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ABSTRACT. The reduction of nitro compounds to the corresponding amines is one of the most 

utilized catalytic processes in the fine and bulk chemical industry. The latest development of catalysts 

with cheap metals like Fe, Co, Ni and Cu has led to their tremendous achievements over the last years 

prompting to their greater application as “standard” catalysts. In this review we will comprehensively 

discuss the use of homogeneous and heterogeneous catalysts based on non-noble 3d-metals for the 

reduction of nitro compounds using various reductants. The different systems will be revised 

considering both the catalytic performances and synthetic aspects highlighting also their advantages 

and disadvantages.  
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1. Introduction: setting the scene 

Amines, and specifically aniline and its derivatives, represent (and surely will hold in the future) a huge 

market portion in the organic chemical industry.1,2 Aniline was isolated for the first time as product of the 

dry distillation of indigo by the German chemist Otto Unverdorben almost 200 years ago (1826). Fifteen 

years later, the Russian chemist Nikolay N. Zinin prepared for the first time aniline by reduction of 

nitrobenzene using sodium sulfides as the stoichiometric reductants (this transformation is generally known 

as Zinin reaction).3 Few years later (1851), Piria reported a two-step procedure for the synthesis of anilines 

from nitroarenes: the nitro group is converted in the first step into an aminosulfonic acid which is then  

transformed into the final product by hydrolysis with mineral acids in the second step.4 Later on (1854), the 

French chemist Pierre J. A. Béchamp demonstrated the use of metallic iron in acidic media as reducing agent 

for the production of aniline from nitrobenzene.5 For a long time, this method was the main manufacturing 

process for a large number of aniline-based molecules at reasonable costs. The success of dyestuff 

production from aniline has been used by one of the largest chemical supplier in the world and adapted in its 

acronym, BASF (Badische Anilin- und Soda-Fabrik). Nowadays, industrial potential of the Béchamp 

reduction is decreasing since the iron oxides obtained as by-products and their market demand (mostly for 

pigments) does not require such amounts. Hence, this classic stoichiometric process is economically less 

attractive and does not fulfill the principles of green and sustainable chemistry. For these reasons, many 

efforts have been spent on the development of efficient methodologies for production of amines from the 

corresponding nitro compounds. In this respect, catalysis and related technologies represent the cornerstone 

for efficient production of such molecules. Hence, most of the primary anilines are currently produced via 

hydrogenation of the corresponding nitrobenzenes. During the last century, various catalytic systems 

(especially heterogeneous) have been developed by many chemical companies. They differ not only in the 

active metal, but also on the reaction conditions and the reactor configuration (gas or liquid phase reactions). 

Unfortunately, each of these catalytic systems is covered by industrial trade secrets that generally do not 

allow for a detailed description of them. Selected important processes for the title reaction are reported in 

Table 1.6,7 Most of these catalysts offer a good combination of activity and reusability; however, in some 

cases reactivation is required. The hydrogenation of nitrobenzene does not imply significant selectivity 

problems since the possible side processes do not easily occur under operative conditions. For instance, 

hydrogenation of the aromatic ring or hydrodenitration extensively occurs only when Ru- or Rh-based 
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catalysts under relatively harsh conditions are used. However, the situation is different for advanced 

functionalized nitro compounds containing carbon-carbon or carbon-heteroatoms multiple bonds, halogen 

atoms, carboxylic acid derivatives or heterocycles. Unfortunately, for such substrates standard catalytic 

systems relying on Ni-Raney® and especially noble metals such as Pd and Pt (Adams’ catalyst, PtO2) do not 

show sufficient selectivities.8-11 Examples of critical substrates are reported in  

Scheme 1. 

Table 1 Industrially applied processes for the reduction of nitrobenzene to aniline. 

Catalyst Company Reaction conditions  

Ni sulphides Bayer, Allied 300-475 °C  

Cu, Mn, Fe ICI 300-475 °C  

Pd/Al2O3 Bayer 250-350 °C; 7 bar  

Cu/SiO2 (Cr, Ba and Zn as promoters) BASF, Cynamide, Lonza 270-290 °C; 5 bar  

Pd-Pt/C (Fe as modifier) DuPont (Dow Chemicals) 90-200 °C; 6 bar  

 

Scheme 1 Selected examples of industrially important nitro compounds whose hydrogenation might give selectivity problems. 

