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A general framework for the renormalization group analysis of self-organized critical sandpile models is
formulated. The usual real space renormalization scheme for lattice models when applied to nonequilibrium
dynamical models must be supplemented by feedback relations coming from the stationarity conditions. On the
basis of these ideas the dynamically driven renormalization group is applied to describe the boundary and bulk
critical behavior of sandpile models. A detailed description of the branching nature of sandpile avalanches is
given in terms of the generating functions of the underlying branching pro&5863-651X%99)06006-1

PACS numbd(s): 05.65+b, 05.40—a, 05.70.Ln

[. INTRODUCTION condition that provides the nonequilibrium stationary statis-
tical weights to be used in the calculation. This scheme,
In the past decade it has been recognized that a faimamed the dynamically driven renormalization group
amount of physical phenomena are characterized by strorl@®DRG) [13], has been successively generalized as a renor-
fluctuations and long-range correlation functions. Accordingnalization framework for systems with a nonequilibrium
to the theory of equilibrium statistical physics, we expectcritical steady state. Recently, the DDRG approach has been
scale invariance only in the presence of certain symmetrie§nproved including higher order proliferations through a
or at critical points[1]. We are therefore led to seek the general schemgld]. The method has also been applied to
origin of the scale invariance in nature, in the rich domain ofone-dimensional sandpildd.5], directed sandpile$16,17,
nonequilibrium systemg2—5]. One might hope, in fact, that and other nonequilibrium systems8.
there might be classes of nonequilibrium systems that gener- Here we discuss the application of the DDRG to sandpile
ate scale invariance for a widend arbitrary range of physi- models, deriving systematically the previous RG schemes
cal parameters, providing an explanation for the commonly11,14 and presenting extended results. We will introduce
observed scaling laws. the general strategy of the DDRG for the critical height sand-
Pursuing this aim' Bak’ Tang' and Wiesenfeld propose(ﬂ)ile mOdelS, and its praCtical implementation for inCI’eaSingly
the concept of self-organized criticalitgOO) [6,7] as a uni- complex proliferation schemes. In order to treat such a high
fying framework to describe a vast Ciass Of dynamica”ylevel of calculation Complexity, we introduce a generating
driven systems that evolve in a stationary state with a broaéinction for the basic recursion relations. The scheme is then
power law distribution of energy dissipating events. To illus-extended by exploiting the analogy with a particular chain
trate the basic ideas of SOC’ they introduced a cellular auchemical I’eaCtion. F|na”y |tS app|icati0n to the Ca|Cu|ati0n Of
tomaton model of sandpiles. In this model, criticality the boundary critical behavior is shown.
emerges if the system is driven at an infinitesimal rate The paper is organized as follows. In Sec. Il we introduce
[7-10]. Because of the enormous conceptual potentialitythe class of sandpile automata and its mapping into a general
SOC ideas have reverberated rapidly throughout the scPonequilibrium cellular automatoi€A). Section I1l presents
ences, from geophysics to economics and biology, as a prébe dynamically driven renormalization group general
totype mechanism to understand the manifestation of scagcheme. Section IV shows the explicit application of the
invariance and Complexity in natural phenomena_ DDRG to the Sandpile in its Simple scheme. In Sec. V we
The major source of difficulties in the study of sandpile Present the e}ctual calc.:ulations. of the renormalizatjon equa-
models is the absence of a general criterion, like the use dfons and their generating function and results obtained. Sec-
the Gibbs distribution in equilibrium systems, to assign antion VI describes the extended chemical reaction scheme and
ensemble statistical measure to a particular configuration dfs results. Section VIl is devoted to the renormalization
the System. This problem iS common to many nonequiiib_analysis of the boundary critical behaVior. SeCtion VI pl’e-
rium systems whose theoretical understanding lags far besents the summary and conclusions.
hind the equilibrium theory. In particular, many relations
among sandpile automata and systems with a nonequilibrium
absorbing critical point have been recently brought to light
[10]. The prototype example for SOC is provided by sandpiles:
In the past years, we have developed a renormalizatiosand is added grain by grain until unstable séadoo large
group (RG) strategy for sandpile mode[41] that has also local slope of the pileslides off. In this way the pile reaches
been applied12] to forest-fire model$8,9]. This approach a steady state, in which additional sand grains fall off the pile
deals with the critical properties of the system by introducingby avalanche events. The steady state is critical since ava-
in the renormalization equations a dynamical steady-statanches of any size are observed. This class of models can be

Il. SANDPILE MODEL
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used to describe a generic avalanche phenomenon, interpréitan they are perturbed. In practice, this implies that no new
ing the sand as energy, mechanical stress, or heat memorgrain of sand is dropped until the avalanche started by the
Sandpile models are cellular automffal9| defined in a  previous grain has finished. In this way avalanches cannot
d-dimensional lattice. A discrete or continuous variab(e), overlap, and their dynamics is well defined with respect to
which we denote by energy, is associated with each latticthe external field. A complete RG analysis should also take
site i. At each time step an input energf is added to a into account the driving field. However, since we are inter-
randomly chosen site. When the energy on a site reachesested in the critical point, we will study the system in the
threshold valueE,, the site relaxes, transferring energy to limit of slow driving. A more detailed discussion of the com-

the neighboring sites plete sandpile automaton phase diagram is provided in Ref.
[10].
E(i)—E(i)—2 AE(e), (D)
e Ill. DDRG
) . The probability distribution of CAs such as those shown
E(i+e)—E(i+e)+AE(e), (2)  in the previous section obeys the following master equation
ME):

wheree represents the unit vectors on the lattice. A typical

choice for the parameters is, for examplg,=4 and

AE(e)=6E=1, but other possibilities have also been con-

sidereo_l. The relaxaj[ion of the first site can induce a series o_f p(S,tOH)ZE (s|T(w)|s®)P(sty). (4)
relaxations generating an avalanche. Note that the energy is {s%

added to the system only when the configuration is stable

(i.e., all the sites are below the thresholdhe boundary . . o .
conditions are usually chosen to be open so that energy Cél;he_ explicit solution of the master qugtlon is not in general
leave the system. Under these conditions the system orggyallable, but we can extract the critical properties of the

nizes itself into a stationary state characterized by avalancH80del by a renormalization group analysis. We coarse grain
of all length scales. In particular, the distribution for ava-the system by rescaling lengths and time according to the
lanche sizes decays as a power laR(s)~s 7, and the transformationx—b ™ *x andt—b~?t. The renormalization

linear size of the avalanche scales with timet? This transformation is constructed through the opera¥fs,s)
model has been extensively studied in the past by means gfat introduces a set of coarse grained variable4 S} and
numerical simulationd20—23, and several exact results réscales the lengths of the syst¢gi]. In general,R is a
have been derived for Abelian sandpiles mod@k§Ms) ~ Projection operator with the propertig8(S,s)=0 for any
[24-30. {S}{si}, andZ5R(S,s)=1. These properties preserve the
Given the above definition of sandpiles we can rephras@0rmalization condition of the renormalized distribution. The
them in the language of a discrete nonequilibrium probabi€xplicit form of the operatofR is defined case by case in
listic CA. To each sitd is associated a variabk that can ~ various applications of the method. Usually, it corresponds
assumeq different values §=1,2,3 ... ,q). For instance, to a bloc_k transform_atlon in WhICh lattice sites are groqped
each state might correspond to an allowed energy level. Thiogether in a supersite that defines thg renormalized variables
subscripti labels the lattice site. A complete se&{s;} of S Dy means of a majority or a spanning rule. _
lattice variables specifies a configuration of the system. We We subdivide the time step in intervals of the unitary time
define(s| T(x)|s%) as the transition rate from a configuration Scale (=0), obtaining the coarse graining of the system as
s, to a configuratiors in a time stept as a function of a set follows:
of parametersu={u;}. SOC automata are usually defined
by a transition probability given by the product

' P/(St)=2 RIS (ST (WISHP(E"0), (B
(sITIs)=T1 ~(515° (8%, o). @ ©

g _ N where we have included the application of the operéd®or
whereN=L" is the number of sites, aralspecifies the near- andt’ =b’. The meaning o{s|TbZ(,u)|s°> has to be defined

est neighbor(NN) vector. The dynamics is therefore ex- explicitly: the simplest possibility i97=N, whereN is an

pressed as a product of one-site transition probabilities, d%hteger number and™ denotes the application of the dy-

g?en\;jil)nugs l:irr)r?en sttheepsne and its nearest-neighbor states at trPf%lmical operatolN times. In general, since we are dealing
. . . . . . v4
As we said, the common characteristic of SOC systems i¥/ith @ discrete time evolution, we have to consider as a
the presence of a nonequilibrium critical steady state, whicfgonvolution over different paths, chosen by an appropriate
we can analyze using the DDRG formalism. However, it iscondition. The detailed definition of the effective operator
worth remarking that SOC systems reach true criticality jusT® for the sandpile is reported in the next section. By mul-
in the limit of an infinite slow driving condition. This means tiplying and dividing each term of Eq(5) by P’(S°0)
that the perturbing time scale is much larger than the dy=Z30,R(S"s°)P(s°,0) and using the properties of the op-
namical activity one. SOC systems relax far more rapidlyeratorR, after some algebra we get
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> ;} R(S%,8%)R(S,8)(s| T (w)|s%)P(s°,0)
{s"} 18

P (St)=2, P'(°,0), (6)
(s} Eo R(,5%)P(°,0)
{s”}

which finally identifies the renormalized dynamical operatoriteration of the RG equations. By inserting the approximate
(S|T’|S°). In other words, the new dynamical operaldris  distribution in Eq.(6), we thus get the following set of renor-
the sum over all the dynamical pathslffsteps that from a malization equations:

starting configuratior{s’} lead to a configuratiors;} that

renormalizes in{S’} and {S}, respectively. The sum is

weighted by the normalized statistical distribution of each(S|T’(u)|S°)

configuration. The scheme discussed so far is a general for-

mulation, and its application to systems that exhibit a station- E % R(SO,SO)R(S,S)<S|TbZ(/.L)|So>l_i[ <p5i0>

ary state presupposes knowledge of the explicit form of the =

steady-state distributiow(s) = P(s,t— o). For instance, in = )]
equilibrium phenomensV(s) is given by the Gibbs distribu- > RSSO (pso)

tion. In this case it is possible to apply several methods such {s9 i '

as cumulant expansions and exact or approximate decimation

to obtain the form of the recursion relations. For nonequilib-

rium dynamical systems, in general, we do not know the S, ({{p)})=0, (10

form of the steady-state distribution. We will therefore de-

velop an approximate method to evaluate the stationary dis-

tribution to be used in the calculation of the renormalizedwhere the second equation denotes the dynamical steady-

master equation. state condition that allows evaluation of the approximate sta-
The steady-state distribution can in general be split intdionary distribution at each coarse graining scale. We call Eq.
two parts, (10) the driving condition since it drives the RG equations
acting as a feedback on the scale transformation. Equations
W(s) =W (s)+WO(s) (7) (9) and (10) are the basic renormalization equations from

which the desired recursion relations are derived. Imposing
whereW()(s) andW()(s) are, respectively, the incoherent the requirement that the renormalized operdatorhave the
and coherent part of the distribution. The incoherent part ofame functional form of the operat@ri.e., T'(x) =T(x'),
the distribution does not include correlations among variWe obtain the rescaled parameter gét- f(y). This implies
ables and expresses a mean field approximation for the syH1at the renormalized single time distributiéi(S,t") has
tem. The coherent paw/(®)(s) can be subdivided into parts the same functional form of the original distributiéi{s,t).
describing different kinds of correlations: nearest neighbors! N€ critical .beha’:nor of*the model is obtained by studying
next-nearest neighbors, etc. The incoherent part is a factot® fixed pointsu™ =f(x*). Since we are dealing with dis-

ized distribution that, for systems characterized hystate ~ Creté evolution operatof we define the time scaling factor
variable(see Sec. )| has the form b* as the average number of steps and apply the opéFamor

order to obtain thafl’(u)=T(x') for the coarse grained

system. In this way we obtain a time recursion relation

wi(s)=1T (ps), (8)  =g(u)t, or equivalentlyp®=g(u), from which it is possible
i ' to calculate the dynamical critical exponenrt In g(w*)/In b.

In this form of the DDRG, we take into account only the
where{p,) is the average density of sites in tkestate. In  uncorrelated part of the steady-state probability distribution.
this way, we have approximated the probability of each conThe results obtained are not trivial because correlations in
figuration{s;} as a product measure of the mean field prob-the systems are considered in the dynamical renormalization
ability having a states; in each corresponding site. The in- of the operatoiT, which given a starting configuration traces
coherent part contribution to the renormalization equatiorall the possible paths leading to the renormalized final con-
can be obtained by stationarity conditions for the systenfiguration. Moreover, geometrical correlations are treated by
S,({{p.)})=0 to evaluate the densiti€p,). These condi- the operatorR that maps the system by means of spanning
tions are derived from dynamical mean field equations thatonditions or majority rules. The renormalized uncorrelated
describe thedriving of the system to the nonequilibrium part of the stationary distribution is evaluated from the sta-
steady state by means of balance constraints. The operationary condition with renormalized parameters, thus provid-
S, depends upon the same dynamical parameters of the opyg an effective treatment of correlations. One can then im-
erator T, and by solving the stationary condition equation, prove the results by including higher order contributions in
the average densities of the states for the coarse grained the unknown stationary distributioW(s) using cluster
system are obtained as a functiongofat the corresponding variation method$32].
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IV. RENORMALIZATION SCHEME FOR SANDPILE external perturbations, angk,, is the average energy dis-
MODELS sipated by the site. The stationary state is characterized by

Here, we show in detail the DDRG scheme for sandpilethe balance between the energy that goes in and the energy

models. For the sake of clarity, we start by considering th that goes out of the system. We assume that energy is trans-

o . . ' ‘Serred in “quanta” SE= SE;, in each direction, and we on
minimum proliferation scheme. A more refined scheme is

discussed in the following sections. average obtain
To simplify the description of sandpile models as much as
possible, we can reduce the number of states of each site in SE=(p)SE>, npy, (13)
the following way. At any scale, we divide the sites into n
critical (s;=1) andstable(s;=0). Stable sites do not relax
when energy is added to them. On the other hand, criticalvhich implies
sites relax when they receive an energy gréif),, . In this

formalism we defin€p) as the density of critical sites. For 1
convenience, we also define unstable sitgs=@) as those (p)= : (14
that are relaxing, even though they are not present in the 2 np,

n

static configurations of the system. These definitions can be

extended to a generic scdleFor instance, a cell at scabds _ ) _ _ . L
considered critical if the addition of energi;,(b) induces This relation gives the average density of critical sites in the

a relaxation of the size of the céile., the avalanche spans Stéady state, allowing us to evaluate the approximate station-
the cel). ary distribution at each scale. It is worth remarking that the

In a relaxation event at the minimal scale, energy ise}bove relation is not able to take into account how the stq—
equally distributed in the four directions. This is no longertionary state is approached and the role of boundary condi-
the case at a coarse grained level where different possibilitigdons or driving on it. Nevertheless, the stationary state bulk
arise: the energy in principle can be distributed to one, twoProperties are expected to be well approximated without con-
three, or four neighbors. It is also worth remarking that in aSidering these details. , _
certain case unstable sites at the coarse grained scale do not!N€ renormalized matrix element is then obtained by con-
dissipate energy to nearest neighbors, representing just intrgidering all the renor_mallzed processes that span the cell and
site energy rearrangements. These processes define the prg@nsfer energy outside,
ability that relaxation events will take place on the renormal-
ized scale without energy transfer. All these events occur Pr=(S=0|T'|S’=2),. (15
with probabilities

We proceed in defining explicitly a renormalization proce-
P=(Po.P1.P2.P3.P4)- dure for the dynamics by considering a finite truncation on
four-site cells. This corresponds to a cell-to-site transforma-
In terms of the matrix elemer0|T|2) the vectorP repre- tion on a square lattice, in which each cell at the coarser

sents the probabilities scale is formed by four subcells at the finer scale: the length
scaling factor isb=2. In this case, the operat@® can be
Pn=(0|T|2)y, (1) written in the following way:

where (0|T|2), is the probability that a relaxing site will

become stable and transfer energyntaeighbors. In this R(Ss)=]1] R(S;.{si}J), (16

way, we have obtained the set of parameters that describes J

the dynamics. Of course, the choice of parameter space is not ) . B

uniquely determined; one encounters proliferation problemgvhere each term is acting on a specific ceind{s;}, de-
typ|Ca| of real space RG methods. For instance, h|gher Ordé-FOteS the anflguratlons of _SlteS belqng|ng to that cell. A Ce”
proliferations are due to multiple relaxations of the same sitdS renormalized as a relaxing one if it contains a relaxing
and sites becoming critical during the dynamical proces§ubce” that transfers enel’.gy toa Cr|t.|Ca.| subcell. In this way,
(i.e.,(1|T|2)). In the following, the practical implementation We ensure that the occurring relaxation process extends over
of the method considers just the minimal proliferation wethe size of the renormalized length scale independently of the

have reported above. In the next SectionS, a more refineﬂlccessive avalanche evolution. A critical cell is therefore
scheme will be treated. defined by a cell that can be spanned by a path of relaxation

First of all, let us show how the driving condition is ob- €vents. The scheme considers only connected paths that span

tained by imposing the stationarity of the process. The averthe cell from left to right or top to bottom. This spanning rule
age energy of a site evolves according to the following equalMplies that only paths extending over the size of the result-

tion written in the continuum notation: ing length scale contribute to the renormalized dynamics,
and it ensures the connectivity properties of the avalanche in
dE(t) the renormalization procedure.
gt~ 9Ein~ %Bout, (12 Every cell at the coarser scale can be characterized by an

index « that indicates the configuration of subcells, and we

whereSE;, is the average energy entering into the site eithehave thatt,—=,. The approximated stationary distribu-
because of relaxation in a neighboring site or because of thigon [Eqg. (8)] for each of these configurations is given by
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4 samples only the paths &f time steps that have to be con-
Wa(<P>):na_H1 (Ps)s (17)  sidered in the definition of the effective operafdt.
. The operatorDy is chosen on the basis of physical con-

wheren,, is a factor due to the multiplicity of each configu- Siderations: spanning conditions, etc. In additi®}, should
ration. satisfy some general properties in order to preserve the sym-

By using this scheme and replacing sums over configuraetry or the internal space of the dynamical variables. For
tions with sums over the index, the recursion relations can instance, we have to ensure the normalization of the effective

then be rewritten in the simpler form dynamical operator by the property
1 :
Pi= v 2 Wel(p) 2 (@[T (Pn)|e)n, (18 2 2 Du(slT(w)ls”) =1 (20)

where |a),|a’) denotes the four-site configurations that Moreover, Dy must be consistent with the definition of the
renormalize in|S’=2) and |S=0), respectively. In the renormalization operatoRR: it should describe dynamical
above expression the denominator of E9). is adsorbed in  processes among renormalized variables of the same type as
the normalization facta. those given by the operat®. Finally, Dy has to preserve
The effective operatdF®” contains all the dynamical pro- the form of the dynamical operatdr at each scale. This
cesses that contribute to the definition of a meaningful renorcondition requires that the time scaling be consistent with the

malized dynamics. We define the following transformation: length scaling used ifR. In this way, it is possible to map
the renormalized system in the old one with renormalized

2 variables. The operatdpy is therefore defined explicitly as
(s|T® (M)|SO>:% D(s|T(w)ls?), (19 an operator actir?g on trl;‘e paths internal to four—gite cyells. It
selects for eachN just relaxation paths that consist of
whereD,, is the renormalization operator for the dynamical connected noncontemporary relaxation events that leave the
evolution of the system: it is a projection operator thatcell without unstable sites. In a mathematical form it reads as

N-1 4
Dy=[1 (1—62,si)}jo 2 5(m—_ { }62,si>, (22)

iel{a’} lelag

where a;'s are the intermediate cell configurations during cell from left to right or from top to bottom. This spanning
the dynamical evolution and; e f{ay) denotes the sum over all rule implies that only paths extending over the size of coarse
the sites in the cells. In the above expression, e&ftmction grained length scale contribute to the renormalized dynam-
acts on a different intermediate cell, eliminating those pathdcS, and it ensures the connectivity of the avalanche in the
that do not have activity at each dynamical step. Furtherf€normalization procedure. o .

more, the operator ensures that in the ¢gll(Nth step no An example of such a path is shown in Fig. L.1n this case
activity is present; i.e., the process has stopped. Finally, we=2 and the path shown refers to the probability that the
have to write the equation that gives the time scaling factopinstable subcell will relax towards the other critical subcell

from the total average over contributing processes to théFig. 1(b)]. This occurs with probability (1/4). At this
renormalized matrix elemer®|T’|2), point we consider the probability that the next relaxation

event at the fine scale will involve two neighboring sites, one
1 N inside and the other outside the original cell of skze?2
g(pn)= N; Wa(<P>)2 EN: ND\(e'[TY(pnr)| @), [Fig. 1(c)]. This occurs with probability (2/3),. This series
“ (22) of relaxation processes contributes to the term
Dy{a'|T?(pn)|a=2), that characterizes the relaxation pro-
where we used the DDRG scheme to explicitly get the sta-

tionary weights, and\'is an opportune normalization factor. @ ® © @

The above relations will provide the consistent rescaling of o O o O o
time by requiring thab*=g(p}), from which it is possible
to calculate the dynamical critical exponent. o @ @®—O O ?
V. MINIMAL PROLIFERATION CALCULATIONS —-{ b }— ‘ ® l
AND RESULTS O O

The explicit evaluation of the recursion relations depends
on the choice of the spanning condition. In the following, the  FIG. 1. Example of the renormalization scheme for the relax-
scheme used considers only connected paths that span thtion dynamics. For details see the text.
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cesses at the coarse grained scale. By summing over all the paths that lep{ pjooaess, one obtains far=2

E 2 . TN P 1 1 1 2 1 1 1 1 1
= 4 n(a' [ TN(pp)|a=2),= Zp1+gp2 §p1+§p2§p3 + €p2+Zp3 Epl"‘gpz

+

1 1 1 1 3 1 1
gpz"‘zpa Ep2+Zp3 Zpl+§p22p3' (23

In a similar way one can also write the expression for theample, the function o(N;,0(N,,E»,S,,1),S;,W;) de-
complete recursion relations. Proliferation effects due toscribes the processes where cell 1 relaxes first. Then, if the
multiple relaxations of the same site and sites becoming critienergy goes to the directiod, it initiates the relaxation of
cal during the dynamical process are not considered in thigg|| 2 [Fig. 2d)]. The symbolN; ,E;,S;,W, denote the di-
scheme. However, the complete polynomials ffgrinvolve  rections outgoing from cell
more than 200 terms, and we developed a generating func- Using these properties we can write down the generating
tion that allows for their systematic calculation. function ,, counting the relaxation processes in the block
The generating function allows us to find the form of thethat consists of four cells for different. To this end, we
renormalized operatdf’, without writing down the explicit  must take into account only the processes that match the
form of all relaxation paths in the coarse grained cell. Thespanning condition. Therefore, it is necessary to eliminate all
basic idea of this method is to renormalize the function thaprocesses, in which only one cell relaxes. As the coefficients
describes all relaxation paths at once, rather than the prolf the polynomial®,, mean probabilities, they should finally
abilities of separate relaxation paths, by using the branchinge normalized by the condition
structure of avalanches.
To describe in detail the branching process underlying the S(1,...0=1 (25)
large scale behavior of the sandpile model, we consider the

generating function The generating function corresponding to the relaxation

processes inside the block with=2 is

o(N,E,S,W) = po+ %(N +E+S+W) 3={0(0(N2,1,1W,),1.8;,W;)— (0,18, Wy)}
+{U(N2!110-(111181lWl)1W2)_U(NZ!]‘!OWZ)}
+%(NE+ NS+ NW-+ES+EW+SW) +c.p./zZ,, (26)
o) (@) (b) (©
+Z(NES+NEW+NSV\/+ESV\)) N N
+
PANESW 24 W E W E W —?— E
where the symbol8l, E, S, andW correspond to the north,
east, south, and west directions on the square lattice, respec g g s

tively. The coefficient in each term of this polynomial gives
the probability for the process to go in the corresponding
directions. The generating function takes into account all
possible relaxation processes in the cell. It is easy to check (&, £,5,W) (0, E, 5, W) o(1,E,5,W)
directly that this function has the following properties:
(i) If the argument corresponding to any direction is re-
placed by zero, the function counts the relaxation processes ()
that do not send energy to this directifdfig. 2(b)].
(i) If the argument corresponding to any direction is re-

placed by a unit, the function counts the relaxation processes M N
whether or not the energy is transferred in that direcfkig.
2(0)]. W E
(i) The generating function is normalized so that ! :
o(1,1,1,11.
If there is a critical cell near the relaxing one, the outgo- S, S,

ing energy can initiate the relaxation of the cell. It is easy to

see that we can replace the argument corresponding to this

direction by another generating function corresponding to the (N1, 0(Na, Ez, S, 1), S1, Wi)

relaxation of the second cell. Finally, we obtain the generat-

ing function of this two-step relaxation process. For ex- FIG. 2. Examples of generating functions’ application.
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where Z, is a normalization factor chosen so that M N,
3,(1,...,1=1. To write this function we start from the left
down cell and define the arguments of ihdunction corre-
sponding to the toppling of this cell. Because the process

definitely spans the block, the left up cell should topple and
we write anothero function instead of the symbad\l,. By W,  — B,

going eastward the process will terminate inside the block
and this branch of the toppling process cannot affect the
neighboring blocks. Hence, we should write the number 1
instead of the symboE;. The other symbolss; and W;

correspond to the branches of the relaxation process that go
immediately out of the initial block of cells. To consider only l
S.

the processes that span the block, we must subtractrthe l
function that describes processes that do not send the energy
from the first critical cell to the second one. Then, we add 4 ¢ S
analogouso functions for the processes starting from the
relaxation of the left upper cell. The term c.p. denotes all
possible cyclic permutations of the critical cells inside the
block. Analogously, we can writer functions of all other
types of blocks.
To obtain the complete generating functi@ for the w E
block of four cells, we should sum up all, functions with
the weights of blocks and normalize the result

S
FIG. 3. Lattice renormalization by grouping two bonds connect-

2= 7 za: Wo2 g (27) ing neighboring blocks into a single bond of the rescaled lattice.
Nl'NZ_)Nl E2:E3_’Sv 83,184_’W, W4,Wl—>E.

Now, to transform the function from the block of four 24(N,E,S,W)
ks +1
cells at the scalé into a larger cell at the next scalé™?, — (o(o(N,o(N,E,o(1E,S1),1), LW),0S,W)

we replace the directiorid;,N,, ... that are outgoing from
the initial block by the new arguments corresponding to the +0(0,0(o(N,E,1,0(N,1,1W)),E,S,1),S,W)
directionsN, . .. that are outgoing from the new renormal-
ized cell. In other words, two bonds that connect the neigh- —20(0,0S;W)+(o(1,15 W)~ a(1,05,W)
boring blocks are coupled to the only bond on the lattice at _
the next scale, as is shown in Fig. 3. Eventually, we obtain 7(0.15W)+0(0,05W)(@(N,0.1W)a(0E,S,1)
the following generating function: +o(N,E,1,1)(o(N,0,AW)(c(1,E,S,1)
—0(0E,S1)+0(0E,S1(a(N,1,1W)
S(NESW)= W222+W3223+W424, 29 — o(N.0,1LW))+ (o(LE,S1)
_O'(O,E,S,l))(o'(N,l,l,\N)
where —a(N,0,1W))) +c.p)/Z,.
Here,Z; andZ are the normalization factors and c.p. denote
3,=(o(o(N,1,1W),1.SW)— (0,15,W)) the expressions obtained from the previous polynomial by all
possible cyclic permutations of its arguments. This generat-
+(0(N,1,0(1,18,W),W)—0c(N,1,0W)) +c.p./Z5, ing function is the polynomial that contains only the first and

(29) second powers of its arguments. The last terms correspond to
the processes when two energy portions are transferred from
the initial block to the neighboring block by the two paths.

3 4(N,E,S,W) However, according to the RG strategy, these processes
s should be considered as the transfer of the coarse grained
=(o(o(N,c(N,E,1,1),1W),1SW)—0c(0,1S5,W) energy portion at the larger scale. Therefore, all second pow-

ers of the arguments should be replaced by the first ones. The
+o(o(N,1,1W),0(1E,S,1),S;W)—a(0,0SW) result obtained is the generating function describing the re-
+o(Lo(o(N,E,1,1),E,S,1),5W)— o(1,0S,W) laxation of renormalized cells. It depends on the same prod-

ucts of its arguments as the generating function for initial
+c.p)/Zs, cells, but the coefficients of this polynomial are different and
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TABLE I. The fixed point probabilities for the energy transfer ~ The avalanche exponentcan be obtained directly from
from the relaxing cell, including the probability,. the fixed point parameters. By using the discrete length scale
b =2k and the avalanche distribution in the fof{r)dr

Po p1 P> p3 [ ~r(1=20dr, we can define the probability that the relaxation
¥ =0.595 0091 0345 0379 0161 0024 Process will span the cell of sizg) and die at the neigh-
boring cells not extending over the schlé*?),

equal to the prpbabili_ties_of relaxation processes 'ghat send _ jb(k) P(r)dr/ fw P(r)dr=1-22-7,
energy to the given direction at the new scale. Taking these pk=1) pk=1)

coefficients, we obtain the sought recursion relations that (32
link the parameters of the cell at the scalewith the same ] ) i
parameters at the scalté*?, Asymptotically k—«) we can expresK in terms of fixed

point parameterp* andp; in the following way:

PUCL=IE(9.p0): B0 Kepg+pi(a—p")+ (L") 7+ p3(1— )P+ pi (1
The above set of RG equations supplemented with the driv- —p*)4. (33
ing condition
This equation gives the total probability that a relaxation
1 process will occur without triggering other sites, and there-
(P hy=———— (31)  fore it does not extend on length scales larger than that of a
2 npﬁ” single cell. Using these two expressions, E®) and (33),
n the exponentr is given by the formula
define completely the DDRG recursion relations for sandpile 1In(1-K)
models. Given this scheme, the flow diagram and the relative T=1-5—,7 ~1262 (34)

fixed point in the parameters spagg I?) can be studied. We

consider here the calculation scheme implemented With in excellent agreement with the proposed vatue5/4 [30]
=(po.P1.P2.P3.P4). Despite the enlargement of the phaseand large scale numerical simulatiof0,21,23. The ob-
space by including the proliferation characterized by thetained value is also in good agreement with the value ob-
probabi“ty Pos the flow in the phase space is very similar to tained in the calculation of Relfll], showing the robustness
those obtained in Ref11], where this parameter was not Of the method with respect to different proliferation schemes.
considered. A single attractive fixed point is obtained and thén order to overcome some of the approximations considered
numerical value of this fixed point is very close to that ob-S0 far, we will present in the next section an improved
tained in the approach of Rdfl1]. The complete attractive- scheme that takes into account a wider set of dynamical pa-
ness of the fixed point corresponds to the lack of relevantameters. This scheme allows us to also study the critical
scaling field, i.e., control parameter. This must be the casd€havior at the boundary of the system.

because we implement our RG scheme in the infinite time

scale separation limit. In this limit the driving fieldddition VI. EXTENDED KINETIC EQUATION SCHEME

of sand grains or energys infinitesimally small; i.e., it is ) ) o )

tuned to its critical value. This implies that the relevant scal- [N this section we treat more explicitly the dynamics of
ing fields are constrained to their critical values. In otherthe original sandpile model. Considering the evolution of
words we are restricting the study of the system on its criticaptable cells, we can take into account some of the processes
surface. In Table | we report the results obtained within thisthat were neglected in the scheme discussed in the previous
calculation scheme. The single fixed point is the signature of€ction. _ _ o _

a single universality class for all the nondirected sandpile 10 keep the connection with the original formulation of
models. The identification of universality classes in sandpiléhe sandpile model, we will characterize the static properties
models is a longstanding and still unresolved issue. The re?f @ cell by four quantities,

sults obtained by numerical simulations are unclear. Early

large scale numerical simulatio20,21 show that ava- N(k)=(na,ng,nc,Np), Na+nNg+nc+np=1, (35
lanche distributions are described by the same exponents in

both stochastic and Abelian sandpile. Later, these resultwhich are nothing but the probabilities of a cell behaving
have been questioned in more recent pafi@3s33, where a  like a site on the initial lattice with a height 1, 2, 3, or 4,
new classification in which Abelian and stochastic modelsespectively, in the coarse grained dynamics; i.e., the addi-
belong to different universality classes is proposed. Theion of a “coarse grained particle” to the cell transforms it
present approach supports the existence of such a single umito the next one in the alphabet. For example, the Bell
versality class; however, it cannot provide a definitive setcharacterized by the vect,1,0,0 will be transformed into
tling of the issue. Mainly, it depends on the fact that thethe cell C with the vector(0,0,1,0. The last variableny is
method neglects proliferations such as the possibility of multhe probability of the cell behaving like a critical one in a
tiple topplings, which could be relevant for the identification sense that the addition of a “coarse grained patrticle” to the
of different universality classes. cell induces relaxations into some neighboring cells or, in
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other words, subrelaxation processes on a minimal scale span The only mobile species in this scheme of reactiong,is

the cell and transfer energy to some of its neighbors. and it is the fieldn,, which describes the dynamics of ava-
As we stressed in the previous sections, independently danches. When it is equal to zero, all toppling processes die.

the dynamics of the model at the minimal scale, each criticalThen, due to the noise term(r,t), particles are added ran-

cell is characterized by the vector domly into the system initiating a branching process directed
R to the open boundary of the system. This process mutates
P(k)=(p1,P2,P3,P4), pi+ptpst+ps=1, (36)  species in the cells it has visited and topples the critical ones.

