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We compare the ground state of the random-field Ising model with Gaussian distributed random fields, with
its nonequilibrium hysteretic counterpart, the demagnetized state. This is a low-energy state obtained by a
sequence of slow magnetic-field oscillations with decreasing amplitude. The main concern is how optimized
the demagnetized state is with respect to the best-possible ground state. Exact results for the energy ind=1
show that in a paramagnet, with finite spin-spin correlations, there is a significant difference in the energies if
the disorder is not so strong that the states are trivially almost alike. We use numerical simulations to better
characterize the difference between the ground state and the demagnetized state. Fordù3, the random-field
Ising model displays a disorder induced phase transition between a paramagnetic and a ferromagnetic state.
The locations of the critical pointsRc

sDSd andRc
sGSd differ for the demagnetized state and ground state. We argue

based on the numerics that ind=3 the scaling at the transition is the same in both states. This claim is
corroborated by the exact solution of the model on the Bethe lattice, where the critical points are also different.
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I. INTRODUCTION

The relation between equilibrium and nonequilibrium
states is a central problem in the physics of disordered sys-
tems. Disorder induces a multitude of metastable states in
which the system can easily be trapped. The dynamics is
usually very slow, or glassy, and on observational time scales
the system is basically always out of equilibrium. On the
other hand, from the theoretical point of view it is easier to
consider equilibrium properties, since in this case it is pos-
sible to use all the machinery of statistical physics to tackle
the problem. The question is whether the equilibrium prop-
erties of disordered systems provide a faithful representation
of the nonequilibrium states in which the system is likely to
be found in practice. This dichotomy is at the core of many
unsolved issues in the field of disordered system. Typical
quantities that one could compare are the energy, the geomet-
ric characterization of the statesas domains in magnetsd, and
the energy cost of excitations.

A simplification of the problem is obtained considering
only athermal processes, in which the temperature of the
system plays no role and can be ignored. The equilibrium
state is in this case just the ground statesGSd, the state of
minimal energy.1 A zero temperature, nonequilibrium dy-
namics is purely relaxational: the system falls simply in the
closest metastable state. A convenient way to allow the sys-
tem to explore the various metastable states is by applying an
external magnetic field. Different field histories typically re-
sult in hysteresis and lead to different metastable
configurations.2

The demagnetization process consists in applying a
slowly varying ac field with decreasing amplitude, and pro-
vides a simple way to access low-energy states.2 It has been
studied for more than a century, but until recently the ques-
tion how close the demagnetized statesDSd is to the GS was

not addressed. This is the concern of our work, the problem
of how such an optimization process works in the case of a
random magnet. Recently, Zarandet al. have proposed the
demagnetization process as the basis for a new optimization
algorithm for disordered systems.3 The idea behind such
“hysteretic optimization,” is that demagnetization leads to a
low-energy state, sufficiently close to the GS, which can then
be reached by applying other methods using the DS as an
input. The method was tested for different models such as
spin glasses and NP-hard problems.

Here, we will concentrate on the random-field Ising
model sRFIMd, which, while retaining some complex fea-
tures characteristic of disordered systems, still allows for a
theoretical analysis.4 In the RFIM, due to the absence of
frustration, the equilibrium state is relatively simple, how-
ever, the nonequilibrium dynamics is far from trivial. Due to
the coupling of the local disorder to the order parameter,
even the GS presents a variety of phenomena, which can be
studied numerically.5–8 In fact the GS is found in a polyno-
mial CPU time, with exact combinatorial algorithms,1 and
solved exactly ind=1 and on the Bethe lattice.9,10 The equi-
librium critical exponents for random-field magnets have
been measured experimentally in Fe0.93Zn0.07F2
antiferromagnets.11,12

The hysteretic properties of nonequilibrium RFIM have
been widely studied in the recent literature. The hysteresis
loops display a disorder induced phase transition: for low
disorder the loop has a macroscopic jump at the coercive
field, while at high disorder the loop is smooth, at least on
the macroscopic scale.13–15 At smaller scale the magnetiza-
tion curve is highly discontinuous, showing Barkhausen-type
bursts, in correspondence to jumps between different meta-
stable states.16 A disorder induced nonequilibrium phase
transition in the hysteresis loop has been studied experimen-
tally in Co-CoO films17 and Cu-Al-Mn alloys.18
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Extensive numerical simulations have been used to char-
acterize disorder induced transitions in the nonequilibrium
RFIM and critical exponents have been estimated in several
dimensions.15,19,20The model has been studied by the renor-
malization group and the exponents have been computed in a
e=6−d expansion.14 In addition the hysteresis loop has been
computed exactly ind=1 and on the Bethe lattice, where the
disorder induced transition is present for sufficiently large
coordination number. While ind=1 there is definitely no
transition, the situation ind=2 is less clear. Recently the
problem of minor loops has been tackled analytically and
numerically. Minor loops are obtained by reversing the field
before the magnetization has reached saturationssee Fig. 1d.
In particular, the demagnetization curve has been computed
exactly ind=1 sRef. 21d and on the Bethe lattice,22 extend-
ing previous calculations23–27 of minor loops.