 

In order to avoid these issues, modifications of existing catalysts or their tailor made versions were reported. 

For instance, bimetallic catalysts (e.g. Pt-Fe/TiO2, Rh-Fe/C, Pb-Pd/CaCO3 or Pt colloids doped with Ni, Ce 

or Fe) are able to selectively reduce nitro compounds containing C=C, C≡C, C=O, BnO, C=N or C≡N 

functionalities.12,13 In general, halogen-substituted nitroarenes represent challenging substrates since 

hydrodehalogenation of C-I and C-Br occurs particularly easy as undesired pathway during the nitro 

reduction. However, they are very important and versatile compounds since the presence of the C-X moiety 

allows for further functionalization through cross-coupling and related chemistry. Many industrial companies 

were involved in the development of selective processes dealing with the reduction of halide-substituted 
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nitro compounds highlighting the significance of this transformation. Both the nature of the halogen and its 

position on the aromatic ring have a substantial influence on the reaction outcome. Iodo-substituted 

nitroarenes are considerably much prone to be hydrodehalogenated compared to Br, Cl or the less reactive F. 

Meta-substituted nitrocompounds are more resilient to this side-reaction than the para- or ortho- isomers 

(Scheme 2). For a comprehensive report concerning the selective reduction of halogenated nitro compounds, 

the reader is referred to the specific review of M. Pietrowski.14 

Scheme 2 Reactivity trends towards hydrodehalogenation pathway. 

 

Reaction conditions, in particular temperature, hydrogen pressure and solvent, have a remarkable influence 

on the selectivity. However, most of the efforts focused on the development of selective catalysts that are 

intrinsically able to suppress the undesired side reaction path. For instance, Pt/C or Pd/C catalysts modified 

with metallic additives (Zn, Pb, Bi, Sn, Ge or Ag) or with basic/acidic additives (e.g. morpholine, 

phosphorous acid) often display high selectivities in the case of simple halogenated (mainly for Cl, Br) 

nitroarenes. Iodo-substituted nitro compounds represent one of the most demanding (but at the same time 

stimulating) substrates since the hydrogenolysis of the C-I bond is relatively easy. Nevertheless, selective 

catalysts in this case are known such as Pt/CaCO3 modified with Pb or Pt/C modified with phosphorous 

acids.12,14,15  

After decades of research in the area of selective catalytic nitro reductions, a breakthrough was reported by 

A. Corma and co-workers in 2006.16-18 They described Au NPs supported on TiO2 as an efficient catalyst for 

the reduction of nitroarenes showing excellent selectivities rarely reported for other noble-metal catalysts. 

Later on, the authors explained the success of their catalyst by the preferential adsorption of the nitro group 

rather than other moieties at the interface between the support and the Au NPs.18 Along with Au, also Ag-

based catalysts have been found to be active in this reaction by the group of J. Qui in 2005.19  
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All the catalytic systems described above suffer from the high metal price and in some cases are 

environmentally less acceptable. Here, the toxicity of some of the additives applied in Pt- and Pd-based (such 

as Pb and Zn salts, Ph2S or H3PO2) systems has to be mentioned. In the last years, the use of transition 3d-

metals in catalysis has become one of the frontiers in synthetic chemistry. Owing to their abundance on the 

Earth´s upper crust, their price (and as a consequence its fluctuation over the time) is considerably lower than 

that of noble metals. Many of them have acceptable environmental impact and are involved in biochemical 

processes. For this reason they are sometimes also called biocompatible metals. However, the toxicity of a 

metal is not absolute since it depends from many factors such as solubility, bioavailability, oxidation state 

and counterion or coordinated ligand.20 For this reason it is not possible to assign a definite order of toxicity 

and in some cases non-noble metal complexes are more toxic than noble-metal ones.  

