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Abstract
Investigative toxicology describes the de-risking and mechanistic elucidation of toxicities, supporting early safety decisions 
in the pharmaceutical industry. Recently, investigative toxicology has contributed to a shift in pharmaceutical toxicology, 
from a descriptive to an evidence-based, mechanistic discipline. This was triggered by high costs and low throughput  
of Good Laboratory Practice in vivo studies, and increasing demands for adherence to the 3R (Replacement, Reduction, 
and Refinement) principles of animal welfare. Outside the boundaries of regulatory toxicology, investigative toxicology 
has the flexibility to embrace new technologies, enhancing translational steps from in silico, in vitro to in vivo mechanistic 
understanding to eventually predict human response. One major goal of investigative toxicology is to improve pre-
clinical decisions, which coincides with the concept of animal-free safety testing. Currently, compounds under preclinical  
development are being discarded owing to the use of inappropriate animal models. Progress in investigative toxicology 
could lead to humanized in vitro test systems and the development of medicines less reliant on animal tests. To advance 
this field, a group of 14 European-based leaders from the pharmaceutical industry founded the Investigative Toxicology 
Leaders Forum (ITLF), an open, non-exclusive, and pre-competitive group that shares knowledge and experience. The 
ITLF collaborated with the Centre for Alternatives to Animal Testing Europe (CAAT-Europe) to organize an “Investigative  
Toxicology Think Tank”, which aimed to enhance interaction with experts from academia and regulatory bodies in the 
field. Summarizing the topics and discussion of the workshop, this article highlights investigative toxicology’s position by 
identifying key challenges and perspectives.

This is an Open Access article distributed under the terms of the Creative Commons 
Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted use, distribution and reproduction in any medium, provi-
ded the original work is appropriately cited. 
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kamp-Zbinden Foundation. The present report is the output of a three-day workshop sponsored by CAAT-Europe and Investigative Toxicology Leaders Forum (ITLF) held in 
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that they are representing. The debates were based on scientific discussions among the participants, without necessarily unanimous final agreement.
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to satisfy the specific requirements of individual regulatory au-
thorities (OECD, 2005).

This positive development of streamlined testing strategies, 
however, also brought some challenges with it. Many companies 
are reluctant to integrate new technologies or assays next to the 
established safety assessment consisting of GLP in vivo studies 
due to the perception that non-GLP, or not fully validated assays, 
might compromise the pivotal studies and endanger the approval 
process. The high standard of harmonization and validation de-
veloped for the GLP studies is often requested for new technolo-
gies and assays. On the other hand, attrition due to safety reasons 
in preclinical and clinical drug development phases still rep-
resents a major factor for the overall loss of projects and therefore 
there is pressure to improve the predictive power of preclinical 
studies, including new screening strategies. In addition, the high 
costs and the rather low throughput of GLP in vivo studies and the 
intensifying demands to address the 3Rs has increased the push 
towards new screening strategies (Sewell et al., 2017). 

1  Introduction

Tremendous progress in preclinical development across the phar-
maceutical industry has been achieved over the past three de-
cades. This pivotal phase, which prepares the transition into first-
in-man trials, has been strongly harmonized under the umbrella 
of the International Conference for Harmonisation (ICH) of Tech-
nical Requirements for Pharmaceuticals for Human Use1  (Ohno, 
2002). The ICH has contributed to an internationally accepted 
set of submission-relevant guideline documents generally con-
cerning in vivo drug safety studies, which are based on Organisa-
tion for Economic Co-operation and Development (OECD) test 
guidelines for the individual study conduct and are strongly con-
nected to OECD documents for Good Laboratory Practice (GLP). 
The whole framework of harmonization has led to an increase of 
mutual acceptance of preclinical submission documents in the 
three regions involved (European Union, the United States, and 
Japan) and, as a consequence, to elimination of studies performed 

1 ICH Guideline M3 (R2). Non-clinical safety studies for the conduct of human clinical trials for pharmaceuticals. CPMP/ICH/286/95.  
https://www.ema.europa.eu/documents/scientific-guideline/ich-m-3-r2-non-clinical-safety-studies-conduct-human-clinical-trials-marketing-authorization_en.pdf

Abbreviations 
3D, three dimensional; 3Rs, refine, reduce, replace animal experimentation; ADR, adverse drug reaction; ALP, alkaline phosphatase; ALT, alanine aminotransferase;  
AOP, adverse outcome pathway; AST, aspartate aminotransferase; BIL, bilirubin; DILI, drug-induced liver injury; EMA, European Medicines Agency; FDA, Food and Drug 
Administration; GLP, Good Laboratory Practice; IATA, integrated approaches to testing and assessment; ICH, International Conference for Harmonisation of Technical  
Requirements for Pharmaceuticals for Human Use; IMI, Innovative Medicines Initiative; iPSC, induced pluripotent stem cells; ITLF, Investigative Toxicology Leaders Forum; 
KE, key event; LLNA, local lymph node assay; MIE, molecular initiating event; MPS, microphysiological system; NBE, new biological entity; NCE, new chemical entity;  
NOAEL, no observed adverse effect level; OECD, Organisation for Economic Co-operation and Development; PBPK, physiology-based pharmacokinetic modeling; PoD, point 
of departure; PoT, pathways of toxicity; QIVIVE, quantitative in vitro to in vivo extrapolations; (Q)SAR, (quantitative) structure activity relationships; WoE, weight of evidence

Fig. 1: A visual illustration of the continuum of investigative toxicology in the drug discovery and development pipeline
Plain arrows represent the forward feed information to move to the next step, while dashed arrows represent back feed of knowledge to 
improve predictivity. Organ-on-chip, 3D tissues and MPS have the potential to complement and, perhaps to some extent, replace certain 
steps of research and development. FiH, First-in-Human trial; MPS, microphysiological systems; M&S, modeling and simulation
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maceutical industry point of view, the term “investigative toxicol-
ogy” can be defined as a complementary effort to regulatory toxi-
cology, encompassing both a prospective (screening for de-risking) 
and a retrospective approach (mechanistic investigations of ad-
verse effects) (Moggs et al., 2012).

To foster awareness, development, and implementation of in-
vestigational toxicology and to share expertise, knowledge, and 
best practice in a pre-competitive space, a group of Europe-
an-based investigative toxicology leaders from the pharmaceuti-
cal industry (see Fig. 2 for participating companies) founded the 
Investigative Toxicology Leaders Forum (ITLF) (Roth, 2017). 
This open, non-exclusive forum aims to enhance interaction with 
experts from academia and regulatory bodies in the field of inves-
tigative toxicology. The objective of the ITLF is to elaborate ro-
bust, reliable, and accepted investigative toxicology concepts and 
practices for decision-making related to early safety-related attri-
tion, de-risking, and mechanistic elucidation of effects as shown 
in Figure 3. The figure illustrates how investigative toxicolo-

As a consequence, most pharmaceutical companies have estab-
lished specific toxicology functions, which complement the exper-
imental GLP functions. Some companies have even gone so far as 
to fully outsource GLP activities and to focus in-house on preclin-
ical safety activities on what is termed “discovery”, “explorato-
ry”, “mechanistic”, or “investigative” toxicology. While the tasks 
and organizational set-up of these functions differ from company 
to company, it has become evident that the value of these activi-
ties lies not only in screening assays preceding regulatory activi-
ties, but also in an enhanced understanding of the mechanism of 
toxicity, which is equally relevant for later phases of clinical devel-
opment. In fact, this is shifting pharmaceutical toxicology from a 
purely descriptive to an evidence-based mechanistic discipline. For 
this reason, the authors of this publication prefer the term “investi-
gative toxicology” over “discovery toxicology”, since it avoids the 
perceptional limitation to serve only the early phases of safety as-
sessment. The continuum of investigational toxicology in the drug 
development process is illustrated in Figure 1. Thus, from a phar-

Fig. 2: Companies participating in the pre-competitive 
Investigative Toxicology Leaders Forum (ITLF) as of 
July 2018 
Objectives of the ITLF are to jointly elaborate robust, reliable 
and accepted investigative toxicology concepts for decision- 
making for early safety-related attrition, de-risking, and 
mechanistic elucidation of safety-related effects to increase 
the understanding and improve the translation of in vitro to 
in vivo mechanistic data. Furthermore, the adoption of new 
technologies/platforms into the drug discovery back-bone 
is targeted by the forum to increase the knowledge and 
awareness of investigative toxicology as a discipline (e.g., 
through publications, meetings, and conferences).

Fig. 3: Key objectives of 
investigative toxicology 
during drug discovery and 
development
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es to developing testing strategies (Brennan et al., 2015; Dixit and 
Boelsterli, 2007; Bussiere et al., 2009). The following outlines the 
perceived gaps in identifying NCE/NBE hazards for target-or-
gan toxicities, limiting risk assessments and prediction of human 
safety, mitigation strategies to manage risk, and current gover-
nance for investigative toxicological sciences. The mechanisms of 
ADRs are extensively reviewed elsewhere (Atienzar et al., 2016; 
Hornberg et al., 2014a,b).

2.1  Hazard identification risk assessment

2.1.1  Target organ toxicity models
Although 70% of human-relevant toxicities are detected in exper-
imental species (Olson et al., 2000), the translational relevance of 
these toxicities is highly dependent on the affected target organ. 
Significant human ADRs are predominantly associated with liv-
er, heart, and neurological organs (Cook et al., 2014; Olson et al., 
2000; Sacks et al., 2014). The detection of dose-dependent drug 
hepatocellular cytotoxicity by in vitro cell-based models and an-
imal studies is well accepted (Antoine et al., 2013; Ward et al., 
2014), yet the multifactorial nature of drug induced liver injury 
(DILI) and known species differences are notable gaps that require 
the development of humanized models to detect liver injuries as-
sociated with immune or patient-specific susceptibilities. For the 
identification of cardiovascular drug liabilities, the concomitant 
use of both in vitro models and animal studies is well established 
(Laverty et al., 2011; Valentin et al., 2010). Whereas effects on ion 
channels can be easily identified by in vitro (e.g., patch clamp) 
models, the complex interplay between heart rate, ejection vol-
ume, and blood pressure eventually causing heart or kidney dam-
age can currently only be assessed by in vivo models. Similarly, 
early in vitro prediction of neurological ADR is still challenging as 
many side effects can often only be detected in clinical trials since 
they are caused by interactions with rare targets or occur only after 
chronic administration, which is difficult to achieve in in vitro as-
says (Schmidt et al., 2017). Regarding other toxicities such as he-
matologic or hematopoietic disorders or carcinogenic risk, few in 
vitro models exist due to the nature and complexity of the under-
lying pathology (see Tab. 1). However, there is a surge in the de-
velopment of organotypic and microphysiological systems (MPS) 
(Marx et al., 2016) including multiple organ systems. High expec-
tations are placed in improved detection of drug liabilities for use 
in safety assessment by the use of these innovative three dimen-
sional  (3D) models (Hardwick et al., 2017; Lin et al., 2015; Muel-
ler et al., 2014; Soldatow et al., 2013).