The equilibrium properties of the RFIM are governed by a
zero-temperature fixed point, and in finite dimensionssd
,5 in practiced GS calculations have elucidated the proper-
ties of the phase diagram. Indù3, the GS displays a ferro-
magnetic phase transition induced by the disorder1,8 sfor d
=4, see Refs. 28,29d. As domain-wall energy arguments and
exact mathematical results indicate, ind=2 there is no phase
transition but an effective ferromagnetic regime for small
systems, while ind=1 the RFIM is trivially paramagnetic. It
has been suggested that the transition in the GS is ruling the
transition in the nonequilibrium hysteresis loop, also because
mean-field calculations give the same results in and out of
equilibrium.30 Numerical values of the exponents are close
but not equal, but one must consider the difficulties in ex-
trapolating values from the finite-size scaling.30,31 More re-
cently, the question of the universality of the exponents, with
respect to the shape of the disorder distribution, was dis-
cussed ind=3 simulations, mean-field theory, and on the
Bethe lattice.32–34

Below we report a detailed comparison of the zero-
temperature equilibrium and nonequilibrium properties of

the RFIM with Gaussian distribution of the random fields.
We first analyze the problem ind=1, where exact results can
be obtained. The average value of the energy is computed as
a function of the disorder strength for the DS and the GS. A
direct comparison of the two values shows that for weak
disorder the differences become more substantial, while for
strong disorder, where each spin basically aligns with the
random field, the difference tends to vanish. Numerical stud-
ies using the same disorder realizations reveal that the main
difference between the two states comes from the complete
reversal of GS domains in the DS. This is also visible in the
overlap between the GS and DS.

We then study thed=3 case in which both paramagnetic
and ferromagnetic behavior exist. The question of whether
the transitions appearing in the GS and in the hysteresis loop
are universal has often been debated in the literature.30,31At
the mean-field level it is not possible to distinguish the equi-
librium from the nonequilibrium case and the transition is
thus trivially the same. In addition, thee expansion for the
equilibrium and hysteretic transitions is the same to all or-
ders, but one should always consider the possibility of non-
perturbative corrections to the field theory. Numerical simu-
lations in d=3 indicate that the critical exponents and the
critical disorder in the two transitions are reasonably close,
but the numerical uncertainties do not allow for a conclusive
statement about their identity. Here we directly compare the
behavior of the GS and the DS ind=3 close to the disorder
induced phase transitions. We show that while the nonuni-
versal critical parameterRc differs in the two cases, the uni-
versal finite-size scaling curve for the order parameter can be
collapsed on the same curve. This suggests some kind of
universality in the GS and the DS transitions. The numerical
simulations for the GS and DS are done for the same disor-
der realizations for both the cases, for cubic lattices of linear
sizesL=10, 20, 40, 80. The results are averaged over several
realizations of the quenched random fields. In both cases, we
compute the average magnetization as a function of the dis-
order width.

A difference in the location of the critical point for equi-
librium and nonequilibrium behavior of the same model may
appear rather peculiar and one could be tempted to ascribe it
to finite-size corrections. In order to clarify this issue, we
have solved exactly the model on the Bethe lattice and com-
pared the results for GS and DS. While the exponents, as
expected, are the same, coinciding with the results of mean-
field theory, the critical disorder differs in the two cases.
Namely, the transition in the DS occurs at a lower disorder
value. Thus there is an intermediate parameter region where
the GS is ferromagnetic but the DS is paramagnetic. The
solution on the Bethe lattice corroborates the picture ob-
tained from simulations ind=3. From the optimization view-
point, thed=3 case shows an intermediate phase of “bad”
correspondence between the GS and DS, exactly as ind=1.
This, however, stops asRc

sDSd is approached: naturally if both
the states are ferromagnetic the optimization of the DS is
much easier. To further explore the question of universality
of the two transitions in the GS and in the DS, we have
computed the distribution of the magnetization at the respec-
tive critical point,Rc

sDSd andRc
sGSd, for different lattice sizes.

The distributions can again all be collapsed into the same
curve.

FIG. 1. The hysteresis loop of the RFIM computed exactly in
d=1. We also report three minor loops. A demagnetization proce-
dure corresponds to a series of minor loops obtained reversing the
field at H0,H1,H2,… as detailed in the text.
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Finally, we consider the question of when is it actually
possible to reach the GS via a generic field history. To this
end, we consider a proper algorithm that allows in principle
to construct a field history, provided that it exists, which
brings to the GS. Studies of thed=1 case illuminate the
difficulty of optimizing since it turns out that for anything
but very strong disorders,R the probability to reach the GS
rapidly decays to zero.

Our main conclusion is that, in general, demagnetization
is not a good technique for reaching states that are truly close
to the equilibrium, except in cases where the outcome is
clearly similar from the very beginningsferromagnetic states
and paramagnetic states where the disorder is strongd. This
holds for both the energy of the states and also for the spin
configurations. A simple formulation is that, since in the DS
the locations of domain walls are not optimized, there is an
excess random-fieldsZeemand energy.

The paper is organized as follows: in Sec. II we define the
model and discuss its numerical treatment. In Sec. III we
analyze the one-dimensional case, analytically and numeri-
cally. Section IV is devoted to the behavior around the dis-
order induced transition ind=3 and on the Bethe lattice.
Section V demonstrates the algorithm to reconstruct the field
history, together with numerical studies. Conclusions are re-
ported in Sec. VI. An account of some of these results was
briefly reported in Ref. 35.

II. THE RANDOM-FIELD ISING MODEL

In the RFIM, a spinsi = ±1 is assigned to each sitei of a
d-dimensional lattice. The spins are coupled to their nearest-
neighbor spins by a ferromagnetic interaction of strengthJ
and to the external fieldH. In addition, to each site of the
lattice is associated a random fieldhi taken from a Gaussian
probability rshd=exps−h2/2R2d /Î2pR, with standard devia-
tion R. The Hamiltonian thus reads

H = − o
ki,jl

Jsisj − o
i

sH + hidsi , s1d

where the first sum is restricted to nearest-neighbor pairs.
In this paper we will consider only the case of zero tem-

perature, both in equilibrium and out of equilibrium. TheT
=0 equilibrium problem amounts to find the minimum ofH
for a given realization of the random fieldssi.e., the GSd and
then eventually perform the thermodynamic limit. This prob-
lem has been solved exactly in a number of simple cases,
namely, ind=1 and on the Bethe lattice, for particular dis-
order distributions and studied numerically in generic dimen-
sions.