The use of heterogeneous catalytic systems especially based on Fe or Co at high temperature has been 

already known for more than 100 years and is well represented by the Haber-Bosch and Fischer-Tropsch 

processes. However, due to their poor activity compared to the noble counterparts, other possible catalytic 

applications especially for fine chemical synthesis were scarcely explored. Starting from the late 90’s, the 

scientific community paid more and more attention in developing homogeneous and heterogeneous catalytic 

systems based on 3d-metals. In homogeneous catalysis, specific ligands were tailored, which are able to tune 

the electronic properties of the complex through the so-called metal-ligand cooperation. Ligands of this type 

have been named (redox)non-innocent (in contrast to ancillary) since they play a direct role in the reaction 

mechanism. In the field of heterogeneous catalysis, the use of heteroatom-doped carbonaceous material has 

paved the way for new reactivity patterns using non-noble catalysts. Several notable reviews either on the 

general use of non-noble metals,21-24 or of specific non-noble metals (Fe,25-28 Mn,29-32, Co33,34) in catalysis 

were published during the last 10 years. 

The mechanism of the nitrobenzene reduction to aniline follows the model developed by Haber already in 

1898 based on electrochemical experiments. In this reaction scheme, two different pathways can be 

proposed. In the first one (direct route), the nitro compound is reduced to the corresponding nitroso, 

aryl/alkyl hydroxylamine, and finally aniline. The condensation route involved the condensation of nitroso 
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with N-aryl/alkyl hydroxylamine species giving rise to the corresponding azoxy- intermediate. Further on, 

the latter is converted into azo-, hydrazo- and finally aniline (Scheme 3). 

Scheme 3 Proposed mechanism by Haber and co-workers. [red ] = reduction 

 

In many of the studied catalytic experiments, N-phenylhydroxylamine is detected and in some cases 

(especially when Pt-based catalysts were used) accumulation of it was described.35,36 This indicates the 

conversion of N-phenylhydroxylamine to aniline as a rate-determining step (direct reduction pathway). 

However, although less usual, the condensation route generally occurs when the reduction reactions are 

conducted in the presence of strong bases (mainly inorganic). In this case, it is possible to selectively stop the 

reaction at the azoxyarene stage.37-41 

Despite the relevance of the reduction of nitro compounds, only few studies on the reaction mechanism were 

published during the years and the majority of them dealt with heterogeneous noble metal catalysts (mainly 

based on Pd, Pt, Au and Rh).17,42-44 As a consequence, the mechanism reported by Haber still continues to 

represent the main reference for describing the possible reaction pathways, even in the case of non-noble 

metal catalysts. An exception is represented by Ni-based heterogeneous catalysts, for which two studies were 

very recently reported and will be discussed in the dedicated chapter. 

In the last years, reviews on the topic of nitro compounds reduction appeared in the literature.45-50 However, 

many of them deal exclusively with noble-metal catalysts,51,52 specific substrates53 or reducing agents,54 or 

focus on synthetic methodologies.55 Complementary, herein the progress of nitro compounds reduction using 

non-noble metal catalysts is comprehensively reviewed focusing our attention from 2000 on. In fact, many 

breakthroughs in this area were recently made, spurring the research in assessing non-noble metals for this 

pivotal transformation. Most of these works deal with heterogeneous catalysts and only a limited number of 

examples for the homogeneous counterparts were published.  
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To better understand the developments, this manuscript is divided into chapters according to the metal used 

(in the following order: Fe, Co, Ni, Cu). Two final chapters deal with heterogeneous multimetallic catalysts 

and homogeneous systems. Each section examines the catalytic reaction based on the type of reductant. For 

this reason, a brief introduction on the employed reducing agents is preliminary discussed in the next 

chapter. Electrocatalytic and photocatalytic methods will be not taken into account and the reader is referred 

to specific works.45 

2. Survey of reducing agents employed in the reduction of nitro compounds 

A wide range of reducing agents has been used for the catalytic transformation of nitroarenes to amines. 

Each of them possesses advantages and disadvantages with respect to their handling, cost and environmental 

impact as well as hazardousness. Industrial reduction processes for the production of bulk chemicals are 

commonly conducted using molecular hydrogen, which is atom-efficient and inexpensive. Commonly, direct 

catalytic hydrogenations of nitroarenes are conducted under relatively high pressure and temperatures. In 

addition, the industrial reduction of nitrobenzene to aniline (vide supra) is done with molecular hydrogen 

under these conditions. However, as a result of the intense research in this area, catalytic systems able to 

work at low pressure and temperature (1 bar H2, 40 °C) were recently developed. Another alternative 

gaseous reducing system is based on water gas shift reaction (WGSR) employing a combination of CO and 

water. Despite the lower price of CO compared to H2, it is very toxic and requires special handling and safety 

equipