In this case, in fact, the time scale
separation just affects the lower cutoff of the avalanche
size distribution, the upper cutoff being affected by finite-
size effects [5]. In the FFM the parameter 6, on the
contrary, affects directly the upper cutoff [6] and then
it seems to play, in the language of ordinary critical
phenomena, the role of a relevant parameter.

In the context of renormalization group (RG) methods, a
self-organized critical phenomena can be viewed as a criti-
cal phenomenon in which all the parameters are irrelevant,
namely, the scale invariant dynamics corresponds to an at-
tractive fixed point in the parameter space (phase space).
To address the study of intrinsically critical phenomena,
we have developed the fixed scale transformation approach
to fractal growth and recently we have introduced an RG
scheme of novel type to study sandpile models [7,8].

In this Letter we follow the same ideas in order to
study the FFM, including the ignition parameter f. This
allows us to clarify the role of the critical parameters 6
and p and the nature of the critical state. In fact, we
obtain that 6 is the relevant control parameter, so that the
FFM belongs more to the rich domain of ordinary critical
phenomena than to self-organized critically. In addition,
we are able to compute analytically the critical exponents
characterizing the modelind = 1 and d = 2.

For the sake of clarity, we recall briefly the dynamical
rules of the model we are going to discuss. At each
time step the lattice is updated as follows: (i) a burning
tree becomes an empty site; (ii) a green tree becomes a
burning tree if at least one of its neighbors is burning; (iii)
at an empty site a tree can grow with probability p; (iv) a
tree without burning nearest neighbors becomes a burning
tree with probability f.

Starting with arbitrary initial conditions, the system
approaches, after a short transient, a steady state the
properties of which depend on the parameter values. Let
po, p1, and py be the mean densities of empty sites, of
trees, and of burning trees, respectively, in the stationary
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state. These probabilities describe in full generality the
stationary properties of the model, while, as for the
dynamical properties, we will refer to a phase space
defined by the parameters p and # = f/p. In such a
scheme p and 6 parametrize the dynamics of the system.

We should now extend the characterization of the
stationary and dynamical properties of the system at a
generic scale b®) = by2% by considering coarse-grained
variables p®), f®) and p*) = (P(()k)’pgk),p;k)). In the
following we will mainly refer to the two-dimensional
case, but the entire procedure can be drawn also in
the one-dimensional case. The stationary properties of
coarse-grained variables are defined as follows (Fig. 1):
A cell of size b is considered as “green” if it is spanned
from left to right by a connected path of green sites at
scale »*~1. On the other hand, a cell is empty if it is
not spanned by a connected path of green sites. Finally,
we consider a cell as burning if it contains at least one
burning tree. In the latter case the spanning condition
is not necessary because the fire spreads automatically
to nearest neighbor sites. Consequently, the dynamical
properties of the coarse-grained description of the system
will be characterized by the variables p®*) and %) =
f®/p®  The first variable expresses the probability that
an empty cell of size »*) becomes a green tree. The
second one is defined using the probability f*) that a
green cell of size b(*) becomes a burning cell because of
the arrival of a lightning event.

We now proceed to define a renormalization transfor-
mation for the dynamical variables. We will use a cell-
to-site transformation on the square lattice, in which each
cell at scale b is formed by four subcells at scale b/2.
Every cell at the larger scale is then characterized by a
number of green and empty subcells ranging from one to
four. The relative weight of each green configuration is
given by the probability to have the corresponding num-
ber of green and empty subcells

Wal(p) = napdpi ®, (1)