The RFIM GS is solvable in a polynomial CPU time, with
exact combinatorial algorithms. For the one-dimensional
case, the solution can be found via a mapping to a “shortest
path problem”36 which effectively places the domain walls in
optimal positions, corresponding to the global minimum of
H. For higher dimensions, one starts by noticing that finding
the RFIM GS is equivalent to the min-cut/max-flow problem
of combinatorial optimization. This can be solved in a vari-
ety of ways. We use a so-called push-relabel variant of the
preflow algorithm.37 Such methods, properly implemented,

perform in general only slightly worse than linear as a func-
tion of the number of spins in the problem.

For the out of equilibrium case, we need to specify an
appropriate dynamics, ruling the evolution of the spins. We
will consider the dynamics proposed in Ref. 38 and used in
Refs. 13–15 to study the hysteresis loop. At each time step
the spins align with the local field

si = signSJo
j

sj + hi + HD , s2d

until a metastable state is reached. This dynamics can be
used to obtain the hysteresis loop. The system is started from
a state with all the spin downsi =−1 and thenH is ramped
slowly from H→−` to H→`. The limit of dH/dt→0 can
be conveniently obtained by increasing the field precisely of
the amount necessary to flip the first unstable spin. A single
spin flip increases the local field of the nearest-neighboring
spins, generating an avalanche of flippings. When the sys-
tems find another metastable state, the field is increased
again. This dynamics obeys return-point memory:13 if the
field is increased adiabatically the magnetization only de-
pends on the state in which the field was last reversed. This
property has been exploited ind=1 sRefs. 21,24d and in the
Bethe lattice22,27 to obtain exactly the saturation cycle and
the minor loops.

The main hysteresis loop selects a series of metastable
states, which in principle are not particularly close to the
ground state. To obtain low-energy states, we perform a de-
magnetization procedure: the external field is changed
through a nested successionH=H0→H1→H2→¯→Hn
→¯→0, with H2n.H2n+2.0,H2n−1,H2n+1,0, anddH
;H2n−H2n+2→0. A perfect demagnetization can be per-
formed numerically using the prescription discussed above to
obtain dH/dt→0. Such a perfect demagnetization is quite
expensive computationally and it is convenient to perform an
approximate demagnetization usingdH=10−3. A comparison
of the states obtained under approximate and perfect demag-
netization shows negligible differences.

III. GROUND STATE AND DEMAGNETIZED STATE
IN ONE DIMENSION

A. Exact results: Ground State

The GS energy can be computed exactly ind=1 using
transfer-matrix methods.9 For H=0 the free energy of a chain
of lengthN is given by

FN = −
1

b
lnsZNd = −

1

b
lnsZN

+ + ZN
−d . −

1

2b
lnsZN

+ZN
−d, s3d

whereZN is the partition function with free boundary condi-
tions andZN

± are the partition functions with the spin at siteN
fixed upsdownd. The last step in Eq.s3d uses the approxima-
tion ZN

+ +ZN
− .ÎZN

+ZN
− which holds in the largeN limit since

ZN
± both diverge with the ratioZN

+ /ZN
− being finite. The two

functionsZN
+ andZN

− satisfy the following recursive relation:

ZN
± = e±bhNsZN−1

+ e±bJ + ZN−1
− e7bJd. s4d

From Eq.s4d it follows:
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ZN
+ZN

− = ZN−1
+ ZN−1

− f2 coshsbJd + 2 coshs2bxNdg, s5d

where xN=s1/2bdlnsZN
+ /ZN

−d, which gives for the total free
energy,

FN = FN−1 −
1

2b
lnf2 coshsbJd + 2 coshs2bxNdg, s6d

so that one can define a free energy per site,

f = −
1

2b
lnf2 coshsbJd + 2 coshs2bxNdg. s7d

Here,xN is a stochastic quantity satisfying the equation

xN = hN + gsxN−1d, s8d

where gsxd=s1/2bdlnfse2bsx+Jd+1d / se2bx+e2bJdg. When R
→0, Eq.s8d has a fixed point solution ofx`=gsx`d. It is easy
to check thatx`=0 is the only solution for anyJ andb finite,
corresponding to the absence of a phase transition.

WhenR is nonzeroxN is a random variable with an asso-
ciated distributionWNsxd, where

WNsxddx= Probsx , xN , x + dxd. s9d

WNsxd satisfies the recursive functional equation

WN+1sxd =E
−`

`

dhPshdE
−`

`

dx1WNsx1ddfx − h − H − gsxNdg,

s10d

where we have added a uniform fieldH to the random field
so that in the thermodynamic limit,W` is given by the fixed-
point equation

W`sxd =E
−`

`

dxNW`sx1dPfx − h − H − gsxNdg. s11d

Once W` is known, any thermodynamic quantity can be
computed. In particular, the free energy per spin is given by

kfl = −
1

b
E

−`

`

dxẀ sxdfcoshs2bd + coshs2bxdg. s12d

The magnetization at a site 0 of an infinite lattice is given by

ks0l =
Z+ − Z−

Z+ + Z− =
ÎZ+/Z− − ÎZ−/Z+

ÎZ+/Z− + ÎZ−/Z+
= tanhF1

2
lnsZ+/Z−dG ,

s13d

whereZ+− are, respectively, the partition functions with the
spin at 0 fixed upsdownd. These are given by

Z+− = e±bh0se±bJZr
+ + e7bJZr

−dse±bJZl
+ + e7bJZl

−d, s14d

where Zr,l
± are the partition functions for the semi-infinite

right sleftd lattice, with the spin at site 1s−1d fixed up
sdownd. This gives

ks0l = tanhhbfh0 + gsxrd + gsxldgj, s15d

wherexrsxld refers to the semi-infinite rightsleftd lattice. Fi-
nally, the magnetization for the infinite lattice is obtained
averaging over the quenched variablesxr,l:

m=E
−`

`

dhPshdE
−`

`

dxrW`sxrd

3E
−`

`

dxlW`sxldtanhhbfh + gsxrd + gsxldgj. s16d

B. Exact results: Demagnetized state

In d=1 the magnetization and the energy per spin as a
function of the external field can be derived explicitly
through a probabilistic reasoning. We show how to get these
results on the saturation loop, focusing on the lower branch
sthe results on the upper branch can be obtained by symme-
try considerationsd. Similar but much more involved reason-
ing can be repeated for any minor loop.

