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SUMMARY

Chromosome replication initiates at multiple repli-
cons and terminates when forks converge. In
E. coli, the Tus-TER complex mediates polar fork
converging at the terminator region, and aberrant
termination events challenge chromosome integrity
and segregation. Since in eukaryotes, termination is
less characterized, we used budding yeast to identify
the factors assisting fork fusion at replicating chro-
mosomes. Using genomic and mechanistic studies,
we have identified and characterized 71 chromo-
somal termination regions (TERs). TERs contain
fork pausing elements that influence fork progres-
sion and merging. The Rrm3 DNA helicase assists
fork progression across TERs, counteracting the
accumulation of X-shaped structures. The Top2
DNA topoisomerase associates at TERs in S phase,
and G2/M facilitates fork fusion and prevents
DNA breaks and genome rearrangements at TERs.
We propose that in eukaryotes, replication fork
barriers, Rrm3, and Top2 coordinate replication
fork progression and fusion at TERs, thus counter-
acting abnormal genomic transitions.

INTRODUCTION

Chromosome replication initiates at multiple origins that fire

throughout S phase. Following origin firing, the replication forks

move bidirectionally until they fuse with forks coming from

adjacent origins (Edenberg and Huberman, 1975). In E. coli,

chromosome termination takes place within a broad region

containing several Tus-TER complexes, specialized polar fork

barriers confining fork fusion to a site of 270 kb (Duggin et al.,

2008). In eukaryotes, replication termination appears to occur

randomly within a 4 kb zone (Greenfeder and Newlon, 1992a;

Zhu et al., 1992). Two of the three termination regions identified

in yeast contain fork pausing elements (Greenfeder and Newlon,
Mo
1992a). Certain loci, such as the RTS1 region and the rDNA

locus, exhibit specific termination sites (Brewer and Fangman,

1988; Dalgaard and Klar, 2000). Within these regions, special-

ized replication fork barriers (RFBs) mediate termination in an

orientation-dependent manner, arresting one of the two forks.

Fork pausing can destabilize the fork, and RFBs can be associ-

ated with chromosome breakage and genomic rearrangements

(Kobayashi, 2006; Lambert et al., 2005). Replication forks

frequently stall at centromeres (CENs) (Greenfeder and Newlon,

1992b), replication slow zones (RSZs) (Cha and Kleckner, 2002),

tRNA genes or Ty elements (Admire et al., 2006; Lemoine et al.,

2005), and regions where collision of transcription and replica-

tion occurs (Azvolinsky et al., 2009; Deshpande and Newlon,

1996; Tuduri et al., 2009). The helicase Rrm3, a component of

the replisome, facilitates fork progression through nonhistone

protein-DNA complexes (Ivessa et al., 2003).

Catenated intertwines can arise when two replicons fuse

together (Fields-Berry and DePamphilis, 1989; Wang, 2002).

In vivo and in vitro studies have implicated both type IA (Top3)

and type II (Top2) topoisomerases in replication termination

(Baxter and Diffley, 2008; Cuvier et al., 2008; DiNardo et al.,

1984; Suski and Marians, 2008; Wang, 2002). Top3 has been

involved in the resolution of sister chromatid junctions, which

have also been related to termination structures (Branzei et al.,

2006; Chan et al., 2009). Top2 associates with chromosomal

regions during S phase (Bermejo et al., 2007) and localizes at

CENs in metaphase (Bachant et al., 2002). Cells lacking Top2

experience DNA breakage upon cell division (Holm et al., 1989).

We investigated whether in eukaryotes termination occurs

at specific chromosomal loci. To identify the chromosomal

termination regions, we used genomic approaches to monitor

replication fork progression and fusion.We identified 71 termina-

tion regions (TERs) with an average length of 5 kb. TERs contain

fork pausing elements. Rrm3 assists fork progression across

TERs, and in rrm3D cells, X-shaped intermediates accumulate

at TERs. Top2, but not Top3, facilitates fork fusion and the reso-

lution of the topological constraints at TERs. In top2 mutants,

TERs accumulate breaks and rearrangements.

Together, our results contribute to elucidating themechanisms

coordinating chromosome replication termination in eukaryotes

and those cellular pathways that control the integrity of TERs.
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Figure 1. Replication Fork Dynamics and Fusion

(A and B) WT (sy2201) cells were arrested in G1 and released in S phase with BrdU in three different sets of experiments (untreated 16�C, HU, and HU recovery).