2.1.2  Disease models
Disease models are required to emulate organ-level functions and 
recapitulate key phenotypic features of human disease in cell or 
tissue-based as well as conventional and transgenic animal mod-
els. Disease status can impact considerably on the toxicity of sub-
stances and thus the target population of a novel drug candidate. 
Nevertheless, animal models established to reflect human dis-
ease often appear to have had limited success (Benam et al., 2015; 
Morgan et al., 2013) and likely contribute to the poor predictivity 
of efficacy and safety of drugs in later human clinical trials. The 
future incorporation and use of humanized in vitro disease models 

gy adds to the traditional drug development process. Investiga-
tive toxicology supports the entire process by early assessments 
of target- and chemical class-related toxicological concerns and 
front-loading of assessments as prospective risk anticipation. 
Furthermore, alerts from later stages of development and market 
surveillance can trigger a retrospective de-risking process, which 
will typically include the elucidation of toxic mechanisms to as-
sess their relevance to humans and possible mitigation strategies.

The goal of investigative toxicology is to improve preclinical 
decision-making, which coincides with the notion of animal-free 
safety testing. Currently, many compounds are ruled out based on 
results from animal models obtained during the preclinical phase 
without knowledge of how the compounds would behave in hu-
mans, i.e., the false-positive rate of animal studies cannot be as-
sessed. In addition, significant attrition occurs in clinical phases 
due to safety issues that were not adequately identified during the 
preclinical phase (false-negative) (Waring et al., 2015). Progress 
in investigative toxicology towards humanized in vitro test sys-
tems promises a better rate of human-relevant predictions. 

For this reason, the ITLF teamed up with CAAT-Europe to hold 
an “Investigative Toxicology Think Tank”. in July 2017, which 
assembled 34 experts from academia, the pharmaceutical and 
other industries, regulatory authorities, and technology providers 
to develop a definition of “investigative toxicology” and to align 
academic and expert stakeholders with the needs for a predictive 
and mechanistic investigational toxicology. Although the focus 
of the meeting was on investigative toxicology in drug develop-
ment, progress in this field may also influence safety assessment 
in other industry sectors (industrial, consumer or agro-chemical 
compounds). This report represents a position paper for investi-
gative toxicology based on the topics of and discussions during 
the workshop. It starts with a gap analysis, followed by a criti-
cal assessment of new technologies, and finishes by summarizing 
challenges, and presenting perspectives and recommendations.                  

2  Gap analysis

The pharmaceutical industry has made substantial efforts towards 
the implementation of in vitro based models, which has improved 
the hazard identification and risk assessment of drug candidates 
prior to non-clinical development (Hornberg et al., 2014a,b; Goh 
et al., 2015). However, much remains to be accomplished to ad-
dress the substantial gaps in our mechanistic understanding of ad-
verse drug reactions (ADRs) and to support the development of 
biomedical tools that are truly predictive of inter-individual hu-
man susceptibility to ADRs. The rapid “design-make-test-ana-
lyze” cycle time in drug discovery also places greater emphasis 
to further the understanding of the mechanisms of toxicity and 
chemical liabilities, and to facilitate the decision-making process-
es on candidate selection and development of new chemical enti-
ties (NCEs) and new biological entities (NBEs). In addition, the 
increasing diversity of biopharmaceutics, which now include cell 
and gene therapies, chimeric antigen receptor T (CAR-T) cells and 
vectors, antibodies, and anti-sense oligonucleotides presents new 
and significant risks, such as cytokine release syndrome (CRS) 
and tissue cross-reactivity issues, with a variety of new challeng-
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change on which to establish a safety margin (Dorato and Engel-
hardt, 2005). In the absence of well-characterized safety bio-
markers4 with clearly defined mechanistic and translational rel-
evance to humans, preclinical findings in animals will, at best, 
only permit rough estimates of the safety margins. The pre-requi-
site for non-clinical safety testing is to select candidate drugs with 
large safety margins to improve the likelihood of clinical success. 
However, in vivo toxicological and clinical findings can result in 
unexpected and reduced safety margins in target organs during 
the clinical phase. Progress towards the identification of nov-
el, sensitive biomarkers with mechanistic and translational rele-
vance may help to improve the monitoring of drug safety profiles. 

into toxicity assessments has the potential to concomitantly facil-
itate pharmacological discovery and safety evaluation of drugs 
(Hübner et al. 2018). This will improve the identification of safety 
margins with the potential to extrapolate phenotypic differences 
in patient populations and lead to mechanistically-driven safety 
margins in patient populations.

2.1.3  Safety margins
Dose limiting toxicity and the “no adverse effect level” (NOAEL) 
define safety margins2 and toxicological profile for risk-benefit 
assessment of a drug candidate3. However, the NOAEL is often a  
subjective assessment of a biochemical or histopathological 

2 In other, non-pharma sectors, the common expression is “margin of safety” (MoS). Instead of NOAEL, which is the highest experimental dose in an  
in vivo study that is without observable adverse effect, the Benchmark Dose Lower Confidence Limit based on benchmark dose modelling (BMDL) is more 
frequently used in these sectors.
3 http://www.fda.gov/downloads/drugs/guidances/ucm078932.pdf
4 A biomarker is a defined characteristic that is measured as an indicator of normal biological processes, pathogenic processes, or responses to an exposure 
or intervention, including therapeutic interventions. Molecular, histologic, radiographic, or physiologic characteristics are types of biomarkers. Safety biomar-
kers are applied to indicate the likelihood, presence, or extent of toxicity as an adverse effect (for definitions see: https://www.fda.gov/Drugs/DevelopmentAp-
provalProcess/DrugDevelopmentToolsQualificationProgram/BiomarkerQualificationProgram/default.htm)

Tab. 1: Categories of safety attrition challenges

Attrition	 Organ		 Discovery 		  Non-	 Translational value of models & gaps 
			   Cell & tissue-based models	 clinical			    
			   Hazard	 Risk	 Predictive	 (tox 
				    assessment		  species)	

High	 Heart		  ●	 ●	 ●	 ● (1)	 Relatively good for detection and prediction of  
							       functional changes but limited in relation to structural 
							       changes. 
High	 Liver	 Hepatocellular	 ●		  ●	 ● (2)	 Relatively good concordance between hepatocellular 
							       injury IVIVE (in vitro-in vivo extrapolation)  
							       and liver injury in humans.
		  Cholestasis	 ●	 x	 ●	 x	 Animal models are poorly predictive of  
		  (acute)					     cholestasis. 
High	 CNS		  ο	 x	 x	 ● (1,2)	 Models available for behavior, seizures, drug abuse;  
							       no models for cognition, suicidal ideation.

Medium	 Gastrointestinal	 ο	 x	 x		  Limited to poor model detection and prediction
Medium	 Kidney	 ο	 x	 x	 ● (1,2)	 Translational biomarkers permit ID of injury in  
							       animal models.
Medium	 Immune system	 x	 x	 x	 x	 Hypersensitivity reactions – poor. No tests are yet  
							       available for testing ab initio in drug discovery or  
							       non-clinical testing.

Low	 Lung		  ●	 ●	 ●	 ● (1,2)	 Relatively good
Low	 Hematology	 x	 x	 x	 ● (1,2)	 No in vitro model, yet good in vivo concordance  
							       animal - human
Low	 Hemopoiesis	 x	 x	 x	 ● (1,2)	 No in vitro model, yet good in vivo concordance  
							       animal - human
Low	 Skin (irritation/	 ●	 ●	 ο	 ● (2,3)	 In vitro models available with in vivo confirmatory  
	 sensitization)					     and/or studies
Medium	 Reproductive 	 x	 x	 x	 ● (2)	 Relatively good models for detection and prediction  
	 organs & embryofetal					     of embryofetal toxicities, but limited in relation to  
	 development					     reproductive organs.
Low	 Genetic toxicity & 	 ● / ο	 x	 ● / ο	 ● (2)	 In vitro models good for detection and prediction  
	 Carcinogenicity					     of genetic toxicity but poor for carcinogenicity risk  
							       identification

X, no model; ο, models yet to be evaluated for application in drug R&D; ●, models routinely available/in use.  
1, large species (dog or monkey); 2, rodent; 3, lagomorph

http://www.fda.gov/downloads/drugs/guidances/ucm078932.pdf
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identification of novel safety biomarkers with translational val-
ue from early in vitro safety assessment to non-clinical as well 
as clinical safety assessment. More recently, gene editing tech-
nologies such as CRISPR/Cas9 have allowed refined engineer-
ing of animal disease models. For example, pig models have been 
established for cystic fibrosis research, which are reported to be 
superior compared to the existing mouse models regarding their 
similarity to the human phenotype (Klymiuk et al., 2016). These 
technologies have the potential to bridge the gap between proof-
of-concept studies in animals and clinical trials in patients, thus 
supporting translational medicine.

2.2.4  Monitoring safety signals
Biomarkers permit identification and monitoring of poten-
tial safety signals (see Section 3.2) by employing a broad spec-
trum of technologies. Biomarkers detected by imaging and mo-
lecular techniques have advanced in recent years for on-target 
and off-target assessments. Despite a rapid rise in the use of om-
ics technologies, several challenges remain before their routine 
adoption and application can be achieved (Khan et al., 2014). For 
example, genomic and pharmacogenomic screening have found 
use in clinical trial enrolment for an indirect assessment of drug 
metabolizing enzyme activity, yet the measurement of enzyme 
activity and drug-drug interaction (DDI) (Ward et al., 2014) on-
ly results in predictive values of around 40% when relying on  
protein and transcriptomic data alone (Weaver, 2001). In con-
trast, transcriptomics has yielded more success in the detection of  
organ-specific or selective pathologies (Chen et al., 2012), but 
nevertheless only appears to share similar sensitivity to that of  
established biomarkers (Zhang et al., 2012). A further limitation 
to the use and implementation of omics is that they currently re-
quire invasive biopsies.

2.2.5  Data transparency
The conduct and design of experimental studies has often drawn 
criticism due to the incompleteness of published data and the 
lack of reproducibility of results. In addition, the lack of data 
standards, definitions, and ontologies represents a major hur-
dle for modelling and simulation exercises. However, the reuse 
and sharing of available public and private data, both within and 
across organizations, is progressively recognized as a valuable 
source of information for read-across, hazard identification, 
and risk mitigation. The described hurdles are increasingly ad-
dressed through data governance frameworks. These efforts to-
wards harmonization of study design, data curation, and con-
trols are more widely applied with public and public-private 
data repositories (Steger-Hartmann and Pognan, 2018). Phar-
maceutical companies’ decision-making processes increasing-
ly rely on these data repositories to help support and comple-
ment internal research programs. EFPIA (European Federation 
of Pharmaceutical Industries and Associations) activities to fa-
cilitate data-sharing across companies will equally encourage 
high-value projects for cooperative data-sharing, which in turn 
are likely drivers towards greater harmonization of operating 
protocols and use and re-use of data in support of public health 
and drug research.

A better understanding of mechanistic toxicokinetics and toxi-
codynamics (TKTD) relationships in combination with pharma-
cokinetics and pharmacodynamics (PKPD) should establish im-
proved quantitative monitoring of safety margins in non-clinical 
and clinical research.

2.2  Predicting human safety with  
mechanistic insight 

2.2.1  Adverse outcome pathways and pathways  
of toxicity 
The organization of mechanistic knowledge into temporal events 
includes pathways of toxicity (PoT) (Kleensang, 2014), mode of 
action (MoA), and adverse outcome pathways (AOPs) (Ankley 
et al., 2010; Burden et al., 2015; Villeneuve et al., 2014). An AOP 
describes a sequential chain of causally linked events at different 
levels of biological organization that lead to an adverse effect on 
human health. AOPs best define the qualitative organization of in-
formation, whilst PoT relates more to quantitative, dynamic, and 
molecularly defined systems. The application of AOPs with an 
understanding of mechanisms can help adopt novel biomarkers 
for use in the identification and monitoring of safety signals. Nev-
ertheless, these are of limited value unless signals identified in in 
vitro and animal models can be linked to human ADRs through 
either target-based or phenotypic-based testing as weight of evi-
dence (WoE) to facilitate improved risk assessment of human tar-
get organ toxicities.

2.2.2  Idiosyncratic and hypersensitivity reactions 
Difficulties in the detection of hypersensitivity reactions and  
idiosyncratic toxicities arise due to ADR events that often oc-
cur already at low therapeutic dose levels in only small numbers 
of individuals during clinical development or post-registration 
(Pallardy and Bechara, 2017; Park et al., 2000; Uetrecht, 2013). 
The “non-existence” of relevant humanized pre-clinical models 
for early testing of drug candidates, coupled with the absence of 
clear dose-related toxicities and the complex dimensionality of 
immune-drug response necessitates urgent research to establish 
innovative diagnostic assays for drug discovery and continued 
efforts towards understanding mechanisms to support research 
and development of safer drugs. A successful example of such  
research is the specific case of hypersensitivity, namely skin 
sensitization, where the application of the AOP concept has led 
to a series of approved in vitro assays replacing animal studies 
(OECD, 2014).

2.2.3  Translational gap
Significant gaps remain on the path to achieving fully integrat-
ed and characterized humanized organ-specific panel(s) of in  
vitro models. Use of such models will require arrays of qualified 
mechanistic translational safety biomarkers, while dose (expo-
sure) dependent toxicities will continue to rely on observational 
or phenomenological-based endpoint tests and WoE approaches 
to assess human drug safety (see above). Therefore, much work 
remains to be done towards establishing the next generation of 
in vitro models for target organ safety testing. This includes the 
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in the Innovative Medicines Initiative (IMI) project, eTOX5. Pre-
dictive models were built to cover hundreds of clinical safety 
events linked to drugs and their pharmacological properties (Gar-
cia-Serna et al., 2015). Linking different data sources (toxicity, 
on-target and off-target, drug metabolism and pharmacokinetics 
(DMPK)) using computational methods will allow toxicologists 
to go beyond traditional structural alerts and move towards an un-
derstanding of toxicity cascades. This could eventually contribute 
to AOP development and validation and ultimately to the inter-
pretation of the underlying mechanism(s). The multifactorial ori-
gin of drug toxicity can thus be analyzed by combined approaches 
or network models to identify the causality of a toxic effect, ulti-
mately shedding light on the likely mechanisms by which NCEs 
generate a safety risk.

3.1.2  Machine learning and artificial intelligence
A number of recent developments in quantitative pharmacolo-
gy modeling have the potential to further embed these tools in-
to an in silico drug development framework, thus contributing to 
an early assessment of drug candidates regarding the differenti-
ation between on-target or off-target related liabilities (Murphy, 
2011). The standardization and automation of the development of 
quantitative pharmacology models, together with their validation 
and reporting, will facilitate the acceptance and uptake of QSARs 
(Kausar and Falcao, 2018).

As a compliment to the traditional QSAR models relating a 
chemical to a biological property, molecular docking models al-
low the rapid calculation of the binding potential of drugs to a tar-
get protein. Studies assessing the performance of commonly used 
molecular docking programs (e.g., Glide, GOLD, FlexX, eHiTS, 
PDBbind database) indicate that these programs can perform pre-
cise protein conformation, but their scoring functions are still 
too inaccurate for a reliable prediction across a variety of targets 
(Plewczynski and Klingström, 2011).

3  New technologies

The development of improved, innovative models for the detec-
tion of toxicity of drugs, industrial or consumer chemical prod-
ucts is crucial to efficiently bring new products safely to the mar-
ket in a cost-effective and timely manner. Figure 4 illustrates 
some of the modern technologies going into investigative toxi-
cology.

This non-exhaustive list of technologies – especially in com-
binations – encompasses a strong toolbox for mechanism-based  
human-relevant investigative toxicology approaches.

3.1  In silico tools and modeling

3.1.1  Overview
The prediction of mutagenic activity of new chemical entities 
(NCEs) based on their structure and potential reactivity towards 
DNA has been used for some decades, and in silico tools are now 
accepted for regulatory decision-making in the area of genotox-
icity of drug candidates and impurities in pharmaceuticals (Am-
berg et al., 2014). Beside this, a lot of effort has been put into the 
prediction of organ toxicities, such as DILI, using different com-
putational models (Kotsampasakou et al., 2017; Mulliner et al., 
2016a), which achieved accuracies in the range of 70 and 80%.

New perspectives for in silico, read-across, and modeling ap-
proaches are resulting from the emerging availability of “big  
data” in toxicology (Hartung, 2016; Clark and Steger-Hartmann, 
2018). One opportunity to push investigative toxicologists to 
embrace the 3Rs principles lies in developing new in silico ap-
proaches, and also in effectively integrating existing in silico 
tools with in vitro technologies, as well as with preclinical and 
clinical databases (Rovida et al., 2015), conceivably within an 
AOP-like framework (Tollefsen et al., 2014). For example, the in 
silico prediction of on/off-target liabilities was, in part, addressed 

5 http://www.etoxproject.eu

Fig. 4: Enabling technologies 
for investigative toxicology 
AI, artificial intelligence;  
AOP, adverse outcome pathway; 
GCCP, Good Cell Culture 
Practice; HTS, high-throughput 
screening; IATA, integrated 
approaches to testing and 
assessment; ITS, integrated 
testing strategy; MoA, mode of 
action; MPS, microphysiological 
systems; PBPK, physiology-
based pharmacokinetic modeling; 
PoT, pathways of toxicity;  
(Q)SAR, (quantitative) structure 
activity relationships
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er, AOPs, especially quantitative AOPs, may also prove benefi-
cial as a framework to build in silico tools and in vitro testing bat-
teries for drug discovery (Hartung, 2017b). AOP networks based 
on shared KEs are in active development (Knapen et al., 2018). 
Systems biology models, such as neural networks, have been 
a focus in drug development but require comprehensive, com-
plex tools for their quantification (Hartung et al., 2012, 2017). 
Although not formally applied thus far, toxicokinetic-toxicody-
namic (TKTD) modelling (Tsaioun et al., 2016; Kretschmann et 
al., 2012) may prove to be a useful tool to quantify KEs. These 
models simulate processes leading to toxicity in organisms over 
time, where (a) uptake and elimination rate constants for an 
NCE/NBE in an organism are determined to estimate the time 
course of a toxicant at a target (e.g., molecular initiating events 
(MIEs)) and (b) damage accrual and recovery rate constants for 
an effect across biological scales are determined to estimate the 
time course of an effect.

3.1.4  QIVIVE and PBPK/PD
A quantitative understanding of the progression of biologi-
cal events from MIEs to adverse outcomes allows us to derive  
tissue-specific points of departure (PoD) from organ-specific in 
vitro assays assessing perturbations of relevant KEs. The PoD 
is used to mark the beginning of extrapolation to determine the 
risk associated with expected human exposures. Quantitative 
AOPs will help answer what level of in vitro perturbation should 
be used as a PoD for quantitative in vitro to in vivo extrapolations  
(QIVIVE) (Hartung, 2017a). An understanding of the activity 
threshold is required that pushes the toxicity pathway onward 
from one molecular event in this pathway to the next and the in-
ternal dose of the drug or toxicant that affects the probability and 
severity of an event perturbation.