The central quantity to consider, in order to solve for the
magnetization as a function of the external fieldH on the
hysteresis loop, is the conditional probability for a spin to be
up, conditioned to one of its nearest neighbors being down.
To calculate this quantity, one can reason as follows: first fix
the spin at sitei −1 down, and definepmsHd as the probabil-
ity for a spin to be up, given that exactlymsm=0,1,2d of its
neighbors are up,

pmsHd = Pshi
eff . 0d =E

sz−2mdJ−H

`

dhrshd, s17d

wherez is the coordination numbersz=2 in d=1d. Fix now
for a moment the spin at sitei down as well and look at the
spin at sitei +1. It will be up with probabilityU0 and down
with probability 1−U0. The spin at sitei will flip up with
probability p1 when the spin ati +1 is up andp0 when it is
down. Ultimately, the spin ati will be up sconditioned to the
spin at i −1 being downd with probability U0=U0p1+s1
−U0dp0. It follows:

U0 =
p0

1 − p1 + p0
. s18d

OnceU0 is known, a similar reasoning leads to thesuncon-
ditionedd probability psHd for a spin to be up. Now let us fix
the spin at sitei down: the spin at sitei −1 will be up with
probability U0 and down with probability 1−U0. The same
holds for the spin at sitei +1. Thus,

psHd = U0
2p2 + 2U0s1 − U0dp1 + s1 − U0d2p0, s19d

from which the magnetization is obtained asmsHd=2psHd
−1.

The energy per spin on the saturation loop is obtained as
follows. Due to translational invariance,

E =
kHl
N

= − Jksisi+1l − Hksil − khisil. s20d

To calculate the spin-spin correlationksisi+1l we introduce
the probabilitiesF++,F+−,F−+,F−− for adjacent spins to be,
respectively, up-up, up-down, down-up, and down-down.
These quantities are not independent, since they have to sat-
isfy the obvious identities:F+−=F−+,F+++F+−=psHd, and
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F−−+F+−=1−psHd. Thus it is sufficient to calculate one of
them, for exampleF−−. This is done by separating the four
contributions from the possible boundary conditions deter-
mined by the values of the spins at sitesi −1 andi +1. When
they are both down, the probability for the couple of spins at
sitesi and i +1 to be both down isU0

2f1−p1sHdg2, when one
is up and the other is down is 2U0s1−U0df1−p1sHdgf1
−p0sHdg, and when both of them are up iss1−U0d2f1
−p0sHdg2. Adding up the four contributions we getF−−=s1
−U0d2. This fixes the other probabilities to beF+−=F−+

=2p−1+s1−U0d2, andF++=1−p−s1−U0d2. Thus, the spin-
spin correlation is

ksisi+1l = F++ + F−− − 2F+− = 4fp − s1 − U0d2g − 3.

s21d

The average valuekhisil can be obtained by averaging over
the fieldh8 the product ofh8 times the average value of the
spinsi over the local fields other thanhi, once the field ati is
fixed at the valueh8:

khisil =E
−`

+`

dh8rsh8dh8ksiuh8l. s22d

The conditional averageksi uh8l is given by 2psH uh8d−1
wherepsH uh8d is the conditional probability for a spin to be
up at an external fieldH, given that its local random field is
fixed at the valueh8. From Eq.s9d this is trivially given by

psHuh8d = U0
2ush8 + H + 2Jd + 2U0s1 − U0dush8 + Hd

+ s1 − U0d2ush8 + H − 2Jd, s23d

which finally gives

khisil = 2U0
2E

−H−2J

+`

dh8rsh8dh8 + 4U0s1 − U0dE
−H

+`

dh8rsh8dh8

+ 2s1 − U0d2E
−H+2J

+`

dh8rsh8dh8 − h8̄. s24d

In particular, for a Gaussian distribution withh8̄=0 and vari-
anceR the integrals can be performed analytically and the
result is

khisil =Î 2

p
Re−H2/2R2

f2U0
2e2J/R2

coshs2JH/R2d + e2JfJ−sH/2R2dg

3s1 − 2U0
2d + 2U0s1 − U0dg. s25d

The energy per site on the lower branch of the saturation
loop is in general given by

EsHd = − 4JfpsHd − s1 − U0d2g + 3J − Hs2psHd − 1d

− 2U0
2E

−H−2J

+`

dh8rsh8dh8

− 4U0s1 − U0dE
−H

+`

dh8rsh8dh8

− 2s1 − U0d2E
−H+2J

+`

dh8rsh8dh8 + h8̄. s26d

Similar but much more involved reasonings can be re-
peated for any minor loop—eventually for a series of nested
loops leading to the demagnetized state—providing a series
of recursive equations for the magnetization, the spin-spin
and the spin-field correlations, which are the quantities
needed to compute the energy. If the external field is changed
through a nested successionH=H0→H1→H2→¯Hn¯

→0, with H2n.H2n+2.0,H2n−1,H2n+1,0, anddH;H2n
−H2n+2→0, the spin-spin correlations are given recursively
by

ksisi+1lH2n
− ksisi+1lH2n−1

= 4U2n
2 fp2sH2nd − p2sH2n−1dg

− 4D2n−1
2 fp0sH2nd − p0sH2n−1dg,

s27d

whereUk andDk are, respectively, the probabilities for a spin
to be upsdownd conditioned to one of its neighbors being
down, and satisfy in turn a set of recursive equations. Similar
equations hold for magnetization and spin-field correlation,
leading to a complicated recursive formula for the energy.
The results of such calculations are shown in Figs. 2 and 3,
where the energy of the demagnetized state is compared with
the energy of the ground state evaluated in the preceding
section.

C. Simulations: How optimized is the demagnetized state?

While the energies of the GS and DS can be obtained
exactly in d=1, we use numerical simulations to obtain a
more detailed picture of the differences between the two
states. We consider a system of sizeN=104 spins and obtain
numerically the GS and the DS averaging the results over
1000 realizations of the random fields. In this way, we can
recover to a great precision the exact resultsssee Fig. 3d,
indicating that the system size and statistical sampling em-
ployed are adequate to fully characterize the system.

FIG. 2. The energy of the GS is compared with the one of DS.
The values are computed exactly ind=1 as a function of the disor-
der widthR.
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In one dimension the comparison of the domain structure
of DS and the GS is the easiest since the domain walls are
just pointlike. For the GS we know that it is optimized such
that all the large enough local random-field fluctuations
nucleate domains of the same sign. The rest of the random
landscape is split up into regions that align themselves with
such fluctuations depending on the sign of the random-field
excess,oiPregionhi. As a result the Zeeman energy of do-
mains, defined asEZ=oiPdomainhi, is linear in domain size,
EZ, ld, and the asymptotic mean domain length follows the
Imry-Ma prediction klGSl,1/R2. Moreover, since the ran-
dom landscape has a finite correlation length, the domain
size distribution is exponential.36

Any qualitative differences in the DS will follow from
three separate mechanisms:s1d shifts of domain walls,s2d
creation of domains inside intact GS domains, ands3d de-
struction of GS domainssFig. 4d. From the point of view of
“optimization” the first one is of trivial concern, since it
would have little effect, e.g., on the scaling ofEZ,DS, where
the subscript underlines thatEZ is computed for the DS. The
second one is more detrimental if the energy difference to the
GS is considered. In addition to the cost of the two domain
walls it subtracts a contribution from the Zeeman energy of
the domain that persists and surroundssin the GSd the one
that is not created in the DS. The third one would make the
largest change to the total energy, since forlDS@1 the energy

of a domain consists mostly of its Zeeman energy.
Numerical studies of the DS domain structure indicate

that with decreasingR the average domain size increases
faster than in the GS, while the size distributionPsldd re-
mains exponential. This is accompanied by a reduction in the
overlapq=sksGSsDSl+1d /2 between these two states. ForR
large the overlap is close to unity; strong local fieldshi align
the spins in the same way regardless of the mechanism by
which the spin state is created. ForR small the local field is
no longer strongly correlated with the orientation of the spin,
and thus whether the GS and DS are locally aligned depends
on how optimized the latter is.

The fundamental mechanism for the deviations between
the states seems to be the “destruction” of GS domains, at
least for smallR ssee Fig. 4 againd. This is demonstrated in
Fig. 5 by depicting the changeDq in the overlap that comes
solely from missing GS domains. The conclusion from this
dominance is that the demagnetized states typically miss re-
gions in which the integrated field fluctuation is large which,
as such, leads in the GS to the formation of GS domain.
Therefore the overlap should get smaller the larger the scale
length on which one compares the DS and GS, as confirmed
by Fig. 6, which shows the overlap between a DS domain
and the GS as a function of the lengthlDS of the DS domain.

The importance of such destroyed domains can also be
seen in the total contribution to the energy difference be-
tween the DS and GS. ForR small this is again dominated by
missing GS domains. In general the difference between the
energies of the GS and DS derives from the combination of
domain walls and Zeeman energy. Figure 7 shows that for
lDS small the DS domains do not have much Zeeman energy.
This changes iflDS is larger, in which regime the scaling
approaches the Imry-Ma -like scalingslDS

0.5d. The implication
is that the field energy of large domains in the DS self-
averages, and comes from a sum of random contributions
si.e., the domains contain regions where the actual random-
field sum is opposite to the spin orientation, such as the

FIG. 3. The energy difference between the GS and the DS com-
puted exactly ind=1 is compared with the numerical simulations.

FIG. 4. An illustration of the possible mechanisms for the de-
viations between GS and DS.

FIG. 5. The average change in the spin-spin overlap between the
GS and the DSsDqd and the contribution to that from completely
“destroyed” GS domainssDqdestrd, as a function ofR.
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missing GS domainsd. The crossover between the smalllDS
behavior and the asymptotic scaling is located close toklDSl.

IV. AROUND THE DISORDER INDUCED TRANSITION

A. Simulations in d=3

The RFIM displays a disorder induced phase transition
both in the GS and in the hysteresis loop, which can also be
observed by analyzing the DS.21,22,39 If the GS and the DS
are always paramagnetic, the transition is absent, as ford
,3. Thus we perform numerical simulations ind=3, with
the aim to characterize the difference between DS and GS
around the disorder induced transition.

In d=3 for low disorder, the GS is ferromagnetic, while
for higher disorder it becomes paramagnetic. For Gaussian

disorder, the transition point has been located numerically6–8

at Rc
sGSd.2.28 ssee belowd. It is possible to define the usual

set of critical exponents characterizing the phase transition
and compute the values by exact GS calculations. For in-
stance, the magnetizationM ;kumul, with m;oisi /N, scales
close to the transition point as

M = Arb, s28d

wherer ;sR−Rcd /Rc is the reduced order parameter andA is
a nonuniversal constant. The correlation length defines an-
other exponentj=sBrd−n, whereB is another nonuniversal
constant which rules the finite-size scaling of the model, so
that

FIG. 6. sColor onlined The average overlap of
a DS domain of sizelDS with the GS domain spin
state at the same locations forR=0.5, 0.6, 0.8,
0.9, 1.0. The overlap decreases withlDS.

FIG. 7. sColor onlined The Zeeman energy of
DS domains of the size,lDS. The black circles
mark the average DS domain size for a givenR.
The two lines above and below the data indicate
optimal, linear sGS-liked scaling and the Imry-
Ma-like l1/2 scaling, respectively.
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M = AL−b/nffBL1/nsR− Rcd/Rcg. s29d

Simulations6–8 yield nsGSd.1.17 andbsGSd=0.02.
A disorder induced transition is also found in the hyster-

esis loop. At low disorder the loop shows a macroscopic
jump, which disappears at a critical value of the disorder.
This transition reflects itself on the DS, which is ferromag-
netic when the main loop has a jump and is paramagnetic
otherwise. The transition point has been obtained numeri-
cally in d=3 asRc

sDSd.2.16 and the critical exponents have
been measured. In particular, Ref. 39 reports data collapses
with bsDSd=0.04 andnsDSd=1.41. While there is strong evi-
dence that the exponents measured in the DS should be equal
to those measured on the main loop, the relation with the
equilibrium transition is not clear.

We notice first that numerical simulations reported in the
literature indicate that the transition appears at slightly dif-
ferent locations in the GS and in the DS. Hartmann and
Nowak6 reportRc

sGSd=2.29±0.04 for the GS with system size
up to L=80, Hartmann and Young7 refine this value to
Rc

sGSd=2.28±0.01 with sizes up toL=96, which is also con-
firmed by Middleton and Fisher8 who estimate Rc

sGSd

=2.27±0.04. For the hysteresis loop the best estimate isRc
=2.16±0.03, with system sizes up toL=320 and a similar
value for the DS.21,39 Thus, unless strong finite-size effects
take place, one is tempted to conclude that the two transi-
tions take place at two different values ofRc.

Here we analyze the problem again by numerical simula-
tions, computing the GS and the DS numerically, using the
same disorder realizations for the two cases. Simulations are
performed for cubic lattices of linear sizesL=10, 20, 40, 60,
80 and the results are averaged over several realizations of
the random fields. The GS is found exactly using a min-cut/
max-flow algorithm, while demagnetization is performed ap-
proximately with the algorithm discussed in Ref. 21 with
dH=10−3 ssee Sec. IId. In both cases, we compute the aver-
age magnetization as a function of the disorder widthssee
Fig. 8d. In Fig. 9 we collapse the two sets of data into a
single curve, using two different values forRc si.e., Rc

sGSd

=2.28 andRc
sDSd=2.16d but the same values for the exponents

si.e., n=1.37 andb=0.03d. The best value for the ratio of the
nonuniversal constant is found to beADS/AGS.1 and
BDS/BGS=0.68±0.02. The fact that the scaling function is
the same for the two cases is a strong indication for univer-
sality, going beyond the simple numerical similarity of the
exponents. There is always the possibility that in the thermo-
dynamic limit Rc

sGSd=Rc
sDSd. At the present stage this hypoth-

esis is not supported by the data, since we were not able to
collapse all the data into a single curve using the sameRc.

Next, we compare the statistical properties of the GS and
the DS around the transitions. In Fig. 10, we report the value
of the overlap as a function ofR for different system sizes.
When the disorder is decreased from the paramagnetic re-
gion, the overlap decreases as ford=1. However, for low
disorder, the overlap rapidly increases and reaches 1 in the
ferromagnetic state. The minimum of the overlap is located
in the parameter region corresponding to the transitionssi.e.,
R,2.2–2.3d. A decrease in the overlap around the transition

can be expected, since forRc
sDSd,R,Rc

sGSd the GS is ferro-
magneticsM .0d and the DS is paramagneticsM =0d as it is
also apparent plotting the difference in the magnetization
ssee Fig. 11d.

In summary, three-dimensional simulations indicate that
the transitions in the GS and DS are universal, but the critical
parameter seems to differ. Consequently the GS and DS dif-
fer mostly around the transition, while the difference is
smaller in the paramagnetic and ferromagnetic phases.

B. The Bethe lattice

The RFIM can be solved exactly in the Bethe lattice, dis-
playing a disorder induced transition in the GS and in the

FIG. 8. The magnetization of the GS and the DS ind=3 for
different system sizeL and disorderR.

FIG. 9. Numerical results ind=3: The magnetization can be
collapsed usingRc=2.28 sGSd and Rc=2.16 sDSd, n=1.37, andb
=0.03. The scaling curve is the same for DS and GS indicating
universal behavior. The values for the ratios of the nonuniversal
constants areADS/AGS=1 andBDS/BGS=0.68.
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DS.22 It is thus an interesting case to compare the two states
around the respective transition directly in the thermody-
namic limit. We consider here a Bethe lattice with coordina-
tion z and obtain the GS generalizing thed=1 case as in Ref.
9. In this caseN refers to the generation of the lattice, and
Zn

±sid are the partition functions of a branch of generationn
with a fixed upsdownd spin at a central sitei. The recursion
relation for theZn

±sid is

Zn
±sid = e±bhi p

jPIsid
fZn−1

+ s jde±bJ + Zn−1
− s jde7bJg, s30d

where for any given sitei the sum overj runs over the set
Isid of thez−1 nearest neighbors ofi away from the center of
the lattice. Then, following thed=1 case, one can write

Fnsid = o
jPIsid

FFn−1s jd −
1

2b
ln 2hcoshsbJd + coshf2bxns jdgjG ,

s31d

where

xnsid =
1

2b
lnfZn

+sid/Zn
−sidg, s32d

so that the contribution at the free energy from sitei is

fsid = −
1

2b
lnf2 coshsbJd + 2 cosh„2bxnsid…g. s33d

xnsid is a stochastic quantity satisfying the equation

xnsid = hi + o
jPIsid

gfxn−1s jdg. s34d

When R→0, Eq. s34d has a fixed point solution ofx`=sz
−1dgsx`d. x`=0 is a solution for anyJ and b. For b,bc

=s1/2dlnfz/ sz−2dg, there are also two stable solutions ±x`

Þ0 corresponding to the appearance of a ferromagnetic
phase.

To perform quenched averages one has to solve for the
probability distribution ofWnsxnd, where Wnsxddx=Probsx
,xn,x+dxd, which satisfies the recursive functional equa-
tion

Wn+1sxd =E
−`

`

dhPshdE
−`

`

dx1Wnsx1d ¯ E
−`

`

dxz−1Wnsxz−1d

3dFx − h − H − o
k=1

z−1

gsxkdG , s35d

so that in the thermodynamic limitW` is given by the fixed-
point equation

W`sxd =E
−`

`

dx1W`sx1d ¯ E
−`

`

dxz−1W`sxz−1d

3PFx − h − H − o
k=1

z−1

gsxkdG . s36d

Once W` is known, any thermodynamic quantity can be
computed. In particular, the free energy per spin is given
again by Eq.s12d and the magnetization at the central site of
an infinite lattice is given by Eq.s13d, where Z↑↓ are the
partition function with the spin at 0 fixed upsdownd, respec-
tively. They are given by

Z↑↓ = e±bh0 p
k=1,z

se±bJZk
+ + e7bJZk

−d s37d

and Zk
± for k=1,… ,z are the partition functions of thez

branches attached to the central site 0, with the boundary
spin fixed upsdownd. This gives for the magnetization at the
central siteks0l,

FIG. 10. The overlap between the GS and the DS ind=3 for
different system sizes.

FIG. 11. The difference in magnetization between the GS and
the DS ind=3 for different system sizes.
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ks0l = tanhHbFh0 + o
k=1,z

gsxkdGJ . s38d

The magnetization for the infinite lattice can then be ob-
tained averaging over the quenched variablesxr,l,

M =E
−`

`

dhPshdE
−`

`

dx1WNsx1d ¯ E
−`

`

dxzWNsxzd

3tanhHbFh + o
k=1,z

gsxkdGJ . s39d

For a Gaussian random-field distribution the fixed-point
equation cannot be solved explicitly and we thus resort to a
numerical integration. We obtainW`sxd for z=4, and for dif-
ferent values ofR, and compute the magnetization using Eq.
s39d. In Fig. 12 we compare the magnetization of the GS
with the one of the remnant magnetization in the DS, com-
puted in Ref. 22. As observed in the simulations ind=3, the
transition occurs at two different locationsssee the inset of
Fig. 12d, for z=4,Rc

sDSd=1.781 258…22, andRc
sGSd.1.8375,

with the mean-field exponentsb=1/2d. When plotted against
sR−Rcd /Rc the two curves superimpose close to the critical
point. This indicates that, though not required by universal-
ity, in the Bethe latticeAGS=ADS, as also found ind=3.

To investigate possible finite-size scaling we have per-
formed numerical simulations in the Bethe lattice, following
the method of Ref. 25. Collapsing the order-parameter curve
as ind=3, using a scaling form similar to Eq.s29d, does not
appear to be possible in the Bethe lattice, because the scaling
region is very narrow. Thus to test finite-size scaling, we
have computed the distribution of the magnetizationm at the
respective critical points,Rc

sDSd andRc
sGSd for different lattice

sizesN. The distributions can all be collapsed into the same
curve ssee Fig. 13d, using the formPsumud= fsumu /Md /M.

V. REACHING THE GROUND STATE
BY NONEQUILIBRIUM DYNAMICS

We have shown that the demagnetization procedure, as a
peculiar type of field history, does not necessarily bring the
system to the GS, because the DS and GS in general corre-
spond to different microscopic configurations. Now the ob-
vious question is: can we reach the GS by nonequilibrium
dynamics? Or, in other words, is there any field history, start-
ing from saturation, which can bring the system to the GS?
The answer to this question requires to clarify the relation
between the spin configurations visited along the nonequilib-
rium dynamics driven by the field, and the locally stable
states, given as solutions of Eq.s2d. In fact, only a limited
fraction of stable configurations may be reached by a field
history. The problem has been analyzed in detail using an
algorithm, called the reverse field historysRFHd, which is
able to calculate the simplest sequence of reversal fields
bringing to a generic stable state, if it exists.40,41 We apply
this algorithm to the case of GS, calculated independently by
exact combinatorial algorithms.

A. RFH Algorithm

Consider the spin configurations sthe set ofN Ising spinsd
reached after the application of a field history consisting in a
sequence of reversal fieldshHj=hH1,… ,Hnj, starting from
the saturation, and withHn=0. Let us define the generating
function s= fshHjd, and the stable states it generates asH
states.Due to adiabatic dynamical response and return point
memory, this states contains the memory of a subset of the
reversal fields. In fact not all the reversal fields determine the
final states. For example, the reversal fields which give rise
to closed minor loops do not influence the final state, because
their memory is erased. Thus only the memory of the set of
reversal fieldshHSj which are not erased is contained in the
final state. The inverse functionhHSj=gssd allows to obtain,

FIG. 12. The magnetization of the GS and the DS computed
exactly on the Bethe lattice withz=4 in the thermodynamic limit,
showing the ordering of the critical pointssee the insetd. When the
data are plotted against the reduced parametersRc−Rd /Rc the
curves superimpose. The result implies that for the Bethe lattice
AGS=ADS.

FIG. 13. The distributions of the magnetization in the DS and
the GS at their respective critical points on the Bethe lattice, ob-
tained numerically for different lattice sizesN, can be all collapsed
together.
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starting from a spin configurations belonging to theH states
ensemble, the set of reversal fieldshHSj which have been
actually stored in the state and that—if applied as a field
history—will reproduce the original state, i.e.,s= f(gssd). We
define this set of reversal fieldshHSj as theminimal field
history.

The RFH algorithm takes as input a configurations at H
=0 and gives as output—when it exists—the reversal field
history from saturation to the states. The formulation of the
algorithm is based on the order-preserving character of the
dynamics,13 and is therefore, applicable to a wide range of
models beyond the RFIM. An interesting result of the RFH
algorithm is obtained when it is applied to a states not be-
longing to theH statessi.e., where no field history existsd.
The iterated search for the reversal field sequence enters an
infinite loop and, in this case, it can be shown that no field
history leading to the state exists.40

B. Simulation results in one dimension

We applied the RFH algorithm to the GS in one dimen-
sion, with N=5000, 10 000 spins, averaging the results for
100 different realizations of the same disorderR. The GS
was obtained by the max-flow min-cut procedure for each
realization, as described. At each disorder valueR, we com-
pute the fractionfGS of the realizations in which the GS is
reachable. For comparison, we also consider the fraction
fRND of the reachable locally stable states, generated by ran-
dom sampling the set of local minima. The results are shown
in Fig. 14.

Remarkably, the GS does not result to be systematically
field reachable, and the fractionfGS depends on the disorder
ssee Fig. 14 for two system sizesd. The curve’s shape reason-
ably has limits equal tofGS=0 for R→0, where demagneti-
zation becomes impossible, andfGS=1 for R→`, where
hysteresis disappears and each state is field reachable. One
may argue that the fact that the GS is sometimes reachable is

a pure effect of the finite system size. To this end, let us first
consider the dependence offRND on R. For the random states
the fraction fRND sensibly changes withR, but following a
different curve with respect tofGS sFig. 14d. If there were no
correlation between GS and theH states the two curves
would be coincident. The dependence offRND on R reflects
the fact that the number ofH states depends on the disorder
value and on the system size,42, and only at large disorder,
where the number of locally stable states decreases, the ratio
betweenH states and stable states is significantly greater
than zero. We cannot make a similar estimation for the frac-
tion fGS, but we note that its shape is not very different from
fRND, even if it has different offset inR. This point reflects
the fact that the GS has a probability to be field reachable
significantly higher than any random stable state for the same
N andR values.

VI. CONCLUSIONS

For disordered systems such as the random-field Ising
model one would be interested in both universality in statis-
tical properties and in the question how to “optimize” in the
case of a sample with a given distribution of the impurities.
In this paper we have studied this problem in detail, by com-
paring the demagnetized and ground states. Our main find-
ings are the following: First, the GS is globally optimized,
and the demagnetization procedure does not perform well
unless the optimization problem is rather trivial. This is
slightly surprising since the conclusion holds in particular if
the GS is paramagnetic. In fact, the DS algorithm does not
manage to find the right spin configuration, thus many of the
domains of the GS do not appear in the DS, as clearly seen in
the d=1 case.

Second, ind=3 sand with the aid of the Bethe lattice
solutiond, we have demonstrated that the existence of a phase
transition for both the DS and GS makes the “phase dia-
gram” of optimization to show a regime where the outcome
is less optimal: in the paramagnetic phase of the DS, where
the GS is already ferromagnetic since the critical thresholds
are ordered such thatRc

sGSd.Rc
sDSd. In this regime DS and GS

are expected to differ strongly in the thermodynamic limit.
We also provide numerical evidence that thed=3 transition
appears to have the same critical exponents in both the GS
and DS.43 This can be considered both surprising—there be-
ing no exact field theoretical way of treating thed=3 phase
transition—and expected, since the functional renormaliza-
tion calculations in spite of their shortcomings indicate that
the actions are the same.14 It seems intriguing that such uni-
versality is met exactly in the limit where the optimized char-
acter of the DS changes.

The results indicate that for the particular system at hand,
where the disorder couples directly to the expected magneti-
zation, “local” optimization methods have difficulties. Of
course, as in “hysteretic optimization,” one can perturb or
“shake” the state obtained from the DS procedure to try to
still lower the energy. These attempts are of course usually
just heuristic. In the case of the RFIM, the joint approach of
optimizing by the DS and computing the GS exactly allows
to understand better similarities and differences between

FIG. 14. Fraction of reachable states, averages over 100 realiza-
tions of disorder. Full symbols: fractionfRND of reachable locally
stable states, generated by random sampling the set of local minima.
Open symbols: fractionfGS of ground states reachable considering
different realizations. System sizes areN=10 000ssquaresd and N
=5000scirclesd.
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equilibrium and low-energy nonequilibrium states.
In addition to the ferromagnetic RFIM model, one can

consider other systems where two disorder induced phase
transitions exist. Numerical simulations and analytical results
have shown that a disorder induced transition in the hyster-
esis loop can be observed in the random bond Ising model,44

in the random-fieldOsNd model,45 in the random anisotropy
model,46,47 and in the random Blume-Emery-Griffith
model.44 All these systems display as well a transition in
equilibrium and it would be interesting to compare their DS
and GS.

Interfaces in quenched disorder would provide another in-
teresting example, since the roughness exponent typically
differs in and out of equilibriumsi.e., at the depinning
thresholdd.4 It would be interesting to measure the roughness
of an interface after a demagnetization cyclesi.e., after the
field driving the interface is cycled with decreasing ampli-
tuded, and compare its properties with those of the ground-
state interface. Finally, there is the issue of energetics of
excitations in the respective ensembles: the universality of
exponents and scaling functions would seem to imply that
these also scale similarly.
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