Orange histogram bars (BrdU) in the y axis represent the average signal ratio of loci significantly enriched in the immunoprecipitated fraction (IP) along

the indicated regions in log2 scale (detection p value and change p value are < 0.001; light orange bars should contain at least ten contiguous probes with

a p value < 0.001). The x axis shows chromosomal coordinates.ARS elements are indicated (red lines), and the blue bars mark the ORFs. Examples of fork move-

ment monitored by BrdU incorporation at ARS305 with methods 1, 2, and 3 are shown in (A). See Table S2 for the list of the origin-related BrdU peaks. Visual-

ization of three TERs using the three methods is shown in (B). Red bars indicate TERs. Replication origins and experimental conditions are shown. The green line

indicates the centromere. See Figure S1 and Table S3 for TER sizes and positions.
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RESULTS

Genomic Approaches to Identify TERs

We used chromatin immunoprecipitation (ChIP)-chip and bro-

modeoxyuridine (BrdU) incorporation (Katou et al., 2003) to

monitor with time the movement of the BrdU peaks arising

from origins of replication and progressively invading adjacent

chromosomal regions. With this approach, we were able to iden-

tify those chromosomal areas where two fork-related BrdU

peaks converged. We defined as termination zones (TERs) the

minimal unreplicated regions flanked by BrdU peaks arising

from adjacent origins of replication. It is expected that the fork

fusion sites would lie somewhere within TERs. To maximize

cell synchronization, we performed our experiments at low

temperature or in the presence of hydroxyurea (HU) to slow

fork progression. Three sets of experiments were performed

(Figure 1A): (1) WT (Table S1) G1 cells were released in BrdU at
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16�C, and samples were taken every 10 min for 1 hr; (2) G1 cells

were released in BrdU and HU at 23�C, and samples were

collected every 30 min for 3 hr; and (3) G1 cells were released

in HU for 90 min and then in fresh medium with BrdU at 23�C.
Samples were taken every 10 min for 90 min. Under these condi-

tions, we specifically monitored termination of those forks arising

from late origins.

Consistent with previous analyses (Raghuraman et al., 2001;

Yabuki et al., 2002) (http://www.oridb.org/index.php), we identi-

fied 146 BrdU peaks corresponding to early origins and 83 to

late origins (Table S2). We also identified 71 TERs with an

average length of 5 kb (Figure S1 and Table S3). We excluded

from our analysis the regions containing BrdU peaks close to

telomeres and those termination areas that were either too large

or not well defined. Some TERs were previously described or

inferred from previous analysis (Greenfeder and Newlon, 1992a;

Raghuraman et al., 2001; Zhu et al., 1992).

http://www.oridb.org/index.php


Figure 2. Identification of Pausing Elements

at TERs

TER1202 (CHRXII), TER1102 (CHRXI), and

TER1005 (CHRX) are shown as examples. BrdU-

labeled forks are indicated in orange and derive

from the analysis carried out in strain sy2201 using

the conditions for experiment 1 (TER1102) or

experiments 2 and 3 (TER1202 and 1005), respec-

tively. In each panel, the top part shows the exten-

sion of fork movements (black arrows) at the indi-

cated time points based on BrdU data. In each

panel, the bottom part represents a selected

time point when forks reach the TER area. The

black circle within TER1202 indicates the centro-

mere. The green peaks in the bottom part of the

TER1102 panel indicate the S phase clusters of

the Pol III subunit Rpc25 using strain cy8735.

The blue peaks in the bottom part of the

TER1005 panel indicate the S phase clusters of

the Pol II subunit Rpb3 using strain cy8519 (see

Experimental Procedures for details). Red arrows

indicate transcription direction. Red bars mark

the TER zones. The Venn diagram shows the

relative number of TERs containing centromere

(orange), Pol II (blue), and Pol III (green). See also

Table S4 for a list of TERs containing pausing

elements.
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We then investigated whether fork termination at the 71 TERs

correlated with loci or events that could potentially interfere with

fork progression. Since polymerase (Pol) II- and III-mediated

transcription interferes with replication (Azvolinsky et al., 2009;

Deshpande and Newlon, 1996; Olavarrieta et al., 2002), we per-

formed in S phase ChIP-chip analysis of Rpb3 and Rpc25, which

are subunits of RNA Pol II and III, respectively. The S phase

enrichment of Rpb3 at mRNA genes or of Rpc25 at tRNA genes

and long terminal repeats (LTRs), besides revealing transcription

activity, may also mark potential fork pausing regions. We

included in our analysis also those pausing elements that have

been previously annotated (such asCENs,RSZs, and noncoding

RNA genes) (Cha and Kleckner, 2002; Deshpande and Newlon,

1996; Greenfeder and Newlon, 1992b). Almost all TERs contain

one or more potential replication pausing elements (examples

in Figure 2 and Table S4). In fact, in 64 of 71 cases, the TER zones

contained transcription clusters, and in 7 of 71 cases,CENswere

located within TERs. We did not detect obvious features in 4 of

71 TERs, although in these cases transcription clusters were

within a range of 1–3 kb away from the TER zones (asterisk in

Table S4). Overall, 67 of 71 TERs contained one or more pausing

elements that might affect fork progression (Table S4). The asso-

ciation between pausing elements and TERs is greater than

random (p = 0.00021) (Table S5).