PBPK modelling is becoming indispensable for QIVIVE (Bas-
ketter et al., 2012; Leist et al., 2014). Specifically, reverse dosim-
etry PBPK is being used to estimate human exposures that lead 
to concentration-time profiles that are equivalent to sufficiently 

There have been significant advances in machine or deep 
learning technology in recent years. Although deep learning ap-
proaches have been shown to yield accurate predictions (Mayr 
et al., 2016), they require large, costly datasets. When it is prac-
tical to generate a relatively small dataset, researchers often seek 
to test a diverse set of compounds in their assay. Because of the 
complexity of compound space as well as the assay results with-
in that space, diversity selection of compounds does not always 
yield an optimally predictive model. One solution to this prob-
lem is the use of transfer learning. With this approach, data from 
biologically similar assays can be used to predict one another. 
This allows for the effective expansion of chemical space for tox-
icities for which data are more limited (Kangas et al., 2014). The 
second solution to the problem of generating data for learning 
predictive models is the use of active machine learning (Mur-
phy, 2011). In essence, a machine learning algorithm can be used 
to identify which tests will yield the most informative data. By 
focusing experimentation primarily on the informative experi-
ments that yield the best data, far fewer experiments are need-
ed to learn an accurate predictive model. In practice, these active 
machine learning approaches can significantly reduce in vitro 
and in vivo experimentation, while also increasing prediction ac-
curacy, and they are not strictly limited in application to investi-
gative toxicology.

The power of machine-learning approaches in drug discovery 
lies in its integration with network modeling (Fig. 5). A well-cu-
rated, comprehensive molecular interaction network can reveal 
causes and effects of protein interactions in signaling and met-
abolic pathways, thus allowing network-based screening to sys-
tematically identify target proteins of a drug and their impact 
(Hsin et al., 2013).                        

3.1.3  AOPs and their role in network models
To date, AOPs have been applied in the safety assessment of 
chemicals but less so in drug discovery. AOPs serve as a mostly 
linear concept to identify measurable key events (KEs). Howev-

Fig. 5: Enabling technologies for investigative toxicology: Application of machine learning / artificial intelligence for  
the prediction of target activity
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3.2  Safety biomarkers 

3.2.1  Application and classification of safety  
biomarkers
Safety biomarkers for use in investigative toxicology fall largely 
into the category of “response biomarkers” (Amur et al., 2015). 
A drug liability identified early in discovery, which shall be  
monitored and ideally de-risked during non-clinical and clinical 
research, requires robust and reliable safety biomarkers that are 
of translational relevance to humans. The same biomarkers would 
conceivably also support monitoring of patient populations and 
positively impact therapeutic safety margins. As biomarkers  
provide valuable information on drug safety, they are increasing-
ly integrated as part of drug discovery and non-clinical develop-
ment. Establishing the use of novel safety biomarkers with target 
organ specificity and mechanistic insight for use in non-clinical 
(Blaauboer et al., 2012) and clinical studies nevertheless remains 
challenging. 

Biomarkers include messenger and micro RNAs, proteins, me-
tabolites, clinical chemistry (Brooks et al., 2017) as single end-
point measurements or as multiplexed processes in microarray 
and microfluidic platforms. Whatever the biomarker selected, 
preclinical confirmation on the comparative molecular biology, 
translational relevance of the mechanism of toxicity, target organ, 
and time course with known histopathology in humans is required 
for later qualification (Matheis et al., 2011). The classification of 
biomarkers as exploratory, probably valid biomarkers and valid 
biomarkers defines how biomarkers are applied in research and 
development (Chau et al., 2008). Classification of the increasing 
numbers of qualified biomarkers helps define how emerging and 
future biomarkers can be used to support decision-making and 
their acceptance by regulatory authorities (Edwards et al., 2016).

3.2.2  Safety biomarkers for the three key  
target organs
The development of safety biomarkers for the organs that con-
tribute to the highest attrition, i.e., heart, liver, and CNS (central 
nervous system), has been pivotal owing to both the severity and 
occurrence of these target organ toxicities across many classes of 
drugs (Marrer and Dieterle, 2010). The progress towards the de-
velopment of biomarkers among these three target-organ toxici-
ties is highlighted below.

Heart (cardiovascular toxicity)
Cardiovascular toxicities accounting for ADRs, drug attri-
tion, and withdrawal relate to all components of the cardiovas-
cular system (Laverty et al., 2011; Valentin et al., 2010) and can 
be broadly categorized into i) structural damage, ii) functional 
deficits with or without histopathological correlates, and iii) al-
tered cell or tissue homeostasis in the absence of obvious struc-
tural or functional deficits (Wallace et al., 2004). The diversity of 

active concentration-time profiles in vitro (Louisse et al., 2017). 
Recent efforts in the US EPA ToxCast program6 illustrate the in-
tegration of in vitro activity concentrations with reverse dosime-
try PBPK for risk assessment. In vitro determined hepatic clear-
ance and plasma protein binding parameterized a TK model to 
predict the chemical steady-state concentrations (Css) in plasma 
resulting from repeated daily exposure. Reverse dosimetry PB-
PK tools were subsequently used to estimate human equivalent 
doses (in mg/kg/day) required to achieve blood Css levels identi-
cal to in vitro bioactive concentrations.

3.1.5  Big data
Besides the omics applications and the concomitant pathway 
analysis, future use of big data in safety science will encom-
pass two fields, early compound (drug candidate) assessment 
and translation concordance analysis. On the one hand, mining 
of large preclinical data sets will result in automated read-across 
procedures (Hartung, 2016), which will enable the assessment 
of new chemical structures, including structural moieties, for 
their potential toxicity liabilities. Such tools will enable medic-
inal chemists to guide their hit-to-lead search, not only for cri-
teria of pharmacophore, drug metabolism and pharmacokinetics 
(DMPK), and physico-chemical properties, but also for specific 
safety aspects, also termed “green toxicology” (Maertens et al., 
2014; Crawford et al., 2017; Maertens and Hartung, 2018). An 
example of how such read-across approaches might be applied 
for optimizing drug candidate selection to reduce toxicity liabil-
ities in early phases has recently been published (Steger-Hart-
mann and Pognan, 2018).

The other area of interest is the automated analysis of ani-
mal-human translation or concordance. Questions such as, “Tell 
me how an n-fold decrease in white blood cell count in species 
x at dose y corresponds with effects in humans?” with all sub-
sequent ramifications (e.g. “Can results be grouped according 
to preclinical species, pharmacology, mode of action,…?”) or 
“What is the most sensitive preclinical species for a specific organ 
toxicity?” can be approached by analyses of big data sets (Clark 
and Steger-Hartmann, 2018). 

Big data analyses however require:
−	accessibility of large preclinical and clinical data sets, while 

safeguarding aspects of intellectual property and personal data 
protection 

−	automated procedures for data curation
−	integration of controlled vocabularies and ontologies to enable 

cross-analyzing data
−	quality control of data by scientific experts
Such efforts can only be achieved via consortia approaches and 
should be run in parallel to data sharing guidelines and principles. 
Examples of such initiatives are DruSafe7 (Monticello, 2015), 
eTransafe8, or the initiative to make data “fair” (= “findable,  
accessible, interoperable, reusable”9).

6 https://www.epa.gov/chemical-research/toxicity-forecasting
7 https://iqconsortium.org/initiatives/leadership-groups/preclinical-safety/ 
8 https://www.etransafe.eu
9 https://www.go-fair.org/fair-principles/

https://iqconsortium.org/initiatives/leadership-groups/preclinical-safety/
http://www.etransafe.eu/
https://www.go-fair.org/fair-principles/
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CNS (Neurotoxicity)
There is a need for more sensitive and specific biomarkers that 
can help diagnose and predict neurotoxicity that is relevant 
across animal models and can be translated to the clinic (Schmidt 
et al., 2017). Some traditional functional biomarkers with estab-
lished non-clinical to clinical translational value, e.g., electroen-
cephalogram, electroretinogram, and brainstem auditory evoked 
potential, can be used. Fluid-based biomarkers, such as miRNAs,  
F2-isoprostanes, translocator protein, glial fibrillary acidic pro-
tein, ubiquitin C-terminal hydrolase L1, myelin basic protein, 
microtubule-associated protein-2, and total tau, hold great po-
tential due to the relative ease of sampling. However, some of 
these biomarkers (such as those in the cerebrospinal fluid) re-
quire invasive sampling or are specific to one disease such as  
Alzheimer’s or Parkinson’s disease, while others require further 
validation. In addition, neuroimaging methodologies may also 
provide potential biomarkers and, coupled with functional, ge-
netic- and protein-based biomarker assessments, offer an excit-
ing way forward to predict, detect, and monitor drug-induced 
neurotoxicity.

3.2.3  Future perspectives
Continued efforts towards the discovery and characterization of 
novel, sensitive and relevant biomarkers to effectively bridge in  
vitro to preclinical to clinical testing would strengthen our ability 
to predict, detect, and monitor drug-induced organ injuries (Park et 
al., 2000). The principal challenges ahead include the identification 
and qualification of these biomarkers for use not only as “response 
biomarkers” but as predictive of ADR outcomes and prognosis.

3.3  Novel cell models
Generating physiologically relevant models is a promising ap-
proach to improving our ability to detect and predict drug in-
duced toxicity, as well as to unravel specific mechanisms of tox-
icity. Therefore, there is an increasing desire to move away from 
the use of cell lines that form part of screening cascades within 
the drug discovery process and towards primary cells with their 
known limitations (e.g., limited source, variability, etc.) (Eskes 
et al., 2017; Pamies et al., 2017, 2018; Coecke et al., 2007).

A robust, reproducible, and relatively “unlimited” source of 
cells with defined phenotypes and genotypes would greatly ben-
efit the field of toxicity testing and assist in standardizing ear-
ly investigational toxicological research (Pamies and Hartung, 
2017). Differentiation of various types of human stem cells into 
the desired somatic cells might be a solution.