Finally, the system will reach the steady state where the
which gives the probabilities of the energy going to 1, 2, 3,probability that the activity will die is on average balanced
or 4 neighboring cells after the relaxation of the critical cell. by the probability that the activity will branch. Thus, the
Here, because we have already enlarged the phase spacedhain reaction maintains this stationary state and all further
introducing the densitiea,, we do not includep, in the  avalanches cannot change the concentrations of species
calculation scheme. A, B, C, andD. Therefore, the steady state is characterized

In this framework the coarse grained dynamics of theby the conditions that
sandpile model can be represented as the following branch-

ing process on the sublattia®, : NA=Ng=Nc=Np=0 (43)
A+ p—B, and Egs.(38)—(41) lead to the following relationships be-
tween concentrations of speci§l$k) at the stationary state
B+¢—C, and branching probabilitieB(k),
Cte—D, (37) NA=Pa/p, (44)
p1:D+e ng=(pa+pa)lp, (45
p,:C+2¢ _
D+e— ~ ng=(p2+Ps+pa)/p, (46)
p3:B+3¢
psA+4p. Np=(P1+P2+Ps+pa)/p="1/p. (47

Here, ¢ and o denote the “coarse grained particles” ob- The relation(47) between the probabilitpy and branching
tained by the cell and the particles transferred to the ne|ghprobablllt|esP(k) can also be derived from the assumption
boring cells, respectively. that at the stationary state the flow of particles in a cell was
These processes can be formally reinterpreted as an irren average balanced by the flow of particles out of the cell.
versible chemical reaction that takes place at each cell of the Thus, we have found the driving conditions for the sand-
sublattice £,. Now the coarse grained variables pile models. Using them we can link the statistic weights of
Na, Ng, Nc, Np, andn, denote the concentrations of the any static configurations of a cell with the dynamic param-
respective species, B, C D, and ¢. Following standard eters. Now, we can realize the renormalization procedure de-
prescriptions of the chemical physics, we can write downscribed previously. To this end, we must consider all types of
kinetic equations corresponding to this scheme of chemicaplocks of four cells, whose relaxation matches the spanning

reactions, condition. Such blocks and some of their relaxation schemes
are shown in Fig. 4. While the previous scheme deals only
Na=N,(PaNp—Na), (38  with the cells being critical before the relaxation of the

block, this one allows us to consider the cells becoming criti-
(39) cal during the relaxatiofFig. 4(c)].
To obtain the recursion relations by the method presented
in the preceding section, it is necessary to calculate the sta-

Ng=n,(PsNp+Na—Ng),

Nc=nN,(P2Np+Ng—nNc), (40 fistical weights of all configurations considered. The statisti-
) cal weight of the block is given by the product of probabili-
Np=N,(P1Np+Nc—Np), (41)  tiesn; for all cells in the block, multiplied by the number of
different blocks with the same relaxation schemes. Thus, the
h(p:n(P(HnD_1)+E,,V2(n¢nD)+ 7(r,1), (42) ll‘gllovd\f/ing weights must be ascribed to the blocks shown in
ig. 4:

wherep=p;+2p,+3p3z+4p, is equal to the average num- 5

ber of particles leaving the cell on toppling amdis the W,=4np(na+ng+nc)?, (48)

position vector of the cell in the two-dimensional space. The 3

noise termy(r,t), being non-negative, mimics the random Wp=4np(na+ng), (49

addition of particles to the system. The diffusion term 3

Vz(nq,nD) describes the transfer of particles into the neigh- We=4npnc, (50)
boring cells, and the diffusion coefficiemt for the discrete 4

Laplacian on the square lattice is equal to 1/4. Wg=np. (51)
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TABLE lll. Height probabilities in the stationary state.

(a) ®
® ® Na Ng Ne Np

Bulk RG 0.0205 0.134 0349 0.496

X=A,B,C
Exact[26] 0.0736 0.174 0.306 0.446
(©)~®) ® ® ® © Open RG 00377 0184 0359 0.419
(b) boundary Exacf27] 0.104 0.217 0.316 0.363
® ® On0) OO,
B B onp Closed RG 0.0514 0305  0.643
boundary Exacf27] 0.113 0.318 0.568
- 53 B3 B2
C
(®)—(c) (®)—~(D) (®)—~(0) More generally the probability53) should be represented
via o function
E (©)~(D) ®)—~(D) (5)~D) E K=0*(1-np(N),1-n5(E),1-n3(S),1-n5(W)), (59
@ | % i
@ © (o)1) OmOMt wherenp(N), np(E), np(S), andnp (W) are the concentra-

________________________________________________ tions of critical cells at the nearest neighbors. By using the
fixed point values we finally obtain=1.248, which again is

FIG. 4. We show the four different elementary blocks in the in very good agreement with the proposed value[36} and

chemical reaction model and some relaxation schemes spannin . . . X .
P l5§.|mer|cal simulationg20,21,23. Also, in this case the

them. The other schemes can be obtained from these figures . - . . .
rotations. It is convenient for calculations to subdivide the relax- cheme results in a single “”'Vefsa“tY class for the sandpile
ation process in blockd) into three processes, as shown in the mOde,IS' In the eXt‘?”de‘?' scheme we include payt OT the pro-
dashed box. liferations by allowing different heights, and taking into ac-
count that some of the sites becomes critical during the re-
laxation event. We do not, however, consider multiple
relaxation of the same sites during the spanning time, nor do
we allow a renormalization of the energy transfefEj.
These parameters could be important in the case of the
Manna model[20], as pointed out in Ref.33]. Work is in
P(k+1)=f(P(k)). (52)  progress to extend the present DDRG scheme in order to
include further proliferations also.

Expressing them through the probabilitiés by using driv-
ing conditions(44)—(47), we obtain the complete system of
renormalization equations:

Given this set of RG transformations we can study how the
system evolves under successive doublings of length scale. VIl. BOUNDARY CRITICAL PROPERTIES

The final regqlt IS mdependent.of the initial cond.|t|cmsan.d . Since the critical properties of the sandpile model are
p; at the minimal scale. Also in this case the fixed point is

Ve in the whole bh d th | uite similar to those of second order phase transitions, we
attractive in the whole phase space and the system evo V‘?ﬁ'oceed here along the same lines followed in the study of
spontaneously toward the fixed point valups and n;

k equilibrium critical phenomena. In particular, we also deter-
shown in Tables Il and Ill. These results can be compareghine the surface critical exponents, which in general differ

with the exact ones obtained for the sandp#]. The exact o the bulk ones. This is of special importance in the two-

height probabilities for the sandpile are reported in Table lll§imensional case where conformal field theory connects sur-
and compared with our RG results. In order to calculate thg;ce and bulk properties of the mod&u].

avalanche exponent we can use Ef) by expressing< in

terms of the fixed point parameters in the following way:
A. Open boundary

K=p’{(l—n’[‘,)+p§(1—n’5)2+p§(1—n’,§)3 The_fact that the boundqry is open means that after the
relaxation of the boundary site the energy can leave the sys-
+pi(1—nf)*. (53) tem. We consider the critical energy of sites at the open

boundary to bé&.=4. It is more convenient to consider the
boundary lying along the diagonal of the lattice and construct

TABLE Il. Relaxation probabilities in the extended RG scheme. . . . .
P the renormalized cell in the following way. We consider the

p* P} p* ok block of cells 2<2 that contains one bulk, two boundary,
! 2 3 4 and one external cells, as shown in Fig. 5. Because the criti-
Bulk 0.295 0.435 0.229 0.0414 cal properties of the model at large scales do not depend on

the local structure of the lattice, the results obtained should
not depend on the specific choice of the boundary. To de-
Closed 0.526 0.394 0.0799 scribe the boundary cells at an arbitrary scale, we introduce
the vectors

Open 0.142 0.417 0.351 0.0899
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o o o o O L J To calculate the boundary critical exponent we should use
the generating function describing the relaxation of the
boundary cell in the fixed point of RG flow. It is given by
Eq. (32), where

K=0}(1,1,1-n3,1—np). (59

This indicates that the toppling of the coarse grained bound-
ary cell should stop in two neighboring internal cells. The
result7,=1.486 is very close ta,=3 calculated exactly in
[28] for the open boundary of an ASM. Such a good agree-
ment is probably to be ascribed to the fact that in the bound-
| ary avalanche in an ASM each site topples only of2@.
Therefore a renormalization scheme that does not take into

® ® ® account multiple topplings gives the most realistic results
\/W near the open boundary.

FIG. 5. Cell-to-site transformation procedure at the lattice open B. Closed boundary

boundary. One internal cel), two boundary cellyB), and one Let us consider the sandpile model on the half-plane. The
a;’;”r::;ysgggmal cell(E) build the boundary cell at the coarse edge of this half-plane is the closed boundary directed along
¢ ' one of the lattice axes. Each boundary site has three neigh-

boring sites. Two of them also belong to the boundary. The

N°(k)=(n3,n3,ng,nd), n3+ng+n2+nd=1, (55 fact that the boundary is closed means that after the relax-
ation of a boundary site energy does not leave the lattice,
ﬁO(k):(pg,pg,pg,pg), pS+p3+ p3+ps=1, (56)  being distributed among the neighboring sites. Since the en-

ergy can leave the boundary site in only three directions, it is
which have the same meaning as in the preceding sectiofiuite natural to take the critical energy of a boundary site
The kinetic equations and feedback relations coincide witfEc=3.
the bulk ones. Thus, it is only necessary to find the correct In order to follow the RG strategy, we again perform the
form of recursion relations. To write the generating functionsite-to-cell transformation, replacing the block of four cells
for the boundary block, we can use again the generatin§y a single cell at the larger scale. The cells at an arbitrary
functions describing the relaxations of bulk and boundaryscale can be considered as either boundary or bulk ones.
cells. Also we have to introduce a special generating funcWhile the former consist only of bulk cells at the smaller
tion corresponding to the relaxation of the unphysical exterscale, the latter include both the bulk and the boundary cells
nal cell. Since there are not processes transferring energgf smaller size. The renormalization of the bulk cell is de-
from the external half-plane of the lattice to the internal onescribed by the system of RG equations obtained in the pre-
we require that the external cell immediately transfer theceding section. Let us introduce the description for the dy-
energy outside the lattice. Thus, we provide conservation ofiamics of boundary cells at an arbitrary scale. The static
the flow of energy through the boundary in the scale transstates of a boundary cell can be represented by three symbols
formation. For the block shown in Fig. 5 the generating func-A,B,C, which correspond to energy valués=1,2,3 of

tion of relaxation of the external cell has the simple form boundary sites on the initial lattice. The addition of energy
transforms the cell from stat&into stateB and the cell from
out. NFE stateB into stateC. The cell in stateC is critical. The addi-
o= ——. (57)  tion of energy initiates its relaxation when the cell turns into
statesA or B or remains in stat€C, sending the energy to
dhree, two, or one neighboring cell, respectively. The prob-
abilities for the cell on the closed boundary to be in one of

the three states are given by the vector

Statistical weights of the static boundary configurations ar
given by the product of the probabilities of one bulk and two
boundary cells. Now, the coefficients of the generating func
tion of the renormalized cell gives us the recursion relations NC(k)= (nS.nS.n2),  nS+ng+ni=1. (60
Po(k+1)=f,(P°(k),P(Kk)). (59

In the same way, the probabilities for the energy to be trans-
Together with the bulk recursion relations of E§2), Eq.  ferred in one, two, or three directions are given by the vector
(58) represents the complete system of the renormalization
equations for the case of the open boundary. This system
also has only one fixed point. The obtained fixed point pa-
rameters are given in Tables Il and Ill. The comparison of
fixed point height probabilities with the exact values ob-The relaxation process at the boundary cell can be repre-
tained for ASMs[27] shows rather good agreement. sented as follows:

Pe(k)=(p$,pS5,p5),  PS+pS+ps=1. (61)
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A+ ¢—B, TABLE IV. Critical exponentsr, 7,, and 7. for the avalanche
size distribution in the bulk, open, and closed boundaries, respec-
B+ ¢—C, tively.
pS:C+1p T To Te
C+ oo ngB+2<~p RG 1.248 1.486 1.239
Exact 1.25[30] 1.5[28] ?

pg:A+3Zo,

whereg and¢ are the energy obtained by the cell and trans- - S
ferred to the neighboring cell, respectively. Hence, we carexponent 7. describing the distribution of avalanches

write the following kinetic equations for the energy transfer:near a closed boundary, we use H§2), expressingK
through the fixed point generating function of the boundary

- cell:
N°a=ny(p3 N¢—Na), (62)

- % __ nC _ _ nC
nCan(p(p(zln(é_l_nZ_n(é)’ (63) K—O’C(l nc,l nD,l nc). (71)

The critical exponent becomes=1.239. The correction to

~C _ CC c c

n‘c=n,(pinc+ng—ne), 64 the bulk critical exponent due to the half-plane geometry has
B _ — . not, to our knowledge, been presented before. The obtained
n°,=ng(pcnp—1)+pcrVa(nyng)+ n(r,t). (65  value is slightly different from the one obtained for the bulk

) ) ) exponent. The approximate nature of the method, however,
Here, the discrete Laplaciah must be understood with the joes not allow us to determine if the two exponents are ac-
Neumann boundary conditions. The steady state correspongg,ly different or if this is just due to the truncation and

to the conditionsN°=0. This leads us to the following driv- Pproliferation scheme used.
ing conditions for the closed boundary:
VIIl. DISCUSSION AND CONCLUSIONS

ni=p%s/p, (66) In this paper we have presented the detailed application of
o the DDRG to the sandpile model. We have concentrated on
ng=(p%+p3)/p°, (670  the Bak-Tang-Wiesenfeld model, which we have studied us-
ing schemes of increasing complexity. In the simple scheme

nS=(p° +pS+ p§)/E°= 1/pC. (6g)  the sites are subdivided into three staftsble, critical, and

active) and the RG transformation acts on the energy transfer
To perform the standard renormalization procedure deprobabilitiesp; [11]. The scheme is then extended in order to
scribed above and find the recursion relations, the generatirigeat explicitly the four-state probability densitieg, which
function method can be employed. To this end, we introduce€an be obtained self-consistently. The fixed point values of
the generating function for the relaxation of a cell on then, andp; are in good agreement with exact results. In addi-

closed boundary as the following polynomial: tion, we compute the critical exponentdescribing the ava-
lanche size distributiofTable 1V). The result is in good
P pS agreement with numerical and analytical estimations and ap-
oo(N,E,W)= —1(N+ E+W)+—2(NE+ NW-+ EW) pears to be robust with respect to the different approxima-
3 3 tions. Finally, we study the boundary scaling of the sandpile
+pENEW. (69) model, obtaining results in good agreement with exact re-
sults.
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four cells is the same as in the bulk case. The difference is ACKNOWLEDGMENTS

that the generating functions for boundary blocks oriented
differently with respect to the boundary should be calculate

separately and cannot be obtained by simple cyclic permut . . . .
tions of the arguments. Finally, applying the renormalizatio or very interesting discussions. A.V. and S.Z. thank

; ; . Loreto and L. Pietronero, with whom they have
h th f the f k relati¢6l)— ' .
\;/)vré) %%c::‘irr? tm;[ récﬁr:iii (r)eéti%niedbac relat (68), collaborated on part of the work described here. A.M.P. and

E.V.l. were partially supported by the Russian Foundation
. .. . for Basic Research under Grant No. 97-01-01030. A.M.P.
Pe(k+1)="f.(P°k),P(k)), (700 gratefully acknowledges support from the INTAS Grant No.
_ 96-0457 within the research program of the International
whereP (k) matches the bulk recursion relations of E8R). Center for Fundamental Physics in Moscow, and INTAS
The obtained height probabilitie€Table IIl) are in good Grant No. N96-690. A.V. and S.Z. acknowledge partial sup-
agreement with those calculated exactly in the case oport from the European Network under Contract No.
an ASM with closed boundary. To calculate the critical ERBFMRXCT980183.

E.V.l. and A.M.P. are grateful to V.B. Priezzhev for
ruitful discussions. A.V. is indebted to J.M.J. van Leeuwen



PRE 60 DYNAMICAL REAL SPACE RENORMALIZATION GROUP ... 1251

[1] Phase Transition and Critical Phenomeredited by C. Domb  [14] E.V. Ivashkevich, Phys. Rev. Leff6, 3368(1996.
and M. S. GreelgtAcademic Press, London, 1972—-1978ols. [15] J. Hasty and K. Wiesenfeld, J. Stat. Ph§§, 1179(1997).
1-6; Phase Transition and Critical Phenomeredited by C.  [16] A. Ben-Hur, R. Hallgass, and V. Loreto, Phys. Re\b4 1426

Domb and J. L. LebowitAAcademic Press, London, 1983— (1996.

1995, Vols. 7-17. [17] J. Hasty and K. Wiesenfeld, Phys. Rev. L&t, 1722(1998.
[2] S. Katz, J.L. Lebowitz, and H. Spohn, Phys. Rev2® 1655 [18] T. Tomeand M.J. de Oliveira, Phys. Rev. &5, 4000(1997);

(1983; J. Stat. Phys34, 497 (1984). M.J. de Oliveira and J.E. Satulovskipid. 55, 6377(1997).
[3] B. Schmittmann and R. K. Zia, iRhase Transition and Criti- [19] Y.C. Zhang, Phys. Rev. Let63, 470(1989; L. Pietronero, P.

cal PhenomendRef. [1]), Vol. 17. Tartaglia, and Y. C. Zhang, Physical&¥3 129(1991).
[4] T. Vicsek, Fractal Growth Phenomen@Norld Scientific, Sin-  [20] S.S. Manna, J. Phys. 24, L363 (1991.

gapore, 199 [21] P. Grassberger and S.S. Manna, J. Plilfsance 51, 1077
[5] B. B. Mandelbrot,The Fractal Geometry of Naturg-reeman (1990.

and Company, New York, 1983 [22] A.L. Stella, C. Tebaldi, and G. Caldarelli, Phys. ReV5E 72
[6] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. L&%.381 (1995.

(1987); Phys. Rev. A38, 364(1988. [23] S. Libeck and K.D. Usadel, Phys. Rev.35, 4095(1997; S.
[7] For a review, see, e.g., P. Bak and M. CreutzFiactals and Lubeck, ibid. 56, 1590(1997).

Disordered Systemsedited by A. Bunde and S. Havlin [24] D. Dhar, Phys. Rev. Let64, 1613(1990.

(Springer-Verlag, Heidelberg, 1993Vol. Il; G. Grinstein, in  [25] S.N. Majumdar and D. Dhar, J. Phys. 24, L357 (199)).

Scale Invariance, Interfaces and Non-Equilibrium Dynamics [26] V.B. Priezzhev, J. Stat. Phyg4, 955(1994).

edited by A. McKaneet al, Vol. 344 of NATO Advanced [27] E.V. lvashkevich, J. Phys. &7, 3643(1994.

Study Institute, Series B: PhysiBlenum, New York, 19956 [28] E.V. Ivashkevich, D.V. Ktitarev, and V.B. Priezzhev, J. Phys.

[8] P. Bak, K. Chen, and C. Tang, Phys. Lett1A7, 297 (1990. A 27, L585 (1994).
[9] B. Drossel and F. Schwabl, Phys. Rev. Lé8, 1629(1992. [29] V.B. Priezzhev, D.V. Ktitarev, and E.V. lvashkevich, Physica
[10] A. Vespignani and S. Zapperi, Phys. Rev. LeiB, 4793 A 209 347 (1994.
(1997; Phys. Rev. 57, 6345(1998; R. Dickman, A. Vespig-  [30] V.B. Priezzhev, D.V. Kititarev, and E.V. Ivashkevich, Phys.
nani, and S. Zapperibid. 57, 5095(1998. Rev. Lett.76, 2093(1996.

[11] L. Pietronero, A. Vespignani, and S. Zapperi, Phys. Rev. Lett[31] T. Niemeijer and J.M.J. van Leeuwen,fiase Transition and
72,1690(1994; A. Vespignani, S. Zapperi, and L. Pietronero, Critical PhenomendRef. [1]), Vol. 6.

Phys. Rev. B51, 1711(1995. [32] R. Dickman, Phys. Rev. 88, 2588(1988.
[12] V. Loreto, L. Pietronero, A. Vespignani, and S. Zapperi, Phys.[33] A. Ben-Hur and O. Biham, Phys. Rev.33, R1317(1996); E.
Rev. Lett.75, 465(1995. Milshtein, O. Biham, and S. Solomoihid. 58, 303 (1998.

[13] A. Vespignani, S. Zapperi, and V. Loreto, Phys. Rev. Léft.  [34] J.L. Cardy, inPhase Transition and Critical Phenome(Ref.
4560(1996; J. Stat. Phys88, 47 (1997). [1]), Vol. 11.