where « is the number of empty subcells and n, is a
normalization factor that takes into account the multiplic-
ity of the configurations. In order to define a renormal-
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FIG. 1. Configurations of sites at scale »*) corresponding to
a green cell at scale b**1,
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ization transformation we start with an empty or green
cell configuration at scale » and study how it evolves
using the dynamical rules of the model. Here we con-
sider a transformation defined by the following rules: (i)
Every series of tree growth processes at scale b/2 that
span an empty cell at scale » in the horizontal direction
is renormalized in the growth probability p at scale b.
(ii) Every lightning process at scale »/2 that affects a
green cell of scale b contributes to the renormalization
of the lightning probability f. The spanning rule implies
that only tree growth processes extending over the size
of the new length scale contribute to the renormalized
dynamics. Moreover, it ensures the connectivity proper-
ties of the green sites in the renormalization procedure.
An example of such a renormalization procedure for the
lightning probability is shown in Fig. 2 for the simplest
calculation scheme, i.e., 2 X 2 cells with left-right span-
ning condition. We have two possible processes depend-
ing on whether both or just one green subcell is hit by
a lightning event. The first case occurs with probabil-
ity 2f®)(1 — f®), the latter with probability ( f*))2. By
summing these probabilities one obtains the renormaliza-
tion equation for the configuration with & = 2. We can
write a renormalization equation for each configuration «
corresponding to a green site, and averaging over all the
configurations we obtain

4
FlerD — Z W fEFD), 2
a=2
with
f§k+1) = 0@ - 0y,
f§k+l) — fR[3 = 370 4 (FRN2], 3)
f§k+l) _ f(k)[4 _ 6f(k) + 4(f(k))2 _ (f(k))3].

In an analogous way we can write the renormalization
equations for p**1D. Let us consider an empty cell at
scale b of type a« = 2 (see Fig. 3). After an updating
step, the cell will become green if at least one of the two
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FIG. 2. Example of two processes contributing to the renor-
malization of the lightning probability f**1,
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FIG. 3. Example of renormalization of the growth parameter
(k+1)
p .

empty subcells has become green. This occurs with prob-
ability ( p®)2 and 2p® (1 — p®), corresponding to the
fact that both or only one subcell become green, respec-
tively. In a similar way one can also write a renormaliza-
tion equation for each configuration a corresponding to
an empty site, and finally averaging over all the configu-
rations we obtain

2
p(k+l) _ Z WapékJr]), 4)
a=0
with
(k+1)
o =2 - (pM7,
(k+1)
1= pOI+ p® = (p®), (5)
(k+1)
$0 = pB — p®),
From the previous equations it is then straight-
forward to obtain the renormalization equation

ekt = flk+1) /p(k+1) - These renormalization equations
are not yet complete because the statistical weights W,
are functions of the density vector p*. In fact, in order
to describe the stationary critical state it is necessary to
couple the dynamics to a stationarity condition that gives
the renormalization equations for the density vector. This
scheme is similar to that used in Ref. [8]. The stationarity
condition is obtained from the master equations for the
density vector in the mean field regime by imposing the
asymptotic equilibrium condition (¢ — ) [9,10],
po’ = (1 = pi")a®/p®,
®) a®)
1 (k) s
OB p®) + 440 — R p7(2d — 1)
®) _ o 0y k)
p2 = (1 = p;)a",

where we defined a® = p®) /(1 + p®), with the nor-
malization condition p§’ + p\ + pS = 1. The sta-
tionarity condition, summarized in (6), provides the renor-
malized density vector at each scale, and it couples the
dynamical properties to the stationary ones. It is worth-

I

(6)

while to remark that we do not determine the RG equa-
tions for p from the coarse-graining prescriptions. In fact,
the stationary properties have to be evaluated consider-
ing the average over many dynamical processes. Thus
the densities p are determined from the renormalized dy-
namical description of the system, namely, Eqs. (6) with
renormalized parameters. Note also that the RG equations
are written in the hypothesis of a double time scale sepa-
ration: Fire spreading and tree growth are not interacting.
This is expressed by the consistency relation p < 1/T(€),
where T(£) is the average time needed to burn a clus-
ter of characteristic size £. Since T(£) ~ &%, where z
is the dynamical exponent and & ~ (f/p)~ ", we have
that T(£) ~ (f/p)~" with v/ = vz. Our RG approach
is then suitable to describe what happens in the region of
the phase space ( p, 8) defined by the condition p < "',

Given this scheme, we can find the fixed points of
the renormalization transformation by studying the flow
diagram in the phase space of the parameters (p, p,6).
In two dimensions the RG equations show the fixed
point p* =0, #* = 0, and p* = (%,%,0). A complete
characterization of the fixed point is obtained by the
linearized RG equations around p*, 6%, and p*. We
find only one relevant scaling field that corresponds to
an eigenvalue greater than 1, which is given by

dg(kJrl)

N *)
de .

(7

Therefore, we have that the fixed point is repulsive in
the 6@ direction, which of course defines the relevant
control parameter. Since the fixed point is repulsive, we
can determine the exponent of the clusters characteristic
length by using the largest eigenvalue, i.e., ¥ = In2/InA.
We obtain v = 0.73 by using the simple 2 X 2 cell
renormalization scheme. We can easily improve the
results with a 3 X 3 cell calculation, which gives v =
0.65, showing that the numerical result converges to the
right value with the refined renormalization scheme. The
exponent v describes the divergence of the correlation
length by R ~ 677 and the value obtained is in good
agreement with the value » = 0.58 measured in [6,11].
In this perspective the parameter 6 = f/p plays the
role of the relevant critical parameter as the reduced
temperature in the thermal phase transitions. For each
value of 6, small but finite, the system shows an upper
characteristic length in the cluster distribution. Only
for 6* = 0 is the system critical and shows an infinite
correlation length.

The exponent 7 describing the distribution of fire
spreading can be obtained as follows. The fires are
represented by the clusters of connected sites interested
by a burning process. As in Ref. [8] we define K as the
probability that an active relaxation process (i.e., fire) is
limited between the scales »*~1 and »®*) and it does not
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extend further:

p*) o0
K — j P(r) dr / ] P(dr,  ®
pk—1) pk-1)

where P(r) dr is the probability to have a burning cluster
with a radius between r and r + dr. In two dimensions
with simple scaling arguments we can conclude that if
P(s) ~ s~ 7 and s ~ r? (compact clusters), then P(r) ~
r!1727. Inserting this expression into Eq. (8) we obtain
(ind =2)7=1—-1In(l — K)/2In2. In our case K is
the probability that at a generic scale (k) all the nearest
neighbors of a burning tree are empty and then K =
1 - pgk))“. In the scale invariant regime (pgk) = pl),
K = 0.1975 and then we obtain for 7 the value 7 = 1.16
in excellent agreement with very accurate simulations
performed by Grassberger [6].

Along the same lines it is possible to compute also
the dynamical exponent z, and then from scaling laws
[11] the remaining critical exponents that characterize the
FFM model [12]. Our approach can be naturally extended
to the one-dimensional forest fire. We can follow the
scheme used previously, and along the same lines it is
possible to compute the exponents » = 1.0 and 7 = 1.0,
which recover the exact results for the one-dimensional
case obtained in Ref. [13]. We summarize our results
for the one- and two-dimensional cases in Table I. De-
tails of the one-dimensional calculation as well as the two-
dimensional case will be reported in Ref. [12].

In conclusion, we introduce a novel RG approach suited
to study the critical state of the forest-fire model. We
identify the structure of the phase space in which the
RG transformation is constructed and then we introduce
the coupling of the renormalization equations with the
asymptotic stationarity condition of the systems. By
studying the evolution of the system under scale change,

TABLE I. Our results summarized for the critical exponents
compared with exact [13] or numerical (simulation) results
[6,11].

d=1 v z T
RG scheme 1.0 1.0 1.0
Exact results 1.0 1.0 1.0
d=2
RG scheme (2 X 2) 0.73 1.17
RG scheme (3 X 3) 0.65 1.02
Simulations 0.58 1.04
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we stress the existence of a relevant parameter, 6, namely,
corresponding to a repulsive fixed point for the RG
equations. In this sense, # is the critical parameter of
the model, and the critical state is reached only with a
fine tuning of @ to its critical value. The existence of
this parameter, given by the ratio between the driving
rate of the system f and the trees growth rate p, places
the FFM in the field of ordinary critical phenomena. In
fact, it is worthwhile to stress that in sandpile models the
same RG analysis [8] shows that no relevant parameter is
present, namely, the fixed point is completely attractive,
and the slow driving of the system does not affect the
infinite correlation properties but only the lower cutoff of
distributions.
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interesting discussions.
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