Moreover, introducing further complexity by culturing cells in 
3D, microphysiological and organoid model systems is an ap-
proach that is gaining ground within the investigative toxicol-
ogy community (Alépée et al., 2014). The idea is that such 3D 
and organoid models display more physiologically relevant at-
tributes, including cell polarization, cell-cell or cell-microen-
vironment interactions (Anton et al., 2015; Duval et al., 2017; 
Retting et al., 2018) that are important drivers of tissue differen-
tiation and function. Microfluidic and tissue printing techniques 
have been used to increase complexity of tissue models by add-

ADRs necessitates a range of biomarkers to detect, predict, and 
monitor ADRs in non-clinical and clinical testing. Biomarkers of  
hemodynamic effects include monitoring of blood pressure, 
heart rate, and ejection fraction using semi-invasive approaches.  
Cardiac electrophysiological effects such as QTc prolongation or 
shortening, QRS widening, PR prolongation, arrhythmias such as 
torsade de pointes and ventricular fibrillation are detectable via 
an electrocardiogram. For some of these endpoints, predictive 
in vitro screens are well established, there is a good relationship  
between free plasma concentration associated with significant  
QT prolongation and torsade de pointes in the clinic and in  
vitro Ikr IC50 values (Webster et al., 2002). More recently, safe-
ty testing in stem cell derived cardiomyocytes has been suggest-
ed as part of a new integrated risk assessment of pro-arrhyth-
mic liability (Sager et al., 2014). Degenerative or inflammatory 
lesions can be monitored via body fluid sampling and measure-
ment of N-terminal pro-brain natriuretic peptide (NT-proBNP),  
miRNAs, creatine kinase (CK), aspartate aminotransferase 
(AST), troponin, and pro-atrial natriuretic peptide (pro-ANP) / 
brain natriuretic peptide (BNP) in both non-clinical species and 
humans. Although, numerous biomarkers of drug-induced car-
diotoxicity have been proposed and are being used, some lack 
sensitivity and/or specificity, therefore the quest for mecha-
nism-based cardiotoxicity biomarkers is continuing.

Liver (hepatotoxicity)
DILI represents one of the most significant ADRs. Attrition of 
promising drug candidates due to DILI occurs in preclinical and 
clinical development (Clarke et al., 2016; Pognan, 2018). DILI 
is classified as either intrinsic, with clear dose-dependent hepa-
tocellular injury (Corsini et al., 2012), or idiosyncratic with low 
incidence rates in humans, which cannot be predicted with cur-
rent in vitro and in vivo tests. The phenotypic assessment of DI-
LI in patients relies on measurement of alanine aminotransferase 
(ALT), AST, alkaline phosphatase (ALP), and bilirubin (BIL). 
Despite wide acceptance, ALT, AST, and ALP are not specific 
measures of liver injury and detection of BIL occurs after exten-
sive liver injury has occurred (Church et al., 2018). In non-clin-
ical testing, detection of DILI relies substantially on histology 
(Weaver et al., 2017).

The use of ALP, ALT, and BIL as biomarkers is insufficient for 
the detection of human DILI and predicting outcome. Efforts to 
improve upon these liver safety biomarkers have yielded promis-
ing, novel biomarkers with additional mechanistic information: 
High mobility group box 1 (HMGB1) for detection of necrosis 
(Scaffidi et al., 2002) and its acetylated form in immune DILI (Lu 
et al., 2012). The value of these and other novel biomarkers, such 
as keratin-18 and miR122, are presented in detail elsewhere (An-
toine et al., 2013; Clarke et al., 2016; Ward et al., 2014). These 
novel biomarkers are best defined as “response biomarkers” and 
further work is encouraged to extend knowledge towards their 
translational and predictive value as qualified biomarkers of DI-
LI (Matheis et al., 2011). The prospect of translationally relevant 
safety biomarkers for use in the prognosis of DILI outcomes in 
patients is encouraging (Ozer et al., 2008). 
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2017), where the most advanced example is probably the CIPA 
(comprehensive in vitro pro-arrhythmic assay) initiative of the US 
FDA  (Wallis et al., 2018).

Fully functional organ-specific cells derived from iPSCs will 
become a valuable tool for drug development or evaluation of 
the contribution of genetic variation to variable responses. More-
over, the technology provides a unique opportunity to distinguish 
between gender, ethnic background, and potentially even disease 
background. The field is progressing rapidly, with varying levels 
of limitations still remaining. However, even though the intro-
duction of induced pluripotent or embryonic stem cells for tox-
icological and pharmacological studies seems inevitable, efforts 
towards standardization, validation, and regulation are still nec-
essary in order to make them a widely accepted option for toxico-
logical and pharmacological studies.

3.3.2  Organoids
Organoids are a recent paradigm in tissue culture, with culture 
conditions assuring preservation of the (adult) stem cell niche, 
while proliferation and differentiation to the essential cellular 
subtypes of a specific organ still occur. For example, intestinal or-
ganoids accurately predict therapy response in cystic fibrosis and 
were used to establish living biobanks of tumor tissue that was ge-
netically stable over time (Artegiani and Clevers, 2018). Where-
as these intestinal organoids were expanded from primary human 
cells or human stem cells, pluripotent stem cells have also been 
used to generate organoids with impressively realistic in vivo-like 
microanatomy for the brain (Lancaster and Knoblich, 2014)  
and kidney (Takasato et al., 2015; Freedman et al., 2015). As of 
today, many organoid systems have been developed, including 
liver (Huch et al., 2013; Takebe et al., 2013), intestine (Spence 
et al., 2011), thyroid (Antonica et al., 2012), pancreas (Greggio 
et al., 2013), lung (Lee et al., 2014), and retina function (Nakano 
et al., 2012). 

Whereas most of these systems are currently being used main-
ly in the context of basic developmental and stem cell research or 
disease modeling (Artegiani and Clevers, 2018), it is evident that 
these technologies are poised to play a role in the field of toxicol-
ogy. What is required is a full and thorough evaluation of physio-
logical and pharmacological characteristics of these organotypic 
models alongside human tissues to establish whether such mod-
els are “fit-for-purpose”, i.e., improve the prediction of target or-
gan toxicities (Carragher et al., 2018). The utility of these in vitro 
models can be enhanced by understanding the AOPs/PoT covered 
by the models of interest (Hartung and McBride, 2011; Kleen-
sang, 2014; Hartung, 2017b).

There are obvious hurdles to overcome (Lancaster and 
Knoblich, 2014; Carragher et al., 2018): 
−	artificial organoids currently mimic some, but not all, of the  

physiological functions of the respective human organs  
(Materne et al., 2013),

−	they lack physiological vasculature and, consequently, whole 
blood perfusion, which is essential to nutrient supply, waste 
transport, and several other physiological processes, including 
creating a dynamic microenvironment,

ing aspects such as co-culture of multiple cell types, flexibility 
for compartmentalization and higher-order tissue architecture, 
flow, gradient formation, and mechanical strain. This increase in 
complexity ultimately leads to improved functionality and has 
been demonstrated for various types of approaches in hepatocyte 
models including 3D spheroids (Messner et al., 2013; Bell et al., 
2016; Proctor et al., 2017), 3D printed systems (Retting et al., 
2018), organoids (Huch et al., 2015), and MPS systems (Huh et 
al., 2010; Vernetti et al., 2016). Each of these systems has added 
value for biological relevance, although their routine implemen-
tation in toxicological testing remains to be established. 

3.3.1  Stem cell models
Cell lines and primary cells have long been the main source of cells 
in cell-based experiments. Cell lines provide a relatively stable 
and continuous source of biological material, but are highly vari-
able with regard to the level that they maintain the features associ-
ated with their tissue of origin. Cells that are freshly isolated from 
primary tissue are generally considered a gold standard for their 
physiological relevance. The time span over which these prop-
erties are maintained, however, is typically limited. Moreover, 
physiological properties may disappear under certain storage  
conditions, logistics around these primary cells are cumbersome, 
and the quality of isolated cells can be highly variable. 

Induced pluripotent stem cells (iPSCs) promise to be a renew-
able source of cells and could potentially provide large numbers 
of cells with well-characterized physiological properties and with 
genotypes that correspond to specific individuals. Today, vari-
ous cell types are used for iPSC production, e.g., germ lines, liv-
er cells, skin cells, and lymphocytes (Takahashi and Yamanaka, 
2006; Yu et al., 2007; Gadue and Cotsarelis, 2008; Okita et al., 
2007; Loh et al., 2009; Aoi et al., 2008). Various protocols that 
guide iPSC differentiation towards specific cell lineages have 
been published. Cell types including endothelial cells and smooth 
muscle cells, neuronal cells, cardiomyocytes, and hepatocyte-like 
cells can be differentiated with specific supplements and growth 
factors (Patsch et al., 2015; Hu et al., 2011; Mauritz et al., 2008). 
Phenotypes of various diseases, such as familial hypercholester-
olemia, Wilson’s disease and alpine-1-antitrypsin disease have 
been generated from iPSC derived hepatic cells, which could be 
used as cellular disease models (Cayo et al., 2012). Fundamental 
research on these cells could help our understanding of various 
disease types leading to the development of novel drugs.

Best established for toxicity testing are cardiomyocytes (Mil-
lard et al., 2018) and neurons (Wevers et al., 2016). The quality 
of hepatocyte differentiation is progressing. However, expression 
levels of xenobiotic metabolism genes in iPSCs are still not equal 
to those found in organs or freshly isolated primary cells. Other 
obstacles continue to impede progress towards using these cells 
for in vitro toxicology (variability in lines, incomplete program-
ming within cell populations, uncharacteristic response to proto-
type toxicants, etc.).

Despite these limitations, iPSC derived cells are now suggested 
for use in toxicological screening and may provide an understand-
ing of an individual patient’s ADRs (van Hassselt and Iyengar, 
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sue architectures from monolayer to 3D and artificial organoids. 
Because of their specialized microenvironment, they have recent-
ly been shown to be a tool that can enhance stem cell maturation 
(Sances et al., 2018; Ronaldson-Bouchard et al., 2018). While 
typically of limited throughput, higher throughput systems have 
been developed and applied for toxicity testing of 3D gut tubules 
and iPSC-derived neuronal models (Trietsch et al., 2017; Wev-
ers et al., 2016). Multiple organs can be combined on one chip 
(Wagner et al., 2013; Skardal et al., 2017) to investigate the mech-
anisms that drive organ toxicity at organ cross talk. Finally, the 
impact of biological feedback loops such as the insulin-glucose 
regulation of liver performance can be studied using the respec-
tive organ combinations (Bauer et al., 2017).

Organs-on-chips have also been developed to evaluate drug-in-
duced toxicity (Esch et al., 2015). Organ-specific examples are 
the heart-on-chip (Zhang et al., 2015) and the lung-on-chip mod-
el developed by Huh and coworkers (Huh et al., 2010). A 3D 
bio-printed, cell-based mammalian skeletal muscle strip was suc-
cessfully generated that is able to exert muscular force (Cvetkov-
ic et al., 2014). In addition, three-dimensional bio-printed human 
models of liver, kidney proximal tubule, and intestinal tissue have 
been described for use in modeling native physiology and com-
pound-induced toxicity (Nguyen et al., 2016; King et al., 2017; 
Madden et al., 2018). The progress in MPS hepatocyte culture 
systems (including non-parenchymal co-culture and bio-physical 
constraints such as oxygen tension) has led to additional improve-
ment of tissue and organ level function (Vernetti et al., 2016, 
2017; Lee-Montiel et al., 2017). 3D liver and neuronal spheroids 

−	they lack key cell types, such as immune cells (resident or cir-
culating), and neuronal innervation,

−	primary cell-derived artificial organoids face the shortage of 
human cell supply,

−	they lack in vivo relevant cellular architecture and cell-cell in-
teractions,

−	they lack mechanical forces,
−	stem cell-derived artificial organoids replicate only the early 

stages of organ development, remaining “fetal-like” owing to 
lack of essential cues for final differentiation.

Therefore, organoid systems still represent a trade-off between 
throughput and physiological relevance, and in many cases, the 
effects of a drug depend on factors such as metabolic compe-
tence or tissue specific distribution and interaction that cannot be 
achieved within single organoids.

3.3.3  Microphysiological systems (MPS)
Within the last 5 to 10 years, advances in microfluidic and mi-
cro-engineered technology has enabled the development of or-
gan-on-chip models or MPS (Marx et al., 2016; Smirnova et al., 
2018; Esch et al., 2015). By applying engineering principles, 
models can now be created that accurately represent the cellu-
lar microenvironment of an organ (Bhatia and Ingber, 2014). In 
doing so, cells theoretically retain their physiological phenotype 
and respond in comparable ways to their in vivo counterparts. Ap-
plication of these models within the investigative toxicology and 
safety assessment process has been reviewed recently (Ewart et 
al., 2018). MPS are cell source agnostic and support various tis-

Fig. 6: The current cell model landscape
Traditional systems for evaluation of toxicity include cell line- and primary cell-based models. Developing technologies such as 3D organoids, 
bio-printed tissues, and single- and multi-organ MPS will result in models with greater biological relevance, for which full validation and routine 
implementation remain to be established. Human body-on-chips are still at an early research stage of development.
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using such MPS-based personalized patient equivalents for stud-
ies to mimick Phase 1 and Phase 2 clinical trials.

Eventual success along this path may enable us to perform in-
dividualized studies mimicking clinical trials of a particular do-
nor using statistically relevant numbers of almost identical repli-
cates of donor or patient “bodies” on chips. This is in line with the 
current use of inbred, genetically identical laboratory animals in 
preclinical evaluation, with the difference that such miniaturized 
“bodies”-on-a-chip are of personalized human origin. Further-
more, it might allow head-to-head analysis of the outcome of the 
real donor or patient study with its body-on-a-chip counterparts. 
Finally, the use of “body” equivalents from donors and patients of 
different gender, ethnic groups, and genetic backgrounds will al-
low an evaluation of the impact of such parameters on the safety 
and efficacy of an NCE/NBE in the preclinical setting, which il-
lustrates the high potential of such tools for the drug development 
cycle (Marx et al., 2016).

3.4   Imaging technologies
The past decades have seen enormous development and integra-
tion of high-content imaging in investigative toxicology depart-
ments (van Vliet et al., 2014; Uteng et al., 2014). The develop-
ment of a variety of small molecule fluorescent probes allows the 
detection of numerous biochemical perturbations and live/dead 
endpoint measurements. For example, probes have been used to 
follow the accumulation of fatty acids in cells leading to steato-
sis (Germano et al., 2015), one of the critical endpoints of DILI. 
Fluorescent bile acids have been applied to visualize the accumu-

have successfully been co-cultured on MPS for long term toxicity 
testing (Materne et al., 2015). Human intestinal organoids, liver 
spheroids, human skin biopsies, and monolayer proximal tubular 
cell barriers have been combined on a four-organ MPS platform 
for evaluation of systemic long term toxicity (Maschmeyer et al., 
2015). Hepatic and cardiac cell types have been differentiated 
from iPSCs using MPS (Giobbe et al., 2015). It has been hypothe-
sized that exposure of in vitro assembled premature iPSC-derived 
organoids to the physiological cues of an MPS, such as perfusion, 
shear stress, electrical stimulation, and organoid cross talk in in-
terconnected arrangements, might constitute the missing step for 
their final and complete in vitro differentiation. First progress has 
been made to vascularize microfluidic systems (Schimek et al., 
2013; Van Duinen et al., 2017).

Figure 6 schematically illustrates the current cell model land-
scape and future perspectives discussed in this section.

3.3.4  Envisioned progress of in vitro models
The described progress in human iPSC generation at a robust 
large scale, their differentiation into a broad variety of prema-
ture organ-specific somatic cell based artificial organoids, and the 
steady increase in the number of organ equivalents on MPS plat-
forms has created an historically unique opportunity for the intro-
duction of humanized models in safety assessment (Miller and 
Shuler, 2016; Xiao et al., 2017; Edington et al., 2018). The com-
bination of these three approaches may well lead to the establish-
ment of personalized minute equivalents of a healthy donor- or a 
patient-on-a-chip. Figure 7 summarizes the long-term vision of 

Fig. 7: Sketching a roadmap towards “clinical trials” on a chip
Assembly of minute personalized “body” equivalents on a chip derived from cells of individual healthy donors or patients under ethically 
acceptable conditions is still a hypothetical multistep procedure exploring different aforementioned technologies.
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transcriptome analysis, and sequencing becoming much cheaper, 
new applications of toxicogenomics are emerging and may require 
new attention and funding. In addition, improved bioinformatics 
tools that integrate large omics datasets into co-regulated gene net-
works, allow quantitative analysis of the association between such 
gene networks and adverse outcomes (Stiehl et al., 2017; Suther-
land et al., 2018). There is a rapid development of sequencing strat-
egies, where chromatin-immuno-precipitation (ChIP) sequencing 
will contribute to a further refinement of the transcription factors 
that drive these transcriptional networks in different target tissues. 
These complementary sequencing approaches should ultimately 
define the quantitative relationships between both safe and adverse 
ranges of pathway activation that will determine the safety mar-
gins. The IMI TransQST project will contribute to these quantita-
tive systems toxicology evaluations12.

In concert with transcriptome analysis, sensitive proteomics 
platforms have also evolved that have allowed the analysis of cell 
and tissue proteomes under healthy and disease settings and after 
drug exposure (Cox and Mann, 2011). In particular, phosphopro-
teomics has allowed the assessment of early signals of cell signal-
ing activation in relation to drug exposure (Pines et al., 2011). To 
date (phospho)-proteomics is not yet a common tool in drug safe-
ty assessment and investigative toxicology. However, integration 
of proteomics with transcriptomics has helped to gain a more pre-
cise understanding of drug action (Puigvert et al., 2013). Recent 
integration of biology information with proteomics has allowed 
the identification of drug targets of a large panel of kinase inhibi-
tors (Klaeger et al., 2017). The integration of activity-based target 
profiling in investigative toxicology with the help of proteomics 
will further clarify the spectrum of off-targets of candidate drugs 
and contribute to an improved drug safety prediction.

Metabolomics is defined as analysis (identification and quan-
tification) of active metabolites, including carbohydrates, lipids, 
and more complex bioactive molecules, such as hormones. Its 
role in toxicology is increasing (Bouhifd et al., 2013; Ramirez et 
al., 2013), fueled also by increasing quality assurance demands 
(Bouhifd et al., 2015). The metabolome can be determined in hu-
man and animal matrices (e.g., blood, plasma, urine, or sweat) 
with the focus on the entire body but also on organ-specific tox-
icity. Moreover, organ specific metabolomes for in vitro systems 
have been reported (Ramirez et al., 2013).

In parallel, targeted approaches for metabolomics have been 
developed, with increased sample throughput, enhanced ana-
lytical robustness, and facilitated data analyses. Targeted me-
tabolomics carries the promise of a high translational potential 
for clinical studies. An example for targeted metabolomics is 
the application of multiplexed LC (liquid chromatography) MS/
MS methods for bile acid analysis (both unconjugated and con-
jugated) for the assessment of the cholestatic or steatotic poten-
tial of drug candidates (Schadt et al., 2016). While the metabo-
lome analysis of plasma and urine requires animal testing, it is 
recommended to consider the 3Rs strategy (focus on reduction) 
and therefore include omics technology in animal studies. Hence 

lation of bile acids as a consequence of bile acid transport inhibi-
tion and may contribute to identifying compounds with a liabili-
ty for drug-induced cholestasis (Germano et al., 2015). Likewise, 
fluorescent probes have been used for assessment of phospholip-
idosis (Morelli et al., 2006), oxidative stress, and mitochondri-
al membrane potential (Billis et al., 2014). For the pharmaceuti-
cal industry, this high-content imaging approach has become an 
essential tool within the field of predictive toxicology with the 
aim to design and prioritize drug candidates with a superior safe-
ty profile (Persson and Hornberg, 2016). While the technologies 
have primarily used 2D cell systems (either cell lines or prima-
ry cells; Pampaloni et al., 2007), the challenge for the future is to 
capture this in advanced 3D cell models and allow sufficient reso-
lution for single-cell-based quantification of probe activity. Novel 
high-content imaging machines still have the limitation that they 
cannot capture the fluorescence of cells in the center of multicel-
lular 3D spheroids. Challenges for the future are to bring light-
sheet microscopy to the level of high-content screening and in-
tegrate this in screening labs (Joshi and Lee, 2015) to allow the 
detailed analysis of biochemical changes in complex MPS. Novel 
approaches involve phenotypic screening of cell morphologies, 
allowing the quantification of hundreds of (related) parameters 
in parallel (Joshi and Lee, 2015; Leary et al., 2018). Further chal-
lenges include the integration of other mechanistic biomarkers 
that would represent key events of AOPs into high-content imag-
ing strategies.