Yeast replication pause sites have been identified by mapping

the high-occupancy sites of DNA polymerase 3 (Pol3) in WT and

rrm3D cells (Azvolinsky et al., 2009). We found that 47 of 71 TERs

correlate with high-occupancy Pol3 sites observed in WT and/or

in rrm3D mutants, further suggesting that the replisome physio-

logically stalls at TERs (Figure S2 and Table S4).

At TERs, in most of the cases, transcription was on a head-on

orientation with only one of the two converging forks, even at
Mo
those TERs that contained more than one transcription cluster.

Even if we cannot always predict which of the two converging

replication forks is slowed down, we notice that in 62 of 71 cases,

the pausing elements could slow either the left or the right forks,

but not both (Figure 2 and Table S4). This includes the four

TERs in which the pausing elements were adjacent (asterisk in

Table S4) and five out of seven CEN-containing TERs where

one of the two forks reaches the CEN before the other. Out of

the nine remaining TERs, in two cases (TER704 and TER1604),

the right and left forks seemed to converge at CENs simulta-

neously; in one (TER1503), the polarity was dubious; and in six

cases (TER304, 702, 801, 1101, 1601, and 1602), termination

was associated with two divergent Pol III-transcribed units that

potentially paused both converging forks.

Rrm3 Is Required for Fork Progression across TERs

We used 2D gels to visualize replication intermediates at TERs in

WT and rrm3 cells (Figures 3 and S3, Table S4, and data not

shown). The visualization of replication termination intermedi-

ates is hampered by their fast turnover and by fork velocity.

We found that the best approach to visualize termination struc-

tures is the 2D gel technique coupled with psoralen-crosslinking

treatment. These procedures maximize the visualization of the

intermediates resulting from the converging of the two forks

while selectively resolving fork-related cruciform intermediates

(Lopes et al., 2003; M. Lopes andM.F., unpublished data), which

are unrelated to replication termination and might interfere with

the visualization of termination structures. We focused on two

classes of TERs, those with (21 of 71) Rrm3-dependent pause

sites, such as CENs and tRNA genes, and those without (46 of

71), which correlate with the presence of Pol II clusters (Azvolin-

sky et al., 2009).
lecular Cell 39, 595–605, August 27, 2010 ª2010 Elsevier Inc. 597



Figure 3. Rrm3 Contributes to Fork Progression

across TERs

(A–C) WT (sy2209) and rrm3D (cy6807) cells were pre-

synchronized in G2 with nocodazole and released in a factor.

Cells were then released in S phase at 23�C, and samples

were collected at 40 min. Genomic DNA was analyzed by 2D

gels. Schematic representations of the different fork pausing

and termination signals are shown. The red letters in (B) indi-

cate double Y and Xs, respectively. The red numbers indicate

pausing sites (see text for details). Relative BrdU maps,

restriction digestion strategy, and 2D gel quantification are

shown in Figure S3.
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In WT cells, at TER704, two spots (1 and 2 in Figure 3A)

appeared on the Y-arc, reflecting fork pausing at CEN7. We

also observed a diffuse termination cone signal with a defined

X-spot (3), likely reflecting delayed termination at CEN7. rrm3D

cells exhibited an increase in the intensity of Y- and X-spots,

consistent with their role in facilitating replication across pause

sites (Ivessa et al., 2003). We obtained analogous results in

other CEN-associated TERs (TER402, 1504, and 1604) (data

not shown).

TER603 contains a tRNA gene, and WT cells accumulated

a pausing signal on the Y-arc (1 in Figure 3B) (Deshpande and

Newlon, 1996) and termination intermediates (a). In rrm3D cells,

the intensity of the Y-spot increased and another pause signal

appeared (2) because Rrm3 facilitates fork progression even at

tRNA genes transcribed codirectionally with the fork (Ivessa

et al., 2003). rrm3D cells also exhibited a transition of the termi-

nation intermediates from a double-Y conformation (a) to an X

conformation (b) (Figure 3B). Moreover, an asymmetric X-spot

accumulated (3) due to termination at the tRNA site.We obtained

analogous results with TER1102 and 1503 (data not shown).

The accumulation of X-shaped converging forks in rrm3D cells

may result from slowing down of one of the two forks at a pause

site, which is thenmore likely to become a termination site as the

other converging fork approaches. However, this does not rule

out that Rrm3 might also directly assist fork fusion later at termi-

nation.

