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Abstract

We consider a conducting body which presents some (unknown) perfectly insulating defects, such as cracks or cavities, for
instance. We aim to reconstruct the defects by performing measurements of current and voltage type on a (known and accessible)
part of the boundary of the conductor. A crucial step in this reconstruction is the determination of the electrostatic potential
inside the conductor, by the electrostatic boundary measurements performed. Since the defects are unknown, we state such a
determination problem as a free-discontinuity problem for the electrostatic potential in the framework of special functions of
bounded variation. We provide a characterisation of the looked for electrostatic potential and we approximate it with the minimum
points of a sequence of functionals, which take also in account the error in the measurements. These functionals are related to
the so-called Mumford–Shah functional, which acts as a regularizing term and allows us to prove existence of minimizers and
Γ -convergence properties.
© 2007 Elsevier Masson SAS. All rights reserved.

Résumé

On considère un corps conducteur qui présente des défauts (inconnus) parfaitement isolants, comme par exemple des fissures
ou des cavités. On voudrait reconstituer les défauts en effectuant des mesures de type courant et tension sur une partie (connue
et accessible) du bord du conducteur. Un pas crucial dans cette reconstitution est la détermination du potentiel électrostatique
à l’intérieur du conducteur par les mesures électrostatiques effectuées au bord. Comme les défauts sont inconnus, on formule
ce problème de détermination comme un problème aux discontinuités libres dans l’espace des fonctions spéciales à variation
bornée. On donne une caractérisation du potentiel électrostatique en question et on l’approche avec les minimiseurs d’une suite
de fonctionnelles, qui tiennent aussi compte des erreurs dans les mesures. Ces fonctionnelles sont liées à la fonctionnelle de
Mumford–Shah, qui agit comme un terme régularisant et permet de démontrer l’existence de minimiseurs et les propriétés de
Γ -convergence.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We consider a homogeneous and isotropic electrically conducting body which occupies Ω , a bounded domain in
R

N , N � 2, with a reasonably smooth boundary ∂Ω . The conductor might present some perfectly insulating defects,
such as cracks (either interior or surface breaking), cavities or material losses at the boundary, which might be caused
by different phenomena, like for instance fractures or corrosion. We call K the closed set which is the union of
the boundaries of these defects. If we prescribe a current density f ∈ L2(∂Ω), with

∫
∂Ω

f = 0 and such that its
support is contained in γ̃ , a part of the boundary of Ω which is accessible, known and disjoint from K , then the
electrostatic potential u = u(f,K) inside the conductor solves the following Neumann type boundary value problem,
whose precise formulation will be discussed in Section 3,{

�u = 0 in Ω\K,

∇u · ν = f on γ̃ ,

∇u · ν = 0 on ∂(Ω\K)\γ̃ .

(1.1)

We are interested in the following inverse problem. We would like to determine an unknown defect K by
performing boundary measurements of voltage and current type. In practice, we prescribe one or more currents f

and we measure on γ , an accessible and known part of ∂Ω , the value of the corresponding potentials u. Through
these measurements we obtain additional information with which we would like to recover the unknown defect K .
For what concerns the determination of cracks we refer to the recent review paper [12], where uniqueness, stability
and reconstruction procedures, in two and three dimensions, are discussed. For the determination of other defects,
such as cavities or material losses at the boundary, we refer to the following papers and to the references therein. The
uniqueness and stability issues are treated in [30], for the two-dimensional case, and in [3], for the higher-dimensional
case. Various reconstruction procedures and numerical methods have been suggested, see for example [7,8,21,24].

A two-steps procedure is usually employed to deal with these kinds of inverse problems, see for instance [18]
and [4]. In the first step, the potential is recovered from the boundary measurements of voltage and current type.
Subsequently, in the second step, features of the potential such as singularities, level sets or critical points are used
to determine the unknown defect K . For instance, in our case, that is when the defects are perfectly insulating, the
jump set of u, S(u), is contained in K . Thus S(u) would identify at least a part of our defect. Repeating the procedure
for different and suitable choices of f , the union of the jump sets of the corresponding potentials would cover the
whole K . The uniqueness results which are available in the literature give us information on how many and which
kind of measurements we need to take in order to identify uniquely, at least in a suitable class of admissible defects,
the unknown K . Here we limit ourselves to notice that in many interesting cases a finite number (usually one or two)
of suitably chosen measurements is enough. We recall that, on the other hand, a single measurement is not enough,
in general, to determine cracks, see for instance [18]. Furthermore, in dimension higher than 2, for what concerns
insulating cracks, still a general uniqueness result with a finite number of measurements is missing, the only available
result, [4], deals with planar cracks only.

In this paper we develop a reconstruction procedure for the first step of the previous scheme. If K is the unknown
defect and f is the prescribed current density, we measure g = u(f,K)|γ , where u(f,K) solves (1.1). Given f

and g, we would like to reconstruct the electrostatic potential inside the conductor. In [31], the unique identification
of the potential from the Cauchy data (g, f ) and corresponding stability results have been proven. Here, instead,
we prove a characterisation of the looked for potential u(f,K) in a suitable subset of the space of special functions
of bounded variation in terms of the Cauchy data (g, f ), see Proposition 5.6. However, in order to implement a
reconstruction procedure from a numerical point of view, some further issues need to be considered. In fact, one
usually has to deal with noisy measurements, that is f , the prescribed current density, and in particular g, the measured
potential at the boundary, are known up to some noise which is due to the errors the measurements are subject to.
Then, as usual with inverse boundary value problems of this kind, the problem is severely ill-posed. Therefore, any
numerical procedure must contain some kind of regularization. Hence, we construct a family of functionals which
depend on the level of noise on the measurements and contain as a regularization term the so-called Mumford–Shah
functional which has been introduced in [26] as an image segmentation method. We show that these functionals admit
a minimum and are such that their minimizers converge in a suitable sense to u(f,K), as the level of noise goes to
zero. Here the Mumford–Shah functional term has several uses. It guarantees existence of a minimum in a common
compact set, see Proposition 5.2, it acts as a regularizing term and allows us to prove the Γ -convergence of the
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functionals, Theorem 5.3, which is the key step to prove the required convergence of the minimizers. We recall that
the Mumford–Shah functional has already been used in the context of inverse problems as a regularization term for
the determination of discontinuous conductivities, see [32].

The main advantages of our method are the following. In Newton’s type methods, see for instance [34,11], one has
to solve the direct problem at each iteration, usually in a different domain, whereas in our case we do not need to solve
the direct problem. However, in order to deal with overdetermined data in a variational framework, some of them have
to be prescribed as constraints, therefore we use a minmax approach in the formulation of the functionals. Furthermore,
we do not make use of many a priori information on the topology of the defects, in particular we do not know a priori
how many defects are present, whether they are cracks, cavities or material losses at the boundary. With respect to this
issue our procedure presents some similarities with level set methods, see for instance [33,22,28]. Moreover, we can
treat the case in which defects of different types are present in the conductor simultaneously. These defects may in fact
include at the same time cavities, material losses at the boundary, interior and surface breaking cracks. Furthermore,
we do not impose strong a priori conditions on the defects (like assuming that the cracks are linear, for example) which
might be required by some of the reconstruction methods which employ particular properties satisfied by the potential
if the defect is of special type, like for instance the reciprocity gap principle, [6,9], the use of Schwarz–Christoffel
formula, [16,13], and the analysis of crack tip singularities, [20]. In fact, our approach is closer in spirit to shape
optimization problems, see for instance [29] for applications of shape optimization techniques to the inverse crack
problem. Finally, the method is developed for any dimension N � 2.

The plan of the paper is the following. After a section of preliminaries, Section 2, we discuss the direct prob-
lem (1.1) in Section 3. In Section 4 we discuss the classes of admissible defects we shall use. The reconstruction
method is developed in Section 5, a final discussion is contained in Section 6.

2. Preliminaries

Throughout the paper the integer N � 2 will denote the dimension of the space. For every x ∈ R
N , we shall

set x = (x′, xN), where x′ ∈ R
N−1 and xN ∈ R, and, for any r > 0, we shall denote by Br(x) and B ′

r (x
′), respec-

tively, the open ball in R
N centred at x of radius r and the open ball in R

N−1 centred at x′ of radius r . Usually
we shall write Br and B ′

r instead of Br(0) and B ′
r (0), respectively. Furthermore, for any r > 0 and t > 0, we set

Q′
r (x

′) = ∏N−1
i=1 (xi − r, xi + r) ⊂ R

N−1 and Qr,t (x) = {y = (y′, yN) ∈ R
N : y′ ∈ Q′

r (x
′), yN ∈ (xN − t, xN + t)}.

Again, Q′
r and Qr,t shall denote Q′

r (0) and Qr,t (0), respectively.
For any non-negative integer k we denote by Hk the k-dimensional Hausdorff measure. We recall that for Borel

subsets of R
N the N -dimensional Hausdorff measure coincides with LN , the N -dimensional Lebesgue measure.

Furthermore, if γ ⊂ R
N is a smooth manifold of dimension k, then Hk restricted to γ coincides with its k-dimensional

surface measure. For any Borel E ⊂ R
N we let |E| = LN(E) and [E] = HN−1(E).

We recall that a bounded domain Ω ⊂ R
N is said to have a Lipschitz boundary if for every x ∈ ∂Ω there exist

a Lipschitz function ϕ : RN−1 �→ R and a positive constant r such that for any y ∈ Br(x) we have, up to a rigid
transformation,

y ∈ Ω if and only if yN < ϕ(y′).

We observe that the boundary of Ω , ∂Ω , has finite (N − 1)-dimensional Hausdorff measure, that is [∂Ω] < +∞.
We say that a function ϕ :A �→ B , A and B being metric spaces, is bi-Lipschitz if it is invertible and ϕ and

ϕ−1 :ϕ(A) �→ A are both Lipschitz functions. If both the Lipschitz constants of ϕ and ϕ−1 are bounded by L > 0,
then we say that ϕ is bi-Lipschitz with constant L.

We recall some basic notation and properties of functions of bounded variation and sets of finite perimeter. For a
more comprehensive treatment of these subjects see, for instance, [5,17].

Given an open bounded set Ω ⊂ R
N , we denote by BV(Ω) the Banach space of functions of bounded variation.

We recall that u ∈ BV(Ω) if and only if u ∈ L1(Ω) and its distributional derivative Du is a bounded vector measure.
We endow BV(Ω) with the standard norm as follows. Given u ∈ BV(Ω), we denote by |Du| the total variation of its
distributional derivative and we set ‖u‖BV(Ω) = ‖u‖L1(Ω) + |Du|(Ω). We say that a sequence of BV(Ω) functions
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{uh}∞h=1 converges weakly∗ in BV(Ω) if and only if uh converges to u in L1(Ω) and Duh weakly∗ converges to Du

in Ω , that is

lim
h→∞

∫
Ω

v dDuh =
∫
Ω

v dDu for any v ∈ C0(Ω). (2.1)

We denote by SBV(Ω) the space of special functions of bounded variation that is the space of functions u ∈ BV(Ω) so
that Du has a singular part, with respect to the N -dimensional Lebesgue measure, concentrated on S(u), S(u) being
the approximate discontinuity set (or jump set) of u. The density of the absolutely continuous part of Du with respect
to the N -dimensional Lebesgue measure will be denoted by ∇u, the approximate gradient of u.

The special functions of bounded variation satisfy the following compactness and semicontinuity theorem, see for
instance [5, Theorems 4.7 and 4.8].

Theorem 2.1 (SBV compactness and semicontinuity). We fix a constant p, 1 < p < +∞. If {uh}∞h=1 is a sequence of
functions belonging to SBV(Ω) satisfying for a given constant C > 0,

‖uh‖L∞(Ω) � C, for any h, (2.2)

and ∫
Ω

|∇uh|p + [
S(uh)

]
� C, for any h, (2.3)

then we may extract a subsequence, which we relabel {uk}∞k=1, such that uk converges weakly∗ in BV(Ω) to a function
u ∈ SBV(Ω) and the following lower semicontinuity properties hold:[

S(u)
]
� lim inf

k

[
S(uk)

]; ∫
Ω

|∇u|p � lim inf
k

∫
Ω

|∇uk|p. (2.4)

Let E be a bounded Borel set contained in R
N and let r > 0 be such that E is compactly contained in Br . We

say that E is a set of finite perimeter if its characteristic function χE belongs to BV(Br) and we call the number
P(E) = |DχE |(Br) its perimeter.

For any set E of finite perimeter, let ∂∗E be the reduced boundary in the De Giorgi sense, that is the set of x ∈ R
N

such that |DχE |(Bρ(x)) > 0 for any ρ > 0 and there exists ν(x) with |ν(x)| = 1 such that

lim
ρ→0+

DχE(Bρ(x))

|DχE |(Bρ(x))
= −ν(x).

We call the function ν : ∂∗E �→ S
N−1 the exterior normal to E. Let us also note that ∂∗E ⊂ ∂Ẽ for any Ẽ such that

χẼ = χE almost everywhere.
The following Gauss–Green formula holds true for sets of finite perimeter, see for instance [17, Section 5.8,

Theorem 1].

Theorem 2.2. Let E be a bounded Borel set of finite perimeter. Then ∂∗E is HN−1-measurable with [∂∗E] finite and∫
E

div(f ) =
∫

∂∗E

f · ν dHN−1 for any f ∈ C1
0

(
R

N,R
N

)
. (2.5)

Let us further remark that the intersection of two sets of finite perimeter is still a set of finite perimeter. Moreover,
whenever E is open and [∂E] is finite, then E is a set of finite perimeter, see for instance [17, Section 5.11, Theorem 1].

We recall the definition and some basic properties of Γ -convergence. For a more detailed introduction we refer
to [14].

Let (X,d) be a metric space. Then a sequence Fh :X �→ [−∞,+∞] Γ -converges as h → ∞ to a function
F :X �→ [−∞,+∞] if for every x ∈ X we have:
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for every sequence xh converging to x we have F(x) � lim inf
h

Fh(xh); (2.6)

there exists a sequence xh converging to x such that F(x) = lim
h

Fh(xh). (2.7)

The function F will be called the Γ -limit of Fh as h → ∞ with respect to the metric d and we denote it by
F = Γ -limh Fh.

The following theorem, usually known as the Fundamental Theorem of Γ -convergence, illustrates the motivations
for the definition of such a kind of convergence.

Theorem 2.3. Let (X,d) be a metric space and let Fh :X �→ [−∞,+∞] be a sequence of functions defined on X. If
there exists a compact set K such that infK Fh = infX Fh for any h and F = Γ -limh Fh, then F admits a minimum
over X and we have:

min
X

F = lim
h

inf
X

Fh.

Furthermore, if xh is a sequence of points in X which converges to a point x ∈ X and satisfies limh Fh(xh) =
limh infX Fh, then x is a minimum point for F .

The definition of Γ -convergence may be extended in a natural way to families depending on a continuous para-
meter. For instance we say that the family of functions Fε , defined for every ε > 0, Γ -converges to a function F as
ε → 0+ if for every sequence of positive εh converging to 0 we have F = Γ -limh Fεh

.
We conclude this section devoted to the preliminaries by recalling some results of regularity for solutions to

Neumann problems.
Let D be a bounded domain contained in R

N , N � 2, with Lipschitz boundary. Let A = A(x), x ∈ D, be an N ×N

matrix such that its entries are measurable and it satisfies, for a positive constant λ < 1, the following ellipticity
condition:

A(x)ξ · ξ � λ|ξ |2 for every ξ ∈ R
N and for a.e. x ∈ D,

‖A‖L∞(D) � λ−1.
(2.8)

Let f ∈ Ls(∂D), with 1 < s � +∞ if N = 2 or 2 − (2/N) � s � +∞ if N � 3. Then, f ∈ (H 1(D))′, see for
instance [1, Theorems 7.53 and 7.57], by setting 〈f, v〉(H 1(D))′,H 1(D) = ∫

∂D
f v for any v ∈ H 1(D). Furthermore, if∫

∂D
f = 0, then 〈f,1〉(H 1(D))′,H 1(D) = 0. Let H 1∗ (D) = {u ∈ H 1(D):

∫
D

u = 0}. Then, there exists a unique solution
to the following problem: {

u ∈ H 1∗ (D),∫
D

A∇u · ∇v = ∫
∂D

f v for any v ∈ H 1(D),
(2.9)

provided f ∈ Ls(∂D), with s as before, and
∫
∂D

f = 0.
In order to obtain some regularity properties of u, we begin with the following result by Meyers and a lemma.

We look for conditions upon which weak solutions to elliptic equations in divergence form in a domain D belong
to H

1,p

loc (D) with p > 2. The following result by N.G. Meyers, [25], states that, for any A ∈ L∞(D,MN×N) satisfy-
ing (2.8) with a positive constant λ < 1, this holds for some p > 2 depending on λ and N only.

Theorem 2.4 (Meyers). Let D be a bounded domain with Lipschitz boundary contained in R
N , N � 2. Fixed λ,

0 < λ < 1, there exists a constant Q, 2 < Q < ∞, depending on λ and on N only, Q → 2 as λ → 0 and Q → ∞ as
λ → 1, such that any A ∈ L∞(D,MN×N), satisfying (2.8) with constant λ, satisfies the following property.

For any p, 2 < p < Q, if h ∈ Lp(D,R
N), h1 ∈ Lp(D) and u ∈ H 1(D) is a weak solution to

div(A∇u) = div(h) + h1 in D,

then u ∈ H
1,p

loc (D) and for any D1 � D the following estimate holds,

‖u‖H 1,p(D1)
� C

(‖u‖H 1(D) + ‖h‖Lp(D,RN) + ‖h1‖Lp(D)

)
, (2.10)

where the constant C depends on λ, N , p, D1 and D only.
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Lemma 2.5. Given three positive constants r , t , and L such that Lr < t/2, let D = {x ∈ R
N : x′ ∈ B ′

r , −t < xN <

ϕ(x′)} where ϕ : RN−1 → R is a Lipschitz function whose Lipschitz constant is bounded by L and such that ϕ(0) = 0.
Let γ = {x ∈ R

N : x′ ∈ B ′
r , xN = ϕ(x′)}.

Let f ∈ Ls(γ ), with s > N − 1, and let u ∈ H 1(D) satisfy:{
div(A∇u) = 0 in D,

A∇u · ν = f on γ,
(2.11)

that is ∫
D

A∇u · ∇v =
∫
γ

f v for any v ∈ H 1(D) such that v = 0 on ∂D\γ.

Then there exists β , 0 < β < 1, depending on r , t , L, λ, s and N only, such that u ∈ C0,β(D ∩ (B ′
r/2 ×

[−t/2,+∞))).

Proof. Let v be the solution to the following auxiliary problem:{div(A∇v) = 0 in D,

A∇v · ν = f on γ,

v = 0 on ∂D\γ.

(2.12)

Let T :B ′
r × (−t,0) → D be the map such that for any x ∈ B ′

r × (−t,0) we have T (x) = (x′, h(x)), where

h(x) =
{

xN if − t < xN � −t/2,

xN + (xN+t/2)
t/2 ϕ(x′) if − t/2 < xN < 0.

We have that T is bijective and T and T −1 are Lipschitz with Lipschitz constants bounded by C1, C1 depending on
r , t , L and N only. Then w = v ◦ T solves:⎧⎨⎩div(A1∇w) = 0 in B ′

r × (−t,0),

A1∇w · ν = f1 on γ1 = B ′
r × {0},

w = 0 on ∂(B ′
r × (−t,0))\γ1,

(2.13)

where A1 satisfies (2.8) with a constant λ1, 0 < λ1 < 1, depending on λ, r , t , L and N only, f1 ∈ Ls(γ1) and
‖f1‖Ls(γ1) � C2‖f ‖Ls(γ ), with C2 depending on r , t , L and N only. Then, by Theorem 2.9 in [27] we obtain that
there exists β1, 0 < β1 < 1, depending on r , t , λ1, s and N only, such that w ∈ C0,β1(B ′

r × [−t,0]), consequently
v ∈ C0,β1(D).

Let now w1 = (v − u) ◦ T . Since A1∇w1 · ν = 0 in a weak sense on γ1, by a reflection argument and standard
regularity estimates for elliptic equations in divergence form, we obtain that, for some β2, 0 < β2 < 1, depending
on r , t , λ1 and N only, w1 ∈ C0,β2(B ′

r/2 × [−t/2,0]), therefore (v − u) ∈ C0,β2(D ∩ (B ′
r/2 × [−t/2,+∞))). The

conclusion immediately follows. �
Proposition 2.6. Let D be a bounded domain in RN , N � 2, with Lipschitz boundary. Let A ∈ L∞(D,MN×N)

satisfy (2.8) with constant λ, 0 < λ < 1.
There exists a constant Q1 > 2, depending on λ, N and D only, such that for any p, 2 < p < Q1, and any s,

p − (p/N) � s � +∞, there exists a constant C(p, s), depending on λ, N , D, p and s only, such that for any
f ∈ Ls(∂D) with

∫
∂D

f = 0, u solution to (2.9) satisfies:

‖u‖H 1,p(D) � C(p, s)‖f ‖Ls(∂D). (2.14)

Furthermore, if s > N −1, then there exists β , 0 < β < 1, depending on λ, N , D and s only, such that u ∈ C0,β(D).

Proof. The first part of the proposition is contained in Theorem 2 in [19], which is an extension to Neumann problems
of Meyers theorem (Theorem 2.4).

About the Hölderianity of the solution, this can be obtained in two steps. First, by standard global regularity
estimates, for instance by a simple modification of arguments in [27], we can show that there exists C3, depending on
λ, N , D and s only, such that u satisfies:

‖u‖L∞(D) � C3‖f ‖Ls(∂D). (2.15)
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Then, by standard regularity estimates in the interior and by Lemma 2.5, for any x ∈ D there exists r(x),
0 < r(x) < 1, and β(x), 0 < β(x) < 1, such that u ∈ C0,β(x)(Br(x)(x) ∩ D) with the C0,β(x) seminorm C(x). Let
x1, . . . , xn be points of D such that D ⊂ ⋃n

i=1 Br(xi )/3(xi). Let r = min{r(xi), i = 1, . . . , n} and β = min{β(xi), i =
1, . . . , n}. Let C = max{C(xi), i = 1, . . . , n}. Then, for any y1, y2 ∈ D we have that either |y1 − y2| < r/3, therefore
there exists i ∈ {1, . . . , n} such that y1 and y2 both belong to Br(xi )(xi) and hence |u(y1)−u(y2)| � Ci |y1 −y2|β(xi ) �
C|y1 − y2|β . Or |y1 − y2| � r/3, hence |u(y1) − u(y2)| � 2‖u‖L∞(D)(r/3)−β |y1 − y2|β . �
3. The direct problem

Let Ω , Ω1 and Ω̃1 be three bounded domains contained in R
N , N � 2, with Lipschitz boundary such that

Ω1 ⊂ Ω̃1 ⊂ Ω and the following properties are satisfied. First, Ω\Ω̃1 is not empty. Then, there exists γ , an open
subset of ∂Ω , such that γ is contained in the interior of ∂Ω ∩ ∂Ω1 and dist(Ω1, ∂Ω̃1 ∩ Ω) > 0. Beside γ , we also fix
γ̃ , a closed subset of the interior of ∂Ω ∩ ∂Ω1. We assume that γ̃ has nonempty interior, with respect to the induced
topology of ∂Ω .

We assume that Ω , Ω1, Ω̃1, γ and γ̃ are fixed throughout the paper. We observe that we shall always drop the
dependence of any constant upon N , the dimension of the space.

Let K be an admissible defect, that is K is a compact set contained in Ω such that dist(K, Ω̃1) > 0. We denote
with GK the connected component of Ω\K such that Ω̃1 ⊂ GK . We observe that γ ∪ γ̃ ⊂ ∂GK .

A picture of the geometric configuration may be found in Fig. 1. We observe that the grey-coloured parts correspond
to the connected components of Ω\K which are different from GK . In the picture K contains cracks, surface breaking
cracks, cavities and material losses at the boundary as well as other more complicated defects. The domain Ω̃1 can
be seen, from a practical point of view, as a part of the body which is known to be safe (the defects K do not
intersect it) and whose exterior boundary is accessible, therefore we can prescribe current densities and perform
voltage measurements there. From a technical point of view, we require some distance between the region where the
current density is different from zero and Dirichlet data are available and the one where K lies. The use of the domain
Ω1 and the fact that γ̃ and γ are compactly contained in the interior of ∂Ω ∩ ∂Ω1 are due to technical reasons, for
instance they allow us to prove some regularity estimates upon u, the solution to (1.1), which depend on K only
through Ω , Ω1, Ω̃1, γ̃ and γ , see Proposition 3.1.

Let us fix a number s, s > 1 if N = 2 or s � 2 − (2/N) if N � 3, to be chosen later. Let us prescribe f ∈ Ls(∂Ω)

such that
∫
∂Ω

f = 0, f �≡ 0 and supp(f ) ⊂ γ̃ .
For any bounded open set D ⊂ R

N , we set L1,2(D) as the following Deny–Lions space:

L1,2(D) = {
u ∈ L2

loc(D): ∇u ∈ L2(D,R
N

)}
. (3.1)

For basic properties of Deny–Lions spaces we refer to [15] and [23]. As a convention, we identify two elements
u1 and u2 of L1,2(D) whenever ∇u1 = ∇u2 almost everywhere in D. We point out that if D is bounded with Lip-

Fig. 1. Geometric configuration.
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schitz boundary then any v ∈ L1,2(D) belongs to H 1(D) and, obviously, vice versa. Finally, we notice that the set
{∇u: u ∈ L1,2(D)} is a closed subspace of L2(D,R

N).
Let K be an admissible defect, then there exists a function u = u(f,K) ∈ L1,2(Ω\K) such that∫

Ω\K
∇u · ∇v =

∫
∂Ω∩∂Ω1

f v for every v ∈ L1,2(Ω\K). (3.2)

Such a function is unique in the sense that the gradients of any two solutions to (3.2) coincide almost everywhere in
Ω\K . We always take as u the solution satisfying the following two normalization conditions. First,∫

γ

u = 0, (3.3)

and, second, since u is constant on any connected component of Ω\K different from GK , we pose:

u = 0 almost everywhere in Ω\GK. (3.4)

In such a way, u is defined almost everywhere in Ω and is the unique solution to (3.2)–(3.4).
We wish to remark that (3.2) is the weak formulation of the following Neumann type boundary value problem:{

�u = 0 in Ω\K,

∇u · ν = f on ∂Ω ∩ ∂Ω1,

∇u · ν = 0 on ∂(Ω\K)\(∂Ω ∩ ∂Ω1).

(3.5)

Here Ω\K might represent an electrostatic conductor in which some perfectly insulating defects, given by K , are
present. In such a case u represents the electrostatic potential if the current density f is applied on the boundary of the
conductor. The electrostatic potential u = u(f,K) strongly depends on K , apart from clearly depending on Ω and f .

We also remark that (3.2) is equivalent to the following minimization problem:

min
u∈L1,2(Ω\K)

1

2

∫
Ω\K

|∇u|2 −
∫

∂Ω∩∂Ω1

f u. (3.6)

The following regularity properties of u can be inferred.

Proposition 3.1. Under the previous assumptions, let s > N −1 and let us fix f ∈ Ls(∂Ω) such that
∫
∂Ω

f = 0, f �≡ 0
and supp(f ) ⊂ γ̃ . Let K be an admissible defect and let u be the solution to (3.2)–(3.4).

Then there exists a constant C1 > 0, depending on s, Ω , Ω1, Ω̃1, γ , γ̃ only, such that

‖∇u‖L2(Ω\K) � C1‖f ‖Ls(∂Ω), (3.7)

‖u‖L∞(Ω) � C1‖f ‖Ls(∂Ω). (3.8)

Furthermore, there exists a constant β , 0 < β < 1, depending on s, Ω , Ω1, Ω̃1, γ , γ̃ and dist(K, Ω̃1) only, such

that u ∈ C0,β(Ω̃1).
Finally, there exists a constant r > 2 and a constant C2, depending on s, Ω , Ω1, Ω̃1, γ , γ̃ and dist(K, Ω̃1) only,

such that ∇u ∈ Lr(Ω̃1,R
N) and

‖∇u‖Lr(Ω̃1)
� C2‖f ‖Ls(∂Ω). (3.9)

Proof. The first part can be obtained as in the proof of Proposition 3.1 in [31]. The Hölderianity can be obtained
by using Lemma 2.5 as we did in the proof of Proposition 2.6. The last part and (3.9) is an easy consequence of
Proposition 2.6, reflection arguments on the boundary and Meyers theorem (Theorem 2.4). �

We remark that, in view of (3.8), u actually belongs to H 1(Ω\K). Furthermore, under the additional assumption
that [K] < +∞, or equivalently that [∂GK ] < +∞, we have that u belongs to SBV(Ω), its approximate discontinuity
set S(u) satisfies [S(u)\∂GK ] = 0 and, finally, ∇u, the weak derivative of u in Ω\K , coincides almost everywhere in
Ω with the approximate gradient of u, see for instance [5, Proposition 4.4].
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4. Classes of admissible defects

We limit ourselves to the two or three-dimensional case, however it is not difficult to see how these definitions can
be generalized to higher dimensions.

If N = 2, fixed a positive constant L � 1, we say that Γ is an L-Lipschitz, or L-C0,1, arc if, up to a rigid
transformation, Γ = {(x, y) ∈ R

2: −a/2 � x � a/2, y = ϕ1(x)}, where L−1 � a � L and ϕ1 : R �→ R is a Lip-
schitz map with Lipschitz constant bounded by L and such that ϕ1(0) = 0. For any α, 0 � α � 1, we say that Γ is an
L-C1,α arc if ϕ1 is C1,α and its C1,α norm is bounded by L. The points (a/2, ϕ1(a/2)) and (−a/2, ϕ1(−a/2)) will
be called the vertices or endpoints of the arc Γ .

Let us consider now the case N = 3. Let T be the closed equilateral triangle which is contained in the plane
π = {(x, y, z) ∈ R

3: z = 0} with vertices V1 = (0,1,0), V2 = (−√
3/2,−1/2,0) and V3 = (

√
3/2,−1/2,0) and

T ′ ⊂ R
2 be its projection on the plane π and V ′

i , i = 1,2,3, its vertices. Fixed a positive constant L � 1, we call
an L-Lipschitz, or L-C0,1, generalized triangle a set Γ such that, up to a rigid transformation, Γ = {(x, y, z) ∈ R

3:
(x, y) ∈ ϕ(T ′), z = ϕ1(x, y)}, where ϕ : R2 �→ R

2 is a bi-Lipschitz function with constant L such that ϕ(0) = 0 and
ϕ1 : R2 �→ R is a Lipschitz map with Lipschitz constant bounded by L and such that ϕ1(0) = 0. For any α, 0 � α � 1,
we say that Γ is an L-C1,α generalized triangle if ϕ1 is C1,α and its C1,α norm is bounded by L.

In both cases, the image through ϕ of any vertex or side of T ′ will be called a vertex or side of ϕ(T ′), respectively.
The image on the graph of ϕ1 of one of the vertices of ϕ(T ′) will be called a vertex of Γ , whereas the image of one of
the sides of ϕ(T ′) will be called a side of Γ . Let us observe that our definition of vertex or side is not an intrinsic con-
cept. We may say that Γ is a generalized triangle with vertices Ṽ1, Ṽ2 and Ṽ3 (and corresponding sides) if there exist
ϕ and ϕ1 with the prescribed properties such that, up to a rigid transformation, Γ = {(x, y, z) ∈ R

3: (x, y) ∈ ϕ(T ′),
z = ϕ1(x, y)} and Ṽi = (ϕ(V ′

i ), ϕ1(ϕ(V ′
i ))), i = 1,2,3. This allows us the greatest generality in the choice of vertices

and sides of a generalized triangle. We also remark that there exists a constant L1 > 0, depending on L only, such that
we can find ϕ2 : R3 �→ R

3, a bi-Lipschitz function with constant L1, such that Γ = ϕ2(T ).

Definition 4.1. Let us assume that Ω ⊂ BR ⊂ RN , with R � 1 and N = 2,3. For any positive constants L � 1, δ and
c, c < 1, any k = 0,1 and α, 0 � α � 1, such that k + α � 1, we define B(N, (k,α),L, δ, c) in the following way.
We say that A ∈ B(N, (k,α),L, δ, c) if and only if A ⊂ B2R , there exists a positive integer n, depending on A, such
that A = ⋃n

i=1 Γi , Γi an L-Ck,α arc (if N = 2) or generalized triangle (if N = 3) for any i = 1, . . . , n, such that the
following conditions are satisfied:

(i) for any i, j ∈ {1, . . . , n} with i �= j , we have that either Γi ∩ Γj is not empty or dist(Γi,Γj ) � δ;
(ii) for any i, j ∈ {1, . . . , n} with i �= j , if Γi ∩ Γj is not empty then Γi ∩ Γj is a common endpoint V if N = 2 and

either a common vertex V or a common side γ if N = 3. Furthermore, in such a case, for any x ∈ Γi we have
dist(x,Γj ) � c|x − V | or dist(x,Γj ) � c dist(x, γ ), respectively.

Let us remark that there exists an integer M , depending on N , R, L, δ and c only, such that for any
A ∈ B(N, (k,α),L, δ, c) we have that n � M . We notice that condition (ii), through the constant c, allows us to
control from below the angle with which two different arcs or generalized triangles may meet.

More importantly, we have that any of the classes B described in Definition 4.1 is nonempty, is composed by non-
empty compact sets and it is compact with respect to the Hausdorff distance, see for a proof the analogous reasonings
used to prove Lemma 6.1 in [31]. Finally, if A belongs to any of these classes, then [A] is bounded by a constant
depending on the class only.

Definition 4.2. For any class B as in Definition 4.1, we shall call H(B) the following subset of SBV(Ω). We say that
u ∈ SBV(Ω) belongs to H(B) if ∇u ∈ L2(Ω,R

N), [S(u) ∩ Ω̃1] = 0 and there exists A ∈ B, A depending on u, such
that [S(u)\A] = 0.

In the next lemma we show that H = H(B) is closed with respect to a suitable kind of convergence, linked to the
one used in the SBV compactness and semicontinuity theorem (Theorem 2.1).
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Lemma 4.3. Let H = H(B) for some class B as in Definition 4.1. Let {uh}∞h=1 be a sequence of functions belonging
to H satisfying for a given constant C > 0,

‖uh‖L∞(Ω) � C and
∫
Ω

|∇uh|2 � C, for any h.

Then we may extract a subsequence, which we relabel {uk}∞k=1, such that uk converges weakly∗ in BV(Ω) to a function
u ∈ SBV(Ω) such that u ∈ H . Furthermore, (2.4) holds.

Proof. Let Ah be the set in the chosen class such that [S(uh)\Ah] = 0. Since there exists a constant C such that
[Ah] � C for any h, we can apply Theorem 2.1 and clearly 2.4 holds. We need only to verify that the limit u belongs
to H . First of all, we notice that uh ∈ H 1(Ω̃1) for any h and their H 1 norm are uniformly bounded, therefore, up to
subsequences, uh converges weakly in H 1(Ω̃1), as h → ∞, and thus u ∈ H 1(Ω̃1) as well. Furthermore, we have that,
again up to subsequences, Ah converges in the Hausdorff distance as h → ∞ to A, A still belonging to the chosen
class. Therefore, on any open D compactly contained in Ω\A we have, with the same reasoning, that u ∈ H 1(D),
hence it is not difficult to conclude that [S(u)\A] = 0. �

We shall use the following class of admissible defects.

Definition 4.4. For any class B as in Definition 4.1, we call B′ the class of admissible defects K such that

dist(K, Ω̃1) � δ, HN−2(K ∩ ∂Ω) < +∞ and there exists A ∈ B such that K ⊂ A and HN−2(K ∩ A\K) < +∞.
Moreover, for any p, 2 < p < +∞, we call B′

p the class of admissible defects K ∈ B′ such that there exists a constant

C, depending on K , such that for any u ∈ H 1(Ω\K) satisfying:∫
∇u · ∇v = 0 for any v ∈ H 1(Ω\K) such that v = 0 on ∂Ω ∩ ∂Ω1,

we have

‖∇u‖
Lp((Ω\K)\Ω̃1)

� C‖u‖H 1(Ω\K). (4.1)

Let us remark that, if K ∈ B′, then we can find κ , a closed subset of K , such that HN−2(κ) < +∞ and for any
x ∈ ∂GK\κ there exist a Lipschitz function ϕ : RN−1 �→ R and a positive constant r such that we have, up to a rigid
transformation, ∂GK ∩ Br(x) = {y = (y′, yN) ∈ Br(x): yN = ϕ(y′)}.

We remark that, for any K ∈ B′, the property of belonging to B′
p , for some p > 2, is purely a geometric one, it

depends only on the geometric properties of ∂GK . In fact the following proposition holds.

Proposition 4.5. Let K ∈ B′ satisfy the following geometric condition. For any x0 ∈ ∂GK\(∂Ω ∩ ∂Ω̃1), there exists
r > 0, depending on x0, such that for any U connected component of GK ∩ Br(x0) we can find r1 > 0, an open set
U1, such that U ∩ Br1(x0) ⊂ U1 ⊂ U , and a bijective map T :U1 → (0,1)N such that the following properties hold.
The maps T and T −1 are locally Lipschitz and there exists a constant C such that ‖DT ‖ and ‖DT −1‖ are bounded
by C almost everywhere. By the regularity of Q = (0,1)N , we extend by continuity T −1 up to the boundary and
we have that T −1 : [0,1]N → R

N is a Lipschitz map with Lipschitz constant bounded by C. Furthermore, if we set
Γ = [0,1]N−1 × {1}, we require that T −1(Γ ) = ∂U1 ∩ ∂GK and T −1(y) ∈ GK for any y ∈ [0,1]N\Γ .

Then, there exists p > 2 such that K ∈ B′
p .

Proof. We observe that on ∂GK\(∂Ω ∩ ∂Ω1), u satisfies, in a weak sense, a homogeneous Neumann condition.
Therefore, in view of Meyers theorem, we can proceed in the following way. We call v = u ◦ T −1 and we observe
that v ∈ H 1(Q). Furthermore, for any w ∈ H 1(Q), such that w = 0 on a neighbourhood of ∂Q\((0,1)N−1 × {1}),
we have that w̃ = w ◦ T belongs to H 1(U1) and, if we extend w̃ putting it equal to zero outside U1, we obtain
that w̃ ∈ H 1(Ω\K) and it is equal to zero on ∂Ω ∩ ∂Ω1. By a change of variables, we can show that, for some
N × N matrix A ∈ L∞(Q,MN×N), satisfying (2.8) with a positive constant λ < 1, we have that div(A∇v) = 0 in
Q and A∇v · ν = 0 on any compactly contained subset of (0,1)N−1 × {1}. We observe that there exist a and b,
with 0 < a < b < 1, such that if T −1(y) = x0, then y ∈ [a, b]N−1 × {1}. We apply a reflection argument and Meyers
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Fig. 2. (a) 3 intersecting cracks; (b) 2 surface breaking cracks.

theorem to show that there exists p > 2 such that ∇v ∈ Lp((a/2, (1 + b)/2)N−1 × (1/2,1)), hence ∇u ∈ Lp(U2),
where U2 is an open set such that U ∩ Br2(x0) ⊂ U2 ⊂ U for some positive r2. �

If K ∈ B′, the construction of such a map T is obvious for any x0 ∈ ∂GK\κ , κ as before. In the following examples
we show which kinds of geometrical configurations may be allowed for the construction of such a map T in a neigh-
bourhood of x0 ∈ κ . We observe that any transformation through a bi-Lipschitz map of the configurations described
in the examples would preserve the required property. We limit ourselves to examples in the three-dimensional case,
which is the most interesting one.

Example 4.6. In Fig. 2(a), the intersection of three cracks Γ1, Γ2 and Γ3 is illustrated. If each of the crack is locally the
graph of a Lipschitz function, then any P belonging to the interior of a crack satisfies the property described before.

The boundary of a crack. Let us now consider the point P1, which belongs to the boundary of Γ2. Let us assume
that, in some Cartesian coordinate system, P1 = 0 and, locally in a neighbourhood of 0, Γ2 = {(x, y, z) ∈ R

3: x � 0,

y = 0}. If (ρ, θ) ∈ (0,+∞) × (−π,π) are the polar coordinates in the plane xy excluding the negative x-axis, then
the map T such that (ρ, θ, z) → (ρ, θ/2, z) satisfies the required properties and transforms (B ′

r × (−r, r))\Γ2 into
(B ′

r × (−r, r)) ∩ {x > 0}.
Two or more intersecting cracks. Two kinds of interesting points can be considered. The point P2 is such Br(P2),
with r > 0 sufficiently small, is decomposed by the defect into three connected components U1, U2 and U3.
If ∂Ui ∩ Br(P2) is a Lipschitz graph for any i = 1,2,3, as in this case, then it is easy to show that P2 satisfies
the required property. More delicate is the situation of a point like P3. Let us construct the map T −1. Let us consider
the set Br ∩{z > 0}. We consider the standard spherical coordinates (ρ, θ,ψ) ∈ (0,+∞)×(0,2π)×(0,π). We divide
the plane xy into three cones with the same amplitude and vertex at the origin, namely, the cones are 0 < θ < 2π/3,
2π/3 < θ < 4π/3 and 4π/3 < θ < 2π . For any point P ∈ Br ∩ {z > 0} such that P ∈ {x = 0 and y = 0}, we pose
T −1(P ) = P . Let P ∈ Br ∩ {z > 0} be such that P /∈ {x = 0 and y = 0} and let θ ∈ [0,2π) be the angle formed by the
projection on the plane xy of the halfline l, l passing through P and the origin, and the positive x-axis. If θ = 2kπ/3,
with k = 0,1,2, then we pose T −1(P ) = P . Let us assume that 0 < θ < 2π/3, that is the projection is in the first
cone. On the other two cones T −1 will be defined analogously. Let (ρ, θ,ψ) ∈ (0, r) × (0,2π/3) × (0,π/2) be the
spherical coordinates of P , then T −1(P ) = (ρ, θ,2ψ − |θ−π/3|

π/3 ψ) ∈ (0, r)× (0,2π/3)× (0,π). Up to different angles

between the three cracks, we obtain that locally T −1(Br ∩ {z > 0}) is a region like the one around P3. Furthermore,
T −1 is injective on Br ∩ {z > 0} and satisfies the required regularity properties. Clearly we can adapt this example to
the intersection of any number of cracks meeting in a point P3 as in Fig. 2(a).

One or more surface breaking cracks. In Fig. 2(b), we may think that Γ1 is a part of ∂Ω , a part of the boundary of
a cavity inside Ω , or a crack inside Ω and Γ2 and Γ3 are surface breaking cracks with respect to Γ1. The point P4
can be treated as the point P2. Let us concentrate our attention to point P5. We argue in a similar way as for point P3.
Let us consider the set Br ∩ {y > 0} and we describe the map T −1. We consider the standard spherical coordinates
(ρ, θ,ψ) ∈ (0,+∞) × (0,2π) × (0,π). In these coordinates Br ∩ {y > 0} = (0, r) × (0,π) × (0,π). First of all
we define the map T −1

1 as the map such that, if (ρ, θ,ψ) ∈ (0, r) × (0,π) × (0,π) are the spherical coordinates
of a point P in Br ∩ {y > 0}, then T −1(P ) = (ρ, θ,ψ/2). Then for any P ∈ T −1(Br ∩ {y > 0}), whose spherical
1 1
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Fig. 3. (a) Surface breaking cracks; (b) Intersecting cracks.

coordinates are (ρ, θ,ψ) ∈ (0, r) × (0,π) × (0,π/2), we pose T −1
2 (P ) as follows. If ψ is such that 0 < ψ � π/4,

then T −1
2 (P ) = P . If π/4 < ψ < π/2, then if 0 < θ � π/3 we set T −1

2 (P ) = (ρ, θ,π/4 + (3 − 2 |θ−π/6|
π/6 )(ψ − π/4)),

whereas if π/3 � θ � 2π/3 we set T −1
2 (P ) = (ρ, θ,π/4 + (3 − 2 |θ−π/2|

π/6 )(ψ − π/4)), and, finally, if 2π/3 � θ < π

then T −1
2 (P ) = (ρ, θ,π/4 + (3 − 2 |θ−5π/6|

π/6 )(ψ − π/4)). Posing T −1 = T −1
2 ◦ T −1

1 , we have that T −1 is injective on

Br ∩ {y > 0}, satisfies the required regularity properties and T −1(Br ∩ {y > 0}), up to different angles between the
cracks, is locally a region like the one around P5. We can easily modify this example to deal with any number 1,2, . . .

of surface breaking cracks with respect to Γ1.
In Fig. 3(a) and (b) some more complicated situations are illustrated. However they can be treated in a similar way

as before. For instance, in Fig. 3(a), again the illustration of some surface breaking cracks, the point P6 can be seen
as the intersection of a surface breaking crack Γ3 with respect to the surface given by the union of Γ1 and Γ2, thus it
can be treated as the point P5. The same reasoning applies to the point P7. In Fig. 3(b), we can see the intersection
of three cracks. If we assume that locally Γ1 = {(x, y, z) ∈ R

3: x � 0, y = 0} and (ρ, θ) ∈ (0,+∞) × (−π,π) are
the polar coordinates in the plane xy, then the map (ρ, θ, z) → (ρ, θ/2, z) allows us to transform the configuration of
Fig. 3(b) into the one of Fig. 3(a).

5. The reconstruction method

We assume that Ω , Ω1, Ω̃1, γ and γ̃ are fixed. We assume that Ω ⊂ BR , with R � 1, and we also fix positive
constants δ, L, L � 1, c, 0 < c < 1, an integer k = 0,1 and α, 0 � α � 1, such that k + α � 1. Let us also choose
s > N − 1 and p, 2 < p < +∞. Let B be the class corresponding to these constants, as in Definition 4.1, and let
H = H(B).

Let K0 be an admissible defect such that K0 ∈ B′
p . We recall that K0 represents our unknown defect.

Let f0 ∈ Ls(∂Ω) be such that f0 is not identically equal to zero,
∫
∂Ω

f0 = 0 and supp(f0) ⊂ γ̃ . Let u0 = u(f0,K0)

be the solution to (3.2)–(3.4) with f replaced by f0 and K replaced by K0. Let g0 = u0|γ .
Let us assume that the Cauchy data (g0, f0) are known up to some error due to noise. Let us fix ε, 0 < ε � 1, then

the noisy Cauchy data are given by fε and gε . Here fε belongs to Ls(∂Ω) and satisfies supp(fε) ⊂ γ̃ and
∫
∂Ω

fε = 0,
whereas gε belongs to L2(γ ) and satisfies

∫
γ

gε = 0. We assume that

‖f0 − fε‖Ls(∂Ω∩∂Ω1) � ε and ‖g0 − gε‖L2(γ ) � ε. (5.1)

Therefore ε estimates from above the noise level of the measurements.
We recall that the only information which is available to us in order to reconstruct the potential u0, or, better, an

approximation to u0, is the following. We only know the domain Ω and the noisy Cauchy data (gε, fε). No other
information is available, in particular K0 is not known, therefore we may not use, for instance, (3.6), the variational
characterization of (3.2), since the space L1,2(Ω\K0) is not known. Since K0 is related to the discontinuity set of u0,
we investigate in the sequel the possibility to formulate our problem in the framework of free-discontinuity problems
in a suitable space of functions of bounded variation.
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By Proposition 3.1, we can infer the following estimates. Let q > 2 be the minimum among p and the constant r

appearing in Proposition 3.1. For any ε, 0 � ε � 1, we have that ũε = u(fε,K0) satisfies:

‖ũε‖L∞(Ω) � C1
(‖f0‖Ls(∂Ω) + 1

); ‖∇ũε‖L2(Ω) � C1
(‖f0‖Ls(∂Ω) + 1

);
‖∇ũε‖Lq(Ω) � C2

(‖f0‖Ls(∂Ω) + 1
)
.

(5.2)

Here C1 is as in Proposition 3.1, whereas C2 might depend on K0. Let us call E = 2C1(‖f0‖Ls(∂Ω) + 1) and
F = F(K0) = C2(‖f0‖Ls(∂Ω) + 1). As a consequence, we have that for any ε, 0 � ε � 1, ũε = u(fε,K0) belongs
to H . We observe that ũ0 = u0.

For any v ∈ H 1(Ω), we set |‖v|‖ = ‖v‖L2(Ω) + ‖v‖
Ls′ (∂Ω∩∂Ω1)

, where as usual s′ = s/(s − 1). We recall that

w ∈ W 1,∞(Ω) if and only if w ∈ L∞(Ω) and ∇w ∈ L∞(Ω,R
N) and ‖w‖W 1,∞(Ω) = ‖w‖L∞(Ω) + ‖∇w‖L∞(Ω).

For any 0 < ε � 1, let us define Fε as the following functional on L1(Ω). For any u ∈ L1(Ω), we set:

Fε(u) = 1

ε
sup

v∈H 1(Ω)
|‖v|‖�1

(∫
Ω

∇u · ∇v −
∫

∂Ω∩∂Ω1

fεv

)2

+ 1

ε
sup

w∈W 1,∞(Ω)
‖w‖

W1,∞(Ω)
�1

(∫
Ω

∇u · ∇(uw) −
∫

∂Ω∩∂Ω1

fεuw

)2

+ 1

ε

∫
γ

|u − gε|2 +
∫
Ω

|∇u|q + [
S(u)

]
if u ∈ H and ‖u‖L∞(Ω) � E, (5.3)

whereas Fε(u) = +∞ otherwise.
On the other hand, let F0 be the following functional on L1(Ω). We call H0 the following subset of H .

Definition 5.1. We say that u ∈ H0 if u ∈ H ,
∫
Ω

∇u · ∇v = ∫
∂Ω

f0v for any v ∈ H 1(Ω),
∫
Ω

∇u · ∇(uw) = ∫
∂Ω

f0uw

for any w ∈ W 1,∞(Ω), and u = g0 on γ .

We remark that, since u is only an SBV(Ω) function, if w ∈ W 1,∞(Ω), in general uw does not belong to H 1(Ω).
However, the jump set of uw is essentially contained in the jump set of u.

Then, for any u ∈ L1(Ω) we set:

F0(u) =
∫
Ω

|∇u|q + [
S(u)

]
if u ∈ H0 and ‖u‖L∞(Ω) � E, (5.4)

whereas F0(u) = +∞ otherwise.
We begin with the following important proposition.

Proposition 5.2. For any ε, 0 < ε � 1, we have that Fε admits a minimum on L1(Ω). Furthermore, there exists a
compact subset S of L1(Ω) such that minS Fε = minL1(Ω)Fε for any ε, 0 < ε � 1.

Proof. We have that there exists a constant C, such that for any 0 < ε � 1 we have Fε(u0) � C, and Fε(ũε) � C,
where ũε = u(fε,K0). This implies, in particular, that Fε is not identically equal to +∞, for any 0 < ε � 1. Fur-
thermore, for any constant C, we have that Sε = {u ∈ L1(Ω): Fε(u) � C} is contained in S = {u ∈ SBV(Ω):
‖u‖L∞(Ω) � E and

∫
Ω

|∇u|q + [S(u)] � C} which is compact in L1(Ω) by the SBV compactness theorem
(Theorem 2.1).

We need to prove existence of a minimum of the functional Fε . Let us fix ε, 0 < ε � 1, and let us consider a
minimizing sequence {uh}∞h=1 of the functional Fε . By the previous reasoning we may assume, without loss of gen-
erality, that uh converges, as h → ∞, to a function u in the following sense. We have that uh → u in Lp(Ω) for

any p, 1 � p < +∞, and almost everywhere (therefore ‖u‖L∞(Ω) � E), uh
∗
⇀ u weakly∗ in BV(Ω), ∇uh ⇀ ∇u

weakly in Lq(Ω,R
N), uh ⇀ u weakly in H 1(Ω̃1) (therefore, by the compactness of the trace operator, uh con-

verges to u strongly in L2(γ ) and strongly in Ls′
(∂Ω ∩ ∂Ω1)). By Lemma 4.3 we conclude that u ∈ H . We need to

prove the semicontinuity of the functional Fε . We need the following property of uh. There exist ah ∈ L2(Ω) and
ηh ∈ Ls(∂Ω ∩ ∂Ω1) such that∫

∇uh · ∇v =
∫

ahv +
∫

(fε + ηh)v for any v ∈ H 1(Ω).
Ω Ω ∂Ω∩∂Ω1



L. Rondi / J. Math. Pures Appl. 87 (2007) 324–342 337
Furthermore, ‖ah‖L2(Ω) � (εFε(uh))
1/2 and ‖ηh‖Ls(∂Ω∩∂Ω1) � (εFε(uh))

1/2. In fact, for any v ∈ H 1(Ω) such that
v = 0 on ∂Ω ∩ ∂Ω1, we have that

∫
Ω

∇uh · ∇v � (εFε(uh))
1/2‖v‖L2(Ω). By density, we infer that

∫
Ω

∇uh · ∇v =∫
Ω

ahv for any v ∈ H 1(Ω) such that v = 0 on ∂Ω ∩ ∂Ω1, ah satisfying the required properties. Then, let v ∈ H 1(Ω)

and let vn ∈ H 1(Ω), n ∈ N, be such that vn = 0 on ∂Ω ∩ ∂Ω1 and vn → v in L2(Ω) as n → ∞. Then,∫
Ω

∇uh · ∇v −
∫
Ω

ahv −
∫

∂Ω∩∂Ω1

fεv =
∫
Ω

∇uh · ∇(v − vn) −
∫
Ω

ah(v − vn) −
∫

∂Ω∩∂Ω1

fεv

�
(
εFε(uh)

)1/2(‖v − vn‖L2(Ω) + ‖v‖
Ls′ (∂Ω∩∂Ω1)

) + ‖ah‖L2(Ω)‖v − vn‖L2(Ω).

Letting n → ∞, we obtain that∫
Ω

∇uh · ∇v −
∫
Ω

ahv −
∫

∂Ω∩∂Ω1

fεv �
(
εFε(uh)

)1/2‖v‖
Ls′ (∂Ω∩∂Ω1)

,

for any v ∈ H 1(Ω). We have that the space of traces of H 1(Ω) functions on ∂Ω ∩ ∂Ω1 is dense in Ls′
(∂Ω ∩ ∂Ω1).

Therefore, there exists ηh ∈ Ls(∂Ω ∩ ∂Ω1) such that, for any v ∈ H 1(Ω), we have:∫
Ω

∇uh · ∇v −
∫
Ω

ahv −
∫

∂Ω∩∂Ω1

fεv =
∫

∂Ω∩∂Ω1

ηhv,

and clearly ‖ηh‖Ls(∂Ω∩∂Ω1) � (εFε(uh))
1/2.

By (2.4), the weak convergence of the gradients and the strong convergence of the traces on γ and on ∂Ω ∩ ∂Ω1,
we can obtain that

1

ε
sup

v∈H 1(Ω)
|‖v|‖�1

(∫
Ω

∇u · ∇v −
∫

∂Ω

fεv

)2

+ 1

ε

∫
γ

|u − gε|2 +
∫
Ω

|∇u|q + [
S(u)

]

� lim inf
h→∞

1

ε
sup

v∈H 1(Ω)
|‖v|‖�1

(∫
Ω

∇uh · ∇v −
∫

∂Ω

fεv

)2

+ 1

ε

∫
γ

|uh − gε|2 +
∫
Ω

|∇uh|q + [
S(uh)

]
.

It remains to evaluate the most delicate term, the nonlinear one, that is

1

ε
sup

w∈W 1,∞(Ω)
‖w‖

W1,∞(Ω)
�1

(∫
Ω

∇u · ∇(uw) −
∫

∂Ω

fεuw

)2

.

We observe that, for this term, weak convergence of the gradients is not enough to guarantee lower semicontinuity.
However, if we had that ∇uh converges to ∇u strongly in L2(Ω,R

N), then semicontinuity would follow. In fact, it is
easy to see that

∫
Ω

∇uh · ∇(uhw) = ∫
Ω

w|∇uh|2 + ∫
Ω

uh∇uh · ∇w would converge, as h → ∞, to
∫
Ω

∇u · ∇(uw)

for any w ∈ W 1,∞(Ω). Therefore our aim is to prove that ∇uh converges to ∇u strongly in L2(Ω,R
N). We proceed

as follows. Let Ah ∈ B be such that [S(uh)\Ah] = 0 and let us assume, without loss of generality, that Ah → A ∈ B
in the Hausdorff distance as h → ∞. We recall that [S(u)\A] = 0. Let us consider a sequence Dn of open subsets
of Ω such that Dn is compactly contained in Ω\A and satisfies |Ω\Dn| � 1/n. Such a sequence Dn exists since
A ∈ B, hence |A| = 0. Let dn = dist(Dn, ∂Ω ∪ A). For any n, we have that there exists h0 ∈ N, depending on n, such
that dist(Dn, ∂Ω ∪ Ah) > dn/2 for any h � h0. For any h � h0, we have that on Bdn/2(Dn) the function uh satisfies
�uh = ah, where ah ∈ L2(Ω) is the function previously defined. We can assume, without loss of generality, that,
as h → ∞, ah converges to a function a ∈ L2(Ω) weakly in L2(Ω). Since uh ⇀ u weakly in H 1(Bdn/2(Dn)), we
conclude that �u = a in Bdn/2(Dn) (actually in Ω\A). Then, a Caccioppoli’s type inequality guarantees that ∇uh →
∇u strongly in L2(Dn,R

N). Let
∫
Ω

‖∇uh − ∇u‖2 = ∫
Dn

‖∇uh − ∇u‖2 + ∫
Ω\Dn

‖∇uh − ∇u‖2. As h → ∞, the first
term goes to zero by the previous reasoning, whereas the second can be made arbitrarily small since |Ω\Dn| � 1/n

and we have a uniform bound on the Lq(Ω,R
N) norm, with q > 2, of ∇uh and ∇u. �
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Theorem 5.3. As ε → 0+, Fε Γ -converges to F0 with respect to the L1(Ω) norm. Furthermore, F0 admits a minimum
over L1(Ω) and we have:

min
L1(Ω)

F0 = lim
ε→0+ min

L1(Ω)
Fε.

Finally, if uε ∈ L1(Ω) converges in L1(Ω), as ε → 0+, to a function u and satisfies limε→0+ Fε(uε) =
limε→0+ minL1(Ω)Fε , then u is a minimum point for F0.

We divide the proof of Theorem 5.3 in several steps. In the next lemmas we prove the Γ -lim inf and Γ -lim sup
inequalities, respectively.

Lemma 5.4. Let uε ∈ L1(Ω), for any ε, 0 < ε � 1, be such that uε → u in L1(Ω) as ε → 0+ and such that, for some
constant C > 0, we have Fε(uε) � C for any ε, 0 < ε � 1. Then u ∈ H0 and F0(u) � lim infε→0+ Fε(uε).

Proof. Without loss of generality, let, for any h ∈ N, uh = uεh
be a sequence such that 0 < εh+1 < εh, for any h,

limh→∞ εh = 0, limh→∞ Fεh
(uεh

) = lim infε→0+ Fε(uε), and uh converges, as h → ∞, to u in the following sense.

We have that uh → u in Lp(Ω) for any p, 1 � p < +∞, and almost everywhere (therefore ‖u‖L∞(Ω) � E), uh
∗
⇀ v

weakly∗ in BV(Ω), ∇uh ⇀ ∇u weakly in Lq(Ω,R
N), uh ⇀ u weakly in H 1(Ω̃1) (therefore, by the compactness

of the trace operator, uh converges to u strongly in L2(γ ) and strongly in Ls′
(∂Ω ∩ ∂Ω1)). Reasoning as in the

proof of Proposition 5.2, we immediately obtain that u ∈ H ,
∫
Ω

∇u · ∇v = ∫
∂Ω∩∂Ω1

f0v for any v ∈ H 1(Ω) and that

u|γ = g0. Furthermore, with the same arguments, we obtain that ∇uh → ∇u strongly in L2(Ω,R
N), thus

∫
Ω

∇u ·
∇(uw) = ∫

∂Ω∩∂Ω1
f0uw for any w ∈ W 1,∞(Ω). Hence u ∈ H0 and F0(u) = ∫

Ω
|∇u|q + [S(u)] � limh→∞ Fεh

(uεh
)

by (2.4). �
Lemma 5.5. Let u ∈ H0 be such that F0(u) < +∞. Then Fε(u) → F0(u) as ε → 0+.

Proof. The first term of Fε(u) is bounded by 1
ε
‖f0 − fε‖2

Ls(∂Ω∩∂Ω1)
, whereas the second is bounded by

1
ε
‖u‖2

Ls′ (∂Ω∩∂Ω1)
‖f0 − fε‖2

Ls(∂Ω∩∂Ω1)
. The third term is bounded by 1

ε
‖g0 − gε‖2

L2(γ )
, finally the last two terms

are constant and equal to F0(u). By (5.1), the conclusion immediately follows. �
We are now able to conclude the proof of Theorem 5.3.

Proof of Theorem 5.3. Given Lemmas 5.4 and 5.5, and Proposition 5.2, the proof is an immediate application of the
definition of Γ -convergence and of the Fundamental Theorem of Γ -convergence (Theorem 2.3). �

Our aim is to prove that the minimum of F0(u) is strictly related to the looked for potential u0 = u(f0,K0). In
order to guarantee that this is the case, we need to restrict our attention only to some of the classes of Definition 4.1,
namely we have to assume that k = 1, that is we are dealing with the C1,α case, for some α, 0 � α � 1. It would be
very interesting to extend the result also to the Lipschitz, that is C0,1, case.

Proposition 5.6. Under the previous assumptions, let us further assume that k = 1. Then, under the corresponding
hypothesis on K0, u1 ∈ H0 if and only if u1 = u0 almost everywhere in GK0 and ∇u1 = ∇u0 almost everywhere in Ω .

Proof. We essentially follow the proof of Theorem 3.3 in [31]. Let A1 in the appropriate class B be such that
[S(u1)\A1] = 0. We call K1 the minimal closed set such that [S(u1)\K1] = 0. We observe that K1 ∩ Ω̃1 is empty, that
K1 is contained in A1 and that S(u1)∩K1 is dense in K1. We call GK1 the connected component of Ω\K1 containing
Ω̃1 and G the connected component of Ω\(K0 ∪ K1) containing Ω̃1. Since u1 satisfies �u1 = 0 in Ω\K1 and u1 has
the same Cauchy data of u0 on γ , by unique continuation we infer that u1 = u0 on G. We notice that∫

|∇u0|2 =
∫

f0u0 =
∫

f0u1 =
∫

|∇u1|2.

Ω ∂Ω∩∂Ω1 ∂Ω∩∂Ω1 Ω
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We observe that if we prove ∫
G

|∇u0|2 =
∫

∂Ω∩∂Ω1

f0u0, (5.5)

then the proof is concluded. In fact, in such a case, we would have that ∇u0 = 0 almost everywhere in (Ω\K0)\G.
Since u0 is a nonconstant harmonic function in GK0 , its critical set in GK0 cannot have positive measure, therefore
|GK0\G| = 0. The same reasoning applied to u1 would lead to the fact that |GK1\G| = 0. Since u1 = u0 almost
everywhere in G, and ∇ui = 0 almost everywhere on Ω\GKi

, for any i = 0,1, the conclusion would follow.
In order to prove (5.5), we follow the proof of Theorem 3.3 in [31]. The only step we need to modify is the proof

of Lemma 4.2 in [31]. Let us recall the statement of that lemma. Let D be an open set compactly contained in GK0

such that [∂D] is finite. Let D̃ be the intersection of D with G. Then, for any v ∈ C∞(GK0), we have:∫
∂∗D̃\∂D

(∇u0 · ν)v dHN−1 = 0. (5.6)

Let us begin by investigating the properties of the set A1. Let us call κ1 the set which is the union of all the endpoints
of the arcs forming A1, if N = 2, or of all the sides of the generalized triangles forming A1, if N = 3. We notice that
HN−2(κ1) < +∞. Let us consider a point x such that x ∈ ∂G∩GK0 . Obviously, we have that x must belong to K1. Let
us assume that x does not belong to κ1. We can find positive constants r and t , depending on x and on L, such that, up
to a rigid transformation, Qr,t (x) � GK0 , γ1 = A1 ∩Qr,t (x) = {y ∈ Qr,t (x): yN = ϕ(y′)} and Qr,t (x)\A1 has exactly
two connected components, divided by the graph of ϕ, ϕ : RN−1 → R being a C1,α function with C1,α norm bounded
by L. These two connected components are D+ = {y ∈ Qr,t (x): yN > ϕ(y′)} and D− = {y ∈ Qr,t (x): yN < ϕ(y′)}.
Without loss of generality, we may assume that D+ and D− are domains with Lipschitz boundaries.

We observe that, since x ∈ ∂G, at least one of the two domains D− and D+ must be a subset of G. Without loss
of generality, we assume that D− ⊂ G. We notice that if D+ is also contained in G, then u1 = u0 on Qr,t (x)\A1,
thus, since u0 is continuous across A1, we obtain that [S(u1) ∩ Qr,t (x)] = 0, therefore K1 ∩ Qr,t (x) = ∅, and this
is a contradiction to the chosen properties of x. We may conclude that D+ is not contained in G, therefore we have
that K1 ∩ Qr,t (x) = γ1. We recall that C1

0(RN) is dense in H 1(D) provided D is a bounded domain with Lipschitz
boundary. For any v ∈ C1

0(Qr,t (x)), we have that
∫
Qr,t (x)

∇u1 ·∇v = ∫
D− ∇u1 ·∇v+∫

D+ ∇u1 ·∇v = 0. By the Gauss–

Green formula for sets of finite perimeter, Theorem 2.2, and since u1 = u0 on D− and u0 ∈ C1(Qr,t (x)), we have that∫
D− ∇u1 · ∇v = ∫

γ1
(∇u0 · ν)v for any v ∈ C1

0(Qr,t (x)). Here and in the sequel ν shall denote the exterior normal to

D−. Therefore,
∫
D+ ∇u1 ·∇v = − ∫

γ1
(∇u0 ·ν)v for any v ∈ C1

0(Qr,t (x)) and, by the density of C1
0 already recalled, we

infer that
∫
D+ ∇u1 ·∇(u1v) = − ∫

γ1
(∇u0 ·ν)u+

1 v. Here u+
1 and u−

1 denote the traces of u1 on the two sides of γ1. How-

ever, we have that for any v ∈ C1
0(Qr,t (x)),

∫
Qr,t (x)

∇u1 ·∇(u1v) = ∫
D− ∇u1 ·∇(u1v)+ ∫

D+ ∇u1 ·∇(u1v) = 0. Again

by the Gauss–Green formula,
∫
D− ∇u1 · ∇(u1v) = ∫

γ1
(∇u0 · ν)u0v = ∫

γ1
(∇u0 · ν)u−

1 v. We conclude that
∫
γ1

(∇u0 ·
ν)(u+

1 − u−
1 )v = 0 for any v ∈ C1

0(Qr,t (x)). Therefore, (∇u0 · ν)(u+
1 − u−

1 ) = 0 HN−1-almost everywhere on γ1.
By Lemma 2.5, we have that u+

1 and u−
1 are continuous on γ1. Let us consider the set γ̃1 = {y ∈ γ1: u+

1 (y) �= u−
1 (y)}

which is an open subset of γ1. Furthermore, γ̃1 ⊂ S(u1) and consequently γ1 ⊂ γ̃ 1. On γ̃1, we have that ∇u0 · ν = 0
HN−1-almost everywhere.