Further advances in molecular imaging capability and deploy-
ment are also continuing through the development of label-free 
bio-imaging of tissues and cells (and potentially single cells and 
organelles) using mass spectrometry (MS) based approaches 
(Passarelli and Ewing, 2013). 

3.5  Omics profiling
Omics technologies, which have gained prominence and relevance 
over the last few years, can be divided into four parts that focus on 
different steps in the generation of bioactive molecules: genomics, 
transcriptomics, proteomics, and metabolomics. Systematic stud-
ies on transcriptome analysis within large consortia and industry 
settings have helped establish extensive datasets of drug-induced 
transcriptome profiles in different target organs as well as in vitro  
in cells. This is exemplified by the TG-GATEs10 and DrugMa-
trix11 datasets that are available in the public domain (Igarashi et 
al., 2015; Ganter et al., 2005). The initial hope for toxicogenomics 
as the solution for the ultimate prediction of target organ toxicity 
has not been completely fulfilled as the technology and the diver-
sity of transcriptional profiles has turned out to be more complex 
than anticipated (Pognan, 2007). While toxicogenomics-based 
predicted gene profiles have been established for several adverse 
outcomes, including genotoxicity testing (Ellinger-Ziegelbauer et 
al., 2009), a widespread generic application in drug safety testing 
has not been implemented. Generally, toxicogenomics is applied 
to support the mechanistic understanding of identified target organ 
toxicities. With RNA sequencing being the current major tool in 

10 http://toxico.nibio.go.jp/english/index.html
11 https://ntp.niehs.nih.gov/drugmatrix/index.html
12 http://transqst.org/

http://toxico.nibio.go.jp/english/index.html
https://ntp.niehs.nih.gov/drugmatrix/index.html
http://transqst.org/
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words, is used in each respective context. Even when discussed 
by toxicologists within the pharmaceutical industry, “investiga-
tive toxicology” is used with different meanings. Hence the chal-
lenge that emerged at the beginning of the think tank was to find 
a common understanding of the keywords related to investigative 
toxicology. The need to harmonize descriptions of the keywords 
to enable easier discussion among all stakeholders became obvi-
ous. This is particularly important in the effort to implement in-
vestigative toxicology also into the regulatory process when dis-
cussing safety aspects with regulatory authorities.

As aforementioned and much discussed during the workshop, 
a holistic definition of investigative toxicology in drug devel-
opment could be “the complementary discipline to ‘regulatory  
toxicology’ that includes all aspects of scientific investigations  
into drug candidates starting with screening and selection of tol-
erable compounds (prospective approach) and leading to the  
mechanistic elucidation of adverse effects observed in preclini-
cal or clinical phases (retrospective approach)”. Whether (or 
how) this definition can be translated to academia and other in-
dustry sectors will be seen in the near future. Such translation is 
of high importance since both approaches (prospective and ret-
rospective) are currently in a transition phase, triggered by expo-
nentially evolving testing options, e.g., complex human in vitro 
models, gene targeting, or enhanced screening possibilities. For 
all stakeholders, a common, more precise understanding of needs 
and objectives of these approaches is necessary to successfully 
align development efforts in academia and industry. Cooperative 
advancement is necessary to deliver comprehensive tools that can 
support all stakeholders according to their objectives. 

Furthermore, the terminologies used in the context of investiga-
tive toxicology need to be harmonized since different (sub)disci-
plines may have a different understanding of key terms, including 
biomarkers, safety assessment, mode of action, off-target/on-tar-
get toxicity, hampering the focused integration of new technolo-
gies. But, also in the field of regulatory toxicology, ontologies of 
toxicological observations are not fully harmonized (Hardy et al., 
2012a,b). How this can be improved was demonstrated in the on-
tology discussion within the IMI eTOX5 project. Histopathology 
ontology was developed with the intent to standardize histopathol-
ogy findings, and it has now been made openly available (Ravagli 
et al., 2017). This is a key enabler, making searches on one of the 
most important data types in toxicology studies possible and pro-
viding a database for new in silico and in vitro models13. 

Further aspects that were found to be critical and challenging 
for an effective development of new tools (e.g., models, methods) 
include the definition of performance standards that lead to suc-
cessful proof of concept studies. These need to be clearly defined 
to demonstrate the value of an evolving complex cell model or en-
tire testing method for the respective objective. In turn, proof of 
concept studies may form the basis of the critical aspect of valida-
tion of a test method. The best case scenario is a formal validation 
that would open the door for regulatory use needs to be clearly 
defined to not only deliver reproducible results but to ensure the 

in vitro metabolomics is an important step towards avoiding an-
imal studies and therefore supporting the 3Rs strategy (focusing 
on replacement).

3.6  Intracellular sensors
Perturbations of normal cell physiology leading to perturbations 
of biology on an organ or body level culminate in adverse out-
come. There is a limited set of cellular perturbations that will drive 
this adversity. The establishment of AOPs and AOP networks, 
with the help of omics and cell biology, has already defined some 
critical pathways related to toxicity. This involves both biochem-
ical perturbations as well as cellular disturbances that drive cell 
signaling and onset of adaptive rescue programs, or alternative-
ly the onset of pathways that drive cellular demise. Cell biologists 
and toxicologists have taken advantage of this information and 
integrated biomarker genes tagged with fluorescent proteins that 
represent various adaptive cellular stress response pathways. Bac-
terial artificial chromosome genome editing technologies have al-
lowed the green fluorescent protein (GFP) tagged expression of 
sensors, transcription factors, and downstream target genes of dif-
ferent cellular adaptive stress response pathways, including the 
Nrf2-mediated oxidative stress pathway, the p53-mediated DNA 
damage response pathway, NFκB-mediated inflammatory sig-
naling, and the ATF4 and XBP1-based unfolded protein response 
(Wink et al., 2014). These fluorescent reporter cell systems can 
be integrated with high-content imaging and allow the dynamic 
analysis of stress response pathway activation (Wink et al., 2017). 
Wink and collaborators recently demonstrated the application of a 
panel of these reporters in the prediction of DILI using a panel of 
> 120 DILI compounds (Wink et al., 2018). A full coverage of cel-
lular components that drive the adverse responses of drugs would 
contribute to the toolbox to evaluate drug safety. 

Developments in cell and molecular biology have allowed the 
refinement of fluorescent protein probes based on fluorescent res-
onance energy transfer (FRET) (Ni et al., 2017). This allows the 
dynamic imaging of cell signaling activity. The integration of 
such tools in high-throughput microscopy setups would allow a 
refined understanding of the balance between cell adaptation and 
adversity and has been used in the safety assessment of drugs 
(Shuhendler et al., 2014).

4  Challenges

4.1  Definitions, terminology and the need  
for ontologies
Toxicology as a subject is important in many industry sectors next 
to the pharmaceutical area, such as the chemical industry, cosmet-
ics, consumer products, and food industry. Moreover, it plays an 
important role in environmental health. Since every sector dis-
cusses specific needs and issues, the terminology around toxicol-
ogy varies widely. Therefore, it is not surprising how differently 
the term “investigative toxicology”, together with its related key-

13 http://etransafe.eu/histopathology-ontology/
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included in a clinical trial of the respective patient. Whether these 
cell models still need to serve as organ toxicity models is debat-
able, since the concept of AOPs is not restricted to individual or-
gans and in the best case an appropriate cell model may depict 
the fundamental toxicity mechanism in the body across different 
organs. However, the most important challenge for the AOP con-
cept is the quantitative aspect (Hartung, 2017b). What is the cut-
off value at which read-out or key event indicates a safety risk? 
In other words, for example, the pharmaceutical industry asks: 
“How can one define a safe human dose from an AOP investi-
gation?” This question is still unanswered. Considering the im-
portance of this aspect, investigative toxicology should strive to 
make this a powerful tool to answer this question.

4.3  Communication
The think tank discussed the need for “disruptive technologies” 
intensively. The meaning of “disruptive” in this context is a tech-
nology that has the potential to change the current toxicity strat-
egies, which mainly rely on animal studies for risk assessment, 
entirely. “Big data”, which has become a buzz word across very 
different industry sectors, sparks hopes of contributing to disrup-
tive technologies, such as in silico modelling for precise predic-
tion of specific organ toxicities (Mulliner et al., 2016b). How-
ever, valuable expertise of handling and connecting big data 
with relevant information lies outside the life science commu-
nity (Haslehurst and Johnson, 2018). For example, technology 
and know-how of social network and internet companies may 
be useful to develop new strategies to translate toxicity data into 
meaningful context. Therefore, a suggestion is to bring together 
different industry sectors for new discussions about needs and 
opportunities that the internet and big data offer to toxicology. 
Examples for such new fields of collaboration are smart phone 
apps, which have found their use in the storage, tracking, and 
sharing of diagnostic data of diabetes patients, resulting in an 
improved self-care (Osborn et al., 2017). IT technology compa-
nies like Apple, Amazon, and Google have already made initial 
steps towards the life science and the healthcare sectors, e.g., by 
successfully applying their automated deep learning algorithms 
to diagnostic image analysis for the detection of retinopathy  
(Gulshan et al., 2016). 

5  Qualification and validation

Over the last few years, many novel cell systems and technolo-
gies have emerged on to the market, most with little validation or 
supportive data. As a discipline, investigative toxicology needs 
to become proactive in finding the right balance between proj-
ect-oriented issue resolution and ready to use/fit-for-purpose 
technology evaluation. Problem orientation also requires moving 
away from the formal requirement of validation, although import-
ant, as this often slows down the implementation of 3Rs methods, 
towards a “fit-for-purpose”14 evaluation of new approaches. The 
ICH “Note for guidance on Non-clinical Safety Studies for the 

results are relevant and informative for hazard identification and 
risk assessment (Amur et al., 2015).

Many keywords that have emerged in the field in recent years 
are barely defined across stakeholders/sectors. For example, 
translational biomarkers and AOPs are frequently used in inno-
vative publications (Antoine et al., 2013). However, at least in the 
case of safety biomarkers, the underlying understanding is still 
diverse, ranging from very specific (e.g., FDA approved kidney 
toxicity marker (Brott et al., 2014)) to broad use (e.g., gene ex-
pression pattern to define toxicity pathway (Ferrario et al., 2014)). 
Also, the OECD-introduced AOP concept describes the dissec-
tion of molecular toxicity pathways and defines key molecular 
events (OECD, 2017). But to make it a useful concept for risk as-
sessment, hence allowing differentiation between adaptation and 
adversity across the different sectors, a common understanding is 
needed that finally leads to quantitative read-outs or thresholds.

Taken together, the think tank discussion, although initiated 
by one industry sector only, clearly showed the need to harmo-
nize the use of key terms in the field of investigative toxicology. A 
common understanding of the relevant vocabulary was stated to 
be the basis to drive this discipline.

4.2  Study design
Before starting an investigative study or incorporating the in-
vestigative part into a regulatory GLP toxicology study, the ex-
pectation and the conclusions that might be drawn from the  
results should be anticipated, clearly described in a study plan, and  
scientifically justified. This places more weight on the scientif-
ic justification of the experimental design and may obviate the 
need for a full validation or description of the methods in regula-
tory guidelines. In case a model is more advanced, performance 
of multi-center studies to prove the robustness of the method is a 
key requirement. Thus, the community of investigative toxicolo-
gists together with the developers of the new models shall enable 
the pre-validation of these models.

For stand-alone in vitro studies, a fit-for-purpose validation (see 
Section 5) including scientifically justified negative and positive 
controls is key, whereas for experimental biomarkers, histopatho-
logical correlates may be sufficient. In the field of investigative tox-
icology, very often an iterative investigation cycle with multiple 
steps leads to the generation of a hypothesis and then to the gen-
eration of mechanistic data that support the mechanism of toxicity.

Another important aspect regarding the design of a preclini-
cal safety study is the question whether to use disease models or 
not. Although disease models are not often used in animal toxic-
ity studies, the underlying disease may be important to identify 
the most critical key events, as well as thresholds, leading to an 
ADR (Morgan et al., 2013). The technologies for human in vitro 
disease models as described in Section 2.1.2 as well as animal dis-
ease models humanized by gene editing technologies (see Section 
2.2.3) will provide new translational approaches for the identifi-
cation of the mentioned critical key events. This idea, combined 
with the aspect of human diversity, may eventually lead to the de-
velopment of individual patient-derived cell models that may be 

14 “Fit-for-purpose” is defined as a level of validation which proves that the assay or biomarker is sufficient for use in a particular 
defined context. It does not require a regulatory submission (for reference see footnote 13).
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tive method or tool has data to support its specific context of use 
in drug development (Ohno, 2002). The qualification concept al-
so applies to the submission of biomarkers; however, in this case 
it is independent of the specific test or assay performing the mea-
surement15.

Overall, while the terminology (i.e., qualification versus vali-
dation) differs and the processes evolve to keep pace with scien-
tific progress and to benefit from it, the underlying purpose and 
principles of qualification and validation remain relatively con-
stant as laid down in the modular approach to validation and in the 
OECD Guidance Document (Hartung et al., 2004; OECD, 2005). 
As described by Hartung et al. (2013), the validation procedure 
should follow fit-for-purpose approaches. A procedure that strict-
ly follows the modular approach system, comparing in vitro data 
with animal data, still relies on the concept of one-to-one replace-
ment. New concepts need to be developed, taking into account 
combinations of assays (IATA) and human data. A combination of 
in silico and in vitro might be the key to solve this problem.

6  Recommendation: the way forward

Investigative toxicology is a recent discipline in drug safety as-
sessment that strives for a holistic view on properties of candidate 
molecules (NCEs/NBEs) and their predicted effect in humans by 
combining in silico, in vitro, in vivo, and clinical data and mak-
ing use of innovative technologies and novel approaches (Fig. 8). 
Thus, it should be seen as complementary to regulatory toxicol-
ogy, which is often confined by international guidelines. Investi-
gative toxicology can embrace novel technologies more readily. 
Thereby, it is able to evaluate these technologies and produces ev-
idence for their further use also in the regulatory context.

Conduct of Human Clinical trials for Pharmaceuticals”1 (ICH M3 
(R2) states that “(…), consideration should be given to use of new 
in vitro alternative methods for safety evaluation. These methods, 
if validated and accepted by all ICH regulatory authorities, can 
be used to replace current standard methods.” But what is “vali-
dated”? ICH makes almost no reference to validation, except for 
analytical methods (ICH Q2A, Q2B, M10). Validation is defined 
by OECD (2005) as “the process by which the reliability and rele-
vance of a particular approach, method, process or assessment is 
established for a defined purpose”.

The European Medicines Agency (EMA) (EMA, 2016) defines 
“reliability” as “a measure of the extent that a test method can 
be performed reproducibly over time when using the same pro-
tocol”. The reliability of current pivotal in vivo toxicology stud-
ies should be assured by compliance with GLP. Even though GLP 
principles are general and applicable in many areas, it has become 
evident that GLP, which was mainly tailored for in vivo methods 
available at the time of its development, needs to be adapted to 
the requirements of in vitro assays (OECD, 2004). More recent-
ly, the EU Joint Research Center (JRC), at the request of OECD, 
developed a guidance on Good In Vitro Method Practices - GIVI-
MP (OECD, 2018). The GIVIMP document describes the factors 
relevant to reliability and relevance of in vitro data generated for 
human safety assessment purposes and has been written with dif-
ferent users in mind, including GLP test facilities and research 
laboratories developing new in vitro methods.

“Relevance” is defined by EMA (2016) as “the extent to which 
the test correctly measures or predicts the biological effect of in-
terest”. So, how should relevance be established? According to 
EMA, “Relevance incorporates consideration of the accuracy 
(e.g. concordance with comparable validated test method with 
established performance standards) of a test method”. Howev-
er, this assumes that the existing “validated test method” is ad-
equately relevant, which is not always the case for some in vi-
vo animal test systems. A direct example of this is AOP-based in  
vitro skin sensitization testing, where concordance of the in vitro 
results with the standard in vivo mouse local lymph node assay 
(LLNA) is poor (Dumont et al., 2016) due to both limited rele-
vance and high variability of the reference data. In this case, con-
cordance of the in vitro data with human data is much better (con-
cordance of the in vivo LLNA with human data is relatively poor) 
(Natsch and Emter, 2015) as was already shown for the guinea pig 
assay preceding the LLNA (Luechtefeld et al., 2016; Adriaens et 
al., 2014; Hoffmann, 2015). In the meantime, several testing and 
assessment strategies have been published (Urbisch et al., 2015; 
Roberts and Patlewicz, 2018) that have contributed to the devel-
opment of a consolidated integrative approach to testing and as-
sessment (IATA) for skin sensitization by OECD (2014). 

For the pharmaceutical sector, EMA and FDA have put in place 
a qualification process that addresses innovative drug develop-
ment methods and tools developed for a specific intended use in 
a pharmaceuticals research and development context (non-clini-
cal or clinical studies) (EMA, 2014). These are voluntary, scien-
tific pathways leading to a regulatory conclusion that an innova-

15 https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/Biomarker 
QualificationProgram/default.htm (accessed 24.07.2018).

Fig. 8: General view on how investigative toxicology will 
contribute to the development of new drugs

https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/BiomarkerQualificationProgram/default.htm
https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/BiomarkerQualificationProgram/default.htm


Beilmann et al.

ALTEX 36(2), 2019       306

standing of adverse drug effects and permit translational, expo-
sure-based modeling of toxicological impact,

−	Education based on a new integrated teaching strategy. 
The participants of the workshop envisage an increasing impor-
tance of investigative toxicology in supporting the entire drug de-
velopment process. Cross-industry collaboration in the pre-com-
petitive part of this work is helping to accumulate experiences 
on novel approaches faster and more reliably. This process can 
impact on the complementation and replacement of traditional 
methods in regulatory toxicology. This also means that the pro-
motion of new technologies supports a lesser reliance on animal 
studies, moving the industry to more human-relevant assessment 
approaches.
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In a prospective manner, efforts in investigative toxicology fo-
cus on early screening tools allowing candidate selection as well 
as de-risking activities, where tailored work packages aim to un-
ravel mechanisms of adverse events observed during pre-clinical 
and clinical stages and assessment of potential ways forward. The 
key to success of these activities is close interaction with experts 
from academia and regulatory bodies. The objective is to elabo-
rate robust, reliable, and accepted investigative toxicology con-
cepts for decision making by virtue of multiple and diverse tools, 
technologies, and readouts.

In the rapidly evolving field of drug development, with new 
drug modalities arising, new chemical spaces being explored, 
complex pharmacological strategies being pursued, and diseas-
es and pathways involving the immune system becoming more 
prominent, it is instrumental that safety assessment is continuous-
ly innovated to be able to address new challenges arising from 
these trends. Together with high regulatory burden, cost and time 
pressures, and the need to reduce animal testing demands for nov-
el concepts, strategies, and tools, investigative toxicology plays 
a key role. Collaborative efforts in the pre-competitive space are 
considered necessary to explore and establish these innovative 
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