The majority of TERs, including TER102, contain a Pol II-tran-

scribed gene that slows down forks independently of Rrm3

(Azvolinsky et al., 2009). Fork pausing throughout highly tran-

scribed RNA Pol II genes is not confined to specific sites and

occurs over the entire ORF region (Azvolinsky et al., 2009;
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Bermejo et al., 2009); thus, it does not always gene-

rate obvious discrete spots on the Y-arc of the

2D gel. While WT cells accumulated at TER102

a cone signal due to random termination (Fig-

ure 3C) (Greenfeder and Newlon, 1992a), rrm3D

mutants accumulated Xs. A possible interpretation,

although not exclusive, is that these X-shaped

molecules result from the impaired fusion of

converging forks. Indeed, partially replicated

double-Y termination intermediates are progres-

sively converted into fully replicated Xs and then

into replicated linear molecules (Figure 3C). While

inWT cells, the conversion of Xs into linear interme-
diates is likely very fast, as X molecules do not accumulate,

rrm3D cells might be delayed in this termination step since these

unresolved termination structures accumulate and persist during

S phase. Similar results were seen for TER101, 202, 301, 502,

601, 902, 1002, 1005, 1303, and 1608 (data not shown).

X-shaped structures can also arise as a result of recombina-

tion (Liberi et al., 2005; Schwacha and Kleckner, 1994). We failed

to observe a significant difference between the level of Xs at

TERs in rrm3D and rrm3D rad51D mutants, thus suggesting

that these X-structures did not arise from recombination (data

not shown). Moreover, the X-shaped structures were detected

at TERs but not at TER-flanking regions (data not shown), further

suggesting that they are related to termination events.

In conclusion, we analyzed by 2D gel 20 TERs corresponding

to the three classes of TER. In all of them, termination intermedi-

ates were visualized, thus validating our genomic approaches.

Moreover, in all 20 cases, termination signals were enhanced

in the absence of Rrm3, even at those TERs that do not contain

obvious Rrm3-dependent pausing elements.

Top2 Is Recruited at TERs and Facilitates Replication
Termination
Top1, Top2, and Top3 move with forks (Bermejo et al., 2007)

(data not shown). Topoisomerases might approach TERs by

traveling with the forks or associate with TERs before or after

the arrival of converging forks. The presence of topoisomerases

at TERs may not be confined to S phase, as topological

constraints could persist after S phase (Fields-Berry and

DePamphilis, 1989; Holm et al., 1985). We investigated by

ChIP-chip the presence of Top2 and Top3 at TERs, both in S

and in G2/M cells.



Figure 4. Top2 Is Required for Efficient

Replication Termination

(A) The ChIP-chip data are described as in Fig-

ure 1. Top2-10Flag (cy7315) cells were arrested

in G1 with a factor and released at 23�C in the

presence of HU for 1 hr or in the presence of noco-

dazole for 3 hr. Samples were collected at the indi-

cated time points and processed for ChIP-chip

analysis. As a control, we show the BrdU maps

(in orange) that correspond to forks that have

experienced 1 hr in HU. Green histogram bars

represent the Top2 clusters in HU (IP-Top2 HU),

and the blue ones indicate the Top2 clusters in

nocodazole (IP-Top2 N). Red bars indicate the

TER zones.

(B) WT (sy2201) and top2-1 (cy7421) cells were

released from a factor in YPD with BrdU and HU

at 37�C for 1 hr. BrdU maps of WT cells experi-

encing HU treatment at 23�C are also shown.

Red bars indicate the TER zones. List of TERs con-

taining Top2 clusters is shown in Table S4 and the

relative statistical analysis in Table S5.
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Cells were released from G1 in HU or nocodazole. No enrich-

ment was observed for Top3 at TERs under both conditions

(data not shown). Top2 clusters were observed in S phase and

G2/M but not in G1 (Bermejo et al., 2007). The majority of

S phase Top2 clusters are related to fork-associated Top2 and

S phase-transcribed genes (Bermejo et al., 2009). We found

that Top2 associates with 51 of 71 TERs in HU (p = 0.00047)

and in 55 of 71 in nocodazole (p = 0.0065) even at those TERs

that do not contain transcription units (Figure 4A and Tables

S4 and S5). We obtained similar results when S phase cells

were grown with a different carbon source (53 of 71, p =

0.0000056) (Tables S4 and S5). We failed to visualize Top2 in

4 of 71 TERs. Hence, Top2 associates with the majority of

TERs before fork arrival and persists in G2/M.

We then investigatedwhether fork fusion at TERswas affected

in top2 mutants. We analyzed the convergence of the BrdU-

labeled forks in WT and top2 cells released from G1 into HU at

the restrictive temperature for 1 hr. Only TERs within an interor-

igin spacing of %20 kb could be considered for this analysis.

While WT cells efficiently completed replication at TER102,

103, 201, 403, 404, 902, 1005, 1202, 1302, 1401, and 1604

(Figure 4B and data not shown), in top2 mutants, the same

TERs exhibited unreplicated regions with an approximate size

of 1 kb. Since in top2 mutants the timing of origin firing is not
Molecular Cell 39, 595–605
delayed compared to WT cells (Bermejo

et al., 2007), this result suggests that the

replication of the last 1 kb at TERs is

somewhat limiting in top2 cells, perhaps

due to the topological constraints gener-

ated at the point where forks converge.

In support of this conclusion, kinetics

analysis showed that within the same

replicon, specifically the fork experi-

encing termination was delayed, but not

the other one (data not shown). This
observation further confirms previous findings indicating that

sister replication forks can be uncoupled (Doksani et al., 2009;

Wang et al., 2008). Replication termination at TERs was delayed

but not prevented in top2 mutants, as the forks converged later

on (data not shown).

In top2 mutants, at the restrictive temperature, the chromo-

somes remain entangled and undergo breakage during cell

division, as shown by pulse field gel electrophoresis (PFGE)

(Figure 5A). Conversely, we failed to detect obvious differences

between WT and top3 mutants. We then investigated in top2

cells by PFGE a 109 kb EagI fragment of CHR III that includes

two TERs between ARS305 and ARS307. In WT cells, the

genomic fragment was fully replicated by 1 hr, while in top2

mutants it remained in the wells even at 4 hr and later accumu-

lated DNA breaks (Figure 5B). The appearance of DNA breaks

correlated with the decrease of the signal in the wells. We note

that in top2 mutants at 37�C, the nocodazole block persists for

no more than 3 hr (Figure S4A). Again, we failed to visualize

entangled chromosomes and double-strand break (DSB) forma-

tion in top3 mutants. To address whether at least a fraction of

DNA breaks in top2 mutants may be related to abnormal

termination, we deleted ARS305 and ARS306 to prevent fork

fusion in the EagI fragment. DSB formation in top2-1 ars305D

ars306D, compared to top2-1 mutants, was reduced about
, August 27, 2010 ª2010 Elsevier Inc. 599



Figure 5. Top2 Is Required for Chromosome Resolution

(A) WT (cy7627), top2-1 (cy7671), and top3Y356F (cy7629) cells were arrested in

G1 with a factor and released in S phase in YP + Gal at 37�C in the presence of

nocodazole. Genomic DNA was extracted in agarose plugs at the indicated

time points. Yeast chromosomes were separated by PFGE and analyzed by

Southern blotting with the TER302 probe. M indicates the chromosome

marker. DSBs indicate double-strand breaks.

(B) Agarose plugs were digested with EagI. Schematic representation of the

analyzed region is shown.

(C) WT (cy7627), top2-1 (cy7671), and top3Y356F (cy7629) were released in

S phase at 37�C, and different samples (30, 40, and 50 min) were pulled

together to increase the chance to visualize the replication intermediates.

DNA (30 mg) was digested with HindIII and PstI and analyzed by 2D gels using

TER302 probes. FACS, PFGE, and 2D gels are also shown in Figure S4.
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3-fold at the EagI fragment but not at other regions (Figure S4B

and data not shown). The residual breaks are likely due to faulty

coordination between replication and transcription (Bermejo

et al., 2009) and/or to rare termination events perhaps resulting

from firing of the dormant ARS302-303-320 origins cluster

(Wang et al., 2001), although we failed to detect by 2D gel any

obvious bubble structure under our conditions.

We then analyzed the replication intermediates at TER302 in

WT, top3, and top2 cells at the restrictive temperature
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(Figure 5C). WT cells exhibited Ys but no obvious termination

structures, perhaps because of their fast turnover at 37�C. We

note that termination structures can be seen in the same region

in WT cells at 23�C (data not shown). top3mutants exhibited 2D

gel profiles similar to WT. Conversely, top2-1 mutants accumu-

lated additional fully duplicated X-intermediates only at TERs

(Figure 5C) but not at other genomic locations (Figure S4C).

These structures likely represent X-shaped entangled precate-

nane derivatives resulting from aberrant termination (Bermejo

et al., 2007). We obtained analogous results for TER704 and

TER1504 (data not shown). We conclude that Top2, and not

Top3, plays a major role in the resolution of S phase chromo-

somes and that genetic defects affecting the resolution process

correlate with formation of DNA breaks.

Top2 Protects the Integrity of TERs
Top2 prevents the expression of fragile sites, and in top2

mutants, aberrant S phase events cause DNA break formation

during cell division (Baxter and Diffley, 2008; Bermejo et al.,

2007, 2009; Holm et al., 1985). Hence, we investigated whether

Top2 prevents abnormal transitions at TERs. Histone H2A

phosphorylation on Ser129 (gH2A) marks nicks/gaps and DNA

breaks (Lydall and Whitehall, 2005; Vidanes et al., 2005). We

analyzed by ChIP-chip the gH2A clusters in top2-1 cells at the

restrictive temperature following cell division. gH2A clusters

significantly accumulate throughout the genome at Top2-bound

regions (Bermejo et al., 2009). Accordingly, we found gH2A

peaks also at 37 of 67 Top2-bound TER regions (Figure 6A and

Table S4).

Hence, TERs, like other genomic loci (Bermejo et al., 2009),

express DNA fragility during cell division. To visualize potential

chromosomal instability at TERs owing to top2mutations before

chromosome segregation, we performed comparative genome-

wide analysis in top2 mutants experiencing one round of DNA

synthesis. Comparative genome hybridization (CGH) was per-

formed in WT and top2 cells released from G1 in S phase at

25�C (reference-DNA sample) or 37�C (test-DNA sample) with

nocodazole. This approach allows us to measure those genomic

locations where test DNA is present in an equal, reduced, or

increased amount compared to the reference DNA.

Thirteen loci exhibited deletions and/or amplifications in

top2 mutants (Figures 6B and 6C and Table S6). These include

four TERs (TER304, 404, 502, and 801), three hypothetical

TERs (our analysis did not allow us to define a clear TER in

these regions), three Ty elements, the left subtelomeric region

and the right telomere of CHR I, and partially the rDNA locus.

(The majority of the rDNA locus, as well as other repetitive

sequences, is not present in the array). We note that TER304

is a known genome instability site (Lemoine et al., 2005) and

that rDNA instability was already described in top2 mutants

(Christman et al., 1988; Holm et al., 1989). Hence, within a cell

population lacking a functional Top2 activity, there are specific

chromosome regions that are more subject than others to

chromosome instability, and one-third of these loci are TERs.

Moreover, these data indicate that in top2 mutants, a fraction

of TERs already exhibited abnormalities at the end of S phase,

while the majority of TERs accumulated gH2A later on, during

cell division.



Figure 6. Top2 Prevents Fragility at TERs

(A) top2-1 (cy8423) cells were released from G1 in

S phase at 37�C. The sample was collected after

150 min (following cell division) and processed

for ChIP-chip with antibodies against gH2A. The

red histogram bars represent the gH2A clusters.

BrdU-labeled forks (orange, IP-BrdU) and Top2

peaks (green, IP-Top2 HU) obtained from inde-

pendent experiments are also shown. The red

bars mark the TERs. See also Table S4.

(B) top2-1 (cy7671) cells were released from G1 in

S phase at 25�C or 37�C in the presence of noco-

dazole to compare the relative genomes within

one cell cycle. Samples were collected after

2.5 hr and processed for CGH analysis. The plot

of the log2 ratio value on y axis shows DNA copy

number changes between test-DNA and refer-

ence-DNA. The different colors represent all 16

chromosomes, and the corresponding number is

indicated.

(C) SignalMap ver1.9 (NimbleGen) magnification

of four regions detected by CGH. Plot of the log2

ratio value on y axis shows DNA copy number

changes. The x axis shows chromosomal coordi-

nates. Black arrows indicate sites of genomic

instability. Red bars indicate position of TER sites.

Genome instability regions are also shown in

Figure S1 and Table S6.
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DISCUSSION

We showed that eukaryotic replication termination occurs at

TERs containing fork barriers. There are intriguing analogies

with prokaryotes where specific termination sites and polar

pausing elements influence termination. It is possible that fork

barriers have passively localized through evolution in proximity

of TERs, because if replication forks have to pause, it is least

disadvantageous when this occurs at a site where forks are

converging. Alternatively, evolution has brought fork barriers at

TERs to influence fork fusion. Intriguingly, we note that deleting

an efficient origin causes the relocalization of fork fusion from

the original TER to another pausing element (data not shown),

thus suggesting that the site of termination is influenced by the

presence of pause sites.

Our findings also suggest that the polarity of fork barriers had

an evolutionary impact on chromosome replication and on TER

integrity. Indeed, using the yeast comparative genomics data-

base, we notice that in 5 out of 6 TERs (TER304, 702, 801,

1601, and 1602) containing two divergent Pol III-dependent

pause sites (tRNA/LTR), one of them is totally or partially not

conserved (Figure S5) (Ted Weinert, personal communication).
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On the other hand, those 58 TERs that

contain polar barriers have conserved

the pause sites in other yeasts. We

excluded from the analysis the seven

TER-containing CENs, as CENs are

known to rapidly diverge in evolution

(Henikoff et al., 2001) (and on the other

side represent bipolar pausing elements).
This correlation (p = 0.00000465) further suggests the existence

of an evolutionary pressure against TER-containing pause sites

on both strands, perhaps to avoid genome instability events.

In this view, we note that TER502 (the remaining unconserved

TER), 304, and 801 are unstable in top2 mutants, as shown by

CGH analysis (Figure 6C), TER304 and TER702 are hot spots

for genome rearrangements (Admire et al., 2006; Lemoine

et al., 2005), and gH2A accumulates in TER304, 502, 702, and

1601 (Table S4). It will be of interest to address how replication

termination is achieved when transcription is dispensable, as

in the frog embryonic cell cycle. We also note that TERs seem

to correlate with low-nucleosome regions (p = 0.07) (Table S5).

Based on in vivo and in vitro studies, both Top2 and Top3

have been suggested to play a role in replication termination

(Baxter and Diffley, 2008; Branzei et al., 2006; Chan et al., 2009;

Cuvier et al., 2008; DiNardo et al., 1984; Suski and Marians,

2008; Wang, 2002). Our data argue against a major contribution

for Top3 at replication termination at the chromosomal level;

rather, they pinpoint the importance of Top2 in mediating topo-

logical transitions at TERs. Although alternative possibilities

could be envisaged, we propose the following three-step model

(Figure 7).
, August 27, 2010 ª2010 Elsevier Inc. 601



Figure 7. A Model for Replication Termination
(A) Precatenane resolution: Top2mediates fork progression at the TER zone by

resolving precatenanes behind the forks.

(B) Fork fusion: the right fork stalls at a pausing site (pausing element, red

symbol) and emerges with an asymmetric conformation. The leading poly-

merase (black oval) and the lagging apparatus (yellow oval) are shown.

(C) Catenation: Top2 then resolves the last catenation at TERs before DNA

segregation, allowing chromosome resolution.
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Step A: Rrm3, Top1, and a fraction of Top2 travel with the fork

(Azvolinsky et al., 2006; Bermejo et al., 2007). Rrm3 facilitates

fork progression across pausing sites (Ivessa et al., 2003), while

Top1 and Top2 are both needed to resolve the torsional stress

ahead of the fork generated during fork progression: while

Top1 resolves positive supercoiling ahead of the fork (Wang,

2002), also contributing to prevent interference between replica-

tion and transcription (Tuduri et al., 2009), Top2 likely acts behind

the fork to resolve precatenanes (Lucas et al., 2001; Wang,

2002). When forks approach the termination zone, the topolog-

ical constraints at converging forks can no longer be resolved

by Top1 (Fields-Berry and DePamphilis, 1989), and therefore
602 Molecular Cell 39, 595–605, August 27, 2010 ª2010 Elsevier Inc.
the only option for fork progression is to rely on Top2 activity.

This is consistent with the observation that top2 mutants are

selectively delayed in completing the last portion of replication

but not the bulk of DNA synthesis. However, we cannot rule

out that the topological architecture of the termination zone

(e.g., chromosome loops) specifically needs Top2 activity for

resolution. Indeed, a subpopulation of Top2 is also bound to

TERs in early S phase, perhaps due to the affinity of Top2 for

nucleosome-free regions (p = 2.10E � 58). Moreover, other

S phase Top2 clusters have recently been suggested to correlate

with the formation of chromosome loops (Bermejo et al., 2009).

We found that the Top2 clusters at TERs are established already

at the cdc7-dependent step and are not influenced by origin

firing (data not shown), thus suggesting that TERs represent

cis chromosomal elements that undergo topological transitions

requiring Top2 activity.

Step B: When fork fusion occurs, the lagging polymerase

encounters the leading strand polymerase from the opposite

fork, thus physically occupying the remaining unreplicated

region (Sundin and Varshavsky, 1981). It is still unclear how the

replisome is dismantled and how fork fusion occurs. Perhaps

the presence of polar fork barriers may guarantee that the two

forks do not converge simultaneously, thus ensuring that at least

one of the two forks emerges from the pausing region with asym-

metric leading and lagging strands before fusing with the other

fork. This is consistent with the finding that stalled forks exhibit

an asymmetric configuration (Gruber et al., 2000; Sogo et al.,

2002). Rrm3 could simply facilitate fork progression at the pause

sites located within the TERs. However, we cannot exclude the

possibility that Rrm3 actively participates at fork fusion, as sug-

gested by the finding that unresolved termination structures

accumulate even at those TERs that do not contain obvious

Rrm3-dependent pause elements.

Considering that (1) the termination context might be ideal

for fork reversal as topological constraints accumulate and the

replisome must be dismantled (Postow et al., 2001), (2) the

Mec1-Rad53 checkpoint pathway prevents fork reversal when

forks stall (Sogo et al., 2002), and (3) checkpoint factors have

been implicated in mediating termination at the rDNA locus

(Mohanty et al., 2006), it is tantalizing to speculate that the

Mec1 checkpoint pathway somewhat prevents aberrant fork

transitions, such as fork reversal, at termination zones.

Step C: Fork fusion then gives rise to catenated sister chro-

matid junctions that have to be resolved before segregation.

We propose that this last step is mediated by a subpopulation

of preassembled TER-associated Top2 that can persist even

after S phase. It is also possible that Top2, at least in a fraction

of TERs, is loaded at the beginning of mitosis. Given that the

catenated junction might be mobile and spread along the chro-

mosomes (Spell andHolm, 1994), the presence of preassembled

Top2might be needed to confine and coordinate its resolution at

the TER loci, perhaps through SUMO-mediated regulation

(Bachant et al., 2002; Dawlaty et al., 2008).