Here it is the only step where we need to use the further C1,α regularity we have imposed in our hypotheses.
Otherwise, Lipschitz regularity would have been enough. In fact, if γ1 is the graph of a C1,α function, then ν is also
continuous, hence ∇u0 · ν is a continuous function on γ1 which is zero on γ̃1, a dense subset of γ1, so it is identically
equal to zero.

We conclude that ∇u0 · ν = 0 HN−1-almost everywhere on (∂G ∩ GK0)\κ1. Since [κ1] = 0, we have that
∇u0 · ν = 0 HN−1-almost everywhere on ∂G ∩ GK0 . Since ∂∗D̃ ⊂ ∂D̃ and ∂D̃ ⊂ ∂D ∪ (∂G ∩ GK0), (5.6) im-
mediately follows. �
Remark 5.7. In this remark, we investigate the following property. Let us consider the set ∂GK0 ∩Ω . By the definition
of B′, let κ0 be the set with HN−2(κ0) < +∞ such that for any point x ∈ (∂GK0 ∩Ω)\κ0 we can find positive constants
r and t , depending on x, such that, up a rigid transformation, Qr,t (x) � Ω , γ1 = ∂GK ∩ Qr,t (x) = {y ∈ Qr,t (x):
0
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yN = ϕ(y′)} and Qr,t (x)\∂GK0 has exactly two connected components, divided by the graph of ϕ, ϕ : RN−1 →
R being a Ck,α function. These two connected components are D+ = {y ∈ Qr,t (x): yN > ϕ(y′)} and D− = {y ∈
Qr,t (x): yN < ϕ(y′)}, which are assumed to have Lipschitz boundaries. Let u−

0 and u+
0 be the traces of u0 on the two

sides of γ1, respectively. By Lemma 2.5, we recall that u−
0 and u+

0 are continuous on γ1. We have three cases. First,
both D+ and D− are not contained in GK0 . Actually, this case cannot occur, otherwise it contradicts the fact that x

belongs to ∂GK0 . In any case, u0 would be identically equal to zero on D+ and D−, therefore γ1 ∩ S(u0) = ∅. In the
second case, both D+ and D− are contained in GK0 . We are interested in the third case, when one of the two sets,
say D−, is contained in GK0 , whereas the other, D+, is not. We investigate the following question. We ask whether
there exists a constant c such that [{y ∈ γ1: u−

0 (y) = c}] > 0. We recall that �u0 = 0 in D− and ∇u0 · ν = 0 on γ1 in
a weak sense. A rather deep result of unique continuation, see [2], says that if k = 1 and α = 1, that is we are in the
C1,1 case, then [{y ∈ γ1: u−

0 (y) = c}] > 0 implies that u1 is identically equal to c on D−. We conclude that, if k = 1
and α = 1, then we have [γ1\S(u0)] = 0. Let us observe that if N = 2 the regularity condition on γ1 may be relaxed.

In the next theorem we illustrate the most important consequences of Theorem 5.3 and Proposition 5.6.

Theorem 5.8. Under the hypotheses of Proposition 5.6, we have that for any family uε , 0 < ε � 1, such that uε → u

in L1(Ω) as ε → 0+ and such that, for some constant C > 0, we have:

Fε(uε) � C for any ε, 0 < ε � 1,

then uε converges, as ε → 0+, to u weakly∗ in BV(Ω), strongly in Lp(Ω), for any p, 1 � p < +∞, and ∇uε

converges to ∇u = ∇u0 weakly in Lq(Ω,R
N) and strongly in L2(Ω,R

N). Furthermore, u = u0 almost everywhere
in GK0 .

If we further assume that α = 1 and uε further satisfies limε→0+ Fε(uε) = limε→0+ minL1(Ω)Fε , then
[S(u)\∂GK0 ] = 0 and u is constant on any connected component of Ω\∂GK0 different from GK0 .

Proof. The first part is an immediate consequence of Lemma 5.4 and its proof and of Proposition 5.6.
For what concerns the second part, we observe that, on Ω\GK0 , u attains at most a countable number of val-

ues ci , i ∈ N. Then we argue in the following way. With the notation of Remark 5.7, let us consider x ∈ (∂GK0 ∩Ω)\κ0
and its corresponding γ1. The first case is not interesting. In the second case, u0 = u almost everywhere in Qr,t (x),
hence S(u0) = S(u) HN−1-almost everywhere on γ1. In the third case, [γ1\S(u)] = 0, since this set is included
in the union of {y ∈ γ1: u−(y) = ci}, i ∈ N. Therefore, we immediately conclude that if k = 1 and α = 1 we
have that [S(u0)\S(u)] = 0. Furthermore, under our additional assumptions, u is a minimum point of F0, hence
[S(u)] � [S(u0)]. We immediately conclude that also [S(u)\S(u0)] = 0 and consequently [S(u)\∂GK0 ] = 0. Thus u

is constant on any connected component of Ω\∂GK0 which is different from GK0 . �
We conclude the section with the following remark.

Remark 5.9. We can consider the following variants in the definition of the functionals Fε .
First of all, we observe that the results of Proposition 5.2 and of Theorem 5.3 still hold if we substitute the class

B with any class formed by nonempty compact sets whose HN−1-measures are uniformly bounded and which is
compact with respect to the Hausdorff distance.

Another possible modification is the following. In the first term, we may substitute |‖ · |‖ with the L2(Ω) norm. In
this case, we have that there exists a constant C such that still Fε(ũε) � C for any ε, 0 < ε � 1, where ũε = u(fε,K0).
The results of Proposition 5.2, of Lemma 5.4 and of the first part of Theorem 5.8 still hold.

Another possible variant is the following. Since the HN−1-measure of any element of B is uniformly bounded,
we can drop the term [S(u)] in the definition of the functionals Fε for any ε, 0 � ε � 1. All the results in this
section, except the second part of Theorem 5.8, are still valid. If we also replace the |‖ · |‖ with the L2(Ω) norm,
then Proposition 5.2, Lemma 5.4 and the first part of Theorem 5.8 still hold true, whereas Theorem 5.3 holds under
the assumptions of Proposition 5.6. In this case, we need to modify Lemma 5.5 as follows. For any u ∈ H0 such that
F0(u) is finite, we define vε , for any 0 < ε � 1, in this way. We let vε = ũε in GK0 and vε = u outside GK0 . We
observe that, if Proposition 5.6 holds, then u = u0 in GK . By Proposition 3.1 and by the properties of K0, we may
0
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conclude that ũε converges to u0 strongly in H 1,q (GK0), therefore vε converges to u in L1(Ω) and Fε(vε) converges
to F0(u), where the functionals Fε , 0 � ε � 1, are the modified ones.

6. Conclusions

In this paper we have shown how the electrostatic potential corresponding to suitable piecewise C1 defects can
be approximated by the solutions of free-discontinuity variational problems which depend on the available (noisy)
boundary data only. We have proved a convergence result as the noise level goes to zero. We conclude the paper
pointing out some of the most important features of the method.

Nonlinearity. The presence of the second term of the functional Fε , which is by the way the most difficult term to deal
with, clearly shows the nonlinear character of the problem of recovering the electrostatic potential by Cauchy data in
a partially known domain and, in turn, the nonlinearity of the inverse problem of determining defects by boundary
data.

The minmax approach. In order to deal with an overdetermined problem (we have both the Cauchy data of the
solution of an elliptic equation, which is however defined in a partially known domain) through a variational method,
we use a minmax approach which allows us to impose one of the two data through a (somewhat relaxed) constraint.
Such a minmax approach is frequently adopted in shape optimization problems.

The Mumford–Shah functional. The use of the Mumford–Shah functional, namely
∫
Ω

|∇u|q + [S(u)], has several
purposes. First, we remark that usually in the Mumford–Shah functional the exponent q is equal to 2, whereas in our
case the presence of the nonlinear term imposes to us to take q strictly greater than 2. It guarantees coerciveness and
consequently existence and convergence of minimizers. From a numerical point of view it should guarantee a suitable
regularization, which is required by the ill-posedness of the problem.

The assumptions on H . The use of the space H instead of SBV(Ω) seems to be very restrictive and difficult to
handle. For instance, it might make more difficult to approximate, in the sense of Γ -convergence, the functionals Fε

with functionals defined on spaces of more regular functions like Sobolev spaces. Such an approximation would be
very interesting and useful for the implementation of the method. We recall that, for the Mumford–Shah functional,
various approximations of this kind have been developed, see for instance [10] and its references. However, we believe
that the restriction to the set H is not very severe from a practical point of view In fact, if we discretize the domain Ω

through any regular mesh with reasonably good properties, then the conditions imposed on the elements of H would
be automatically satisfied. Concerning the restriction to piecewise C1,α admissible defects, instead of Lipschitz ones,
again this is not an issue. In fact, it is well known that these kinds of problems are severely ill-posed, therefore, in
order to recover the defects in a reasonably stable way we need to require some smoothness, particularly in dimension
higher than 2, see for instance [3]. Furthermore, again for the ill-posedness, the discretization of the domain can not
be too fine, and this is another motivation why working in the set H should not be so restrictive.

Variants of the method. As the analysis shows, without loss of generality, we can multiply the terms of the functionals
Fε by different positive constants. Furthermore, in Remark 5.9, we have illustrated some of the possible variants of
the functionals. In particular, let us notice the role of the |‖ · |‖ norm and of the L2(Ω) norm. If we use the |‖ · |‖ norm,
then, roughly speaking, F(u) is finite provided u matches the (noisy) Neumann datum fε up to some error. If we
replace it with the L2(Ω) norm, then the (noisy) Neumann datum must be matched exactly, therefore it might be more
restrictive than the other. On the other hand, it might have the advantage of being easier to implement.

A correct tuning of the constants and the use of different variants of the method might be of help to obtain better
reconstruction results in an implementation of the method.
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