According to the model proposed, the transient accumulation

of topological constraints might facilitate abnormal transitions

(Hiasa and Marians, 1994) that could lead to amplification or

deletion of TER sites. Moreover, the proper resolution of cate-

nated sister chromatids would be impaired in top2 cells and,



Molecular Cell

Mechanisms Controlling Replication Termination
following cell division, DNA breaks, and aberrant segregation will

be expected (Baxter and Diffley, 2008; Bermejo et al., 2007;

DiNardo et al., 1984; Holm et al., 1989).

Together, our data provide a framework for understanding

the eukaryotic molecular mechanisms that control replication

termination and coordinate replication with transcription and

topological dynamics.

EXPERIMENTAL PROCEDURES

Yeast Strains and Growing Conditions

All strains (Table S1) are isogenic derivatives of W303-1A. All epitope tags

(10Flag and 6PK) were fused to the C terminus of the protein of interest. Strains

were grown in YPD and cells were arrested in G1 by a factor (2 mg/ml) or in

G2/M by nocodazole (10 mg/ml). HU was added at 0.2 M. Overexpression of

the dominant-negative version of Top3 was induced for 3 hr by Galactose

2% in YP + Raffinose 2% media. BrdU was added as previously described

(Katou et al., 2003). Rpc25 and Rpb3 subunits were analyzed by ChIP-chip

following 1 hr in HU.

Pulse Field Gel Electrophoresis

DNA plugs were prepared as described (Lengronne et al., 2001). Yeast chro-

mosomes were separated by PFGE (Gene Navigator System, Amersham,

Munich), and electrophoresis was performed for 15 hr at 200 V with 90 s

pulses, followed by 9 hr with 125 s pulses, in TBE 0.5X at 14�C. Plug digestion

was performed according to New England BioLabs (Ipswich, MA) and previ-

ously described (Azvolinsky et al., 2006).

Psoralen-Crosslinking, DNA Extraction, and 2D Gel Technique

Genomic DNA extraction was performed according to the QIAGEN Genomic

DNA Handbook. DNA psoralen-crosslinking and 2D gel procedure were

described (Doksani et al., 2009). Quantifications were done using ImageQuant

5.2 (Molecular Dynamics).

Probes are obtained by PCR using the following oligos: TER102: Fw

TCTGCGCCAAGCAAAGATTC,RvTTTCCTTGCGTCTGATTCGG.TER603: Fw

GAATGCCCGAGCCCTAAAAA, Rv ATGTGAGCCATCTGGAAAGG. TER704:

Fw TGTGCACATCTTGCCCATTA, RvGCCTCTATCACTGCAAAGTG.TER302:

Fw GAAGGTTCAACATCAATTGATTGATTCTGCCGCCATGATC, Rv GCTTCC

CTAGAACCTTCTTATGTTTTACATGCGCTGGGTA.

ChIP-Chip Analysis

S. cerevisiae oligonucleotide microarrays were provided by Affymetrix (Santa

Clara, CA) (S. cerevisiae Tiling 1.0R, P/N 900645). BrdU and protein ChIP-chip

analyses were carried out as described (Bermejo et al., 2009). Pol2 (Pol3) ChIP-

chip analysis was performed as described (Azvolinsky et al., 2009).

Comparative Genome Hybridization

Roche-Nimblegen (Madison, WI) 385K Yeast Whole-Genome Tiling arrays

were used to perform CGH analysis. Experimental processing was performed

according to Roche-Nimblegen protocol, data elaboration using the Nimble-

Scan v2.4 software (Roche-Nimblegen), and the analysis using the embedded

packages DNAcopy and segMNT.

Statistical Methods

Evaluation of the significance of the presence of protein-binding peaks and

pausing elements within TERs (Table S5) was performed by confrontation

against a null hypothesis model generated with a Montecarlo-like simulation.

For each data set (binding clusters of a specific protein or set of pausing

elements), we produced 1000 randomizations of the positions of the features,

maintaining unchanged the number and size of the genomic areas covered

within each chromosome; the number of peaks and features with randomposi-

tions within the TERs was then counted and taken as score for each iteration.

The distribution of these random scores was validated to be approximately

normal (jSkewj < 0.25 and jKurtosis excessj < 0.25), and then the average

and standard deviation for this distribution were taken as null hypothesis.
Mo
The increase or decrease ratios for the scores of the actual positions with

respect to the expected value for the null hypothesis (defined as the average

score of random attempts) was then calculated, and the p values for the drift

were estimated as Standard Normal CDF of jactual�meanj
deviation .

Evaluation of significance of overlaps in sets (i.e., for the number of noncon-

served TERs versus the TERs containing divergent pausing elements) was per-

formed by means of the Fisher’s exact test.

Genomic profiles of all the proteins studied can be accessed from http://bio.

ifom-ieo-campus.it/supplementary/Fachinetti_et_al_MOLCELL_2010.
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Experimental data are available on Gene Expression Omnibus database with

accession number GSE19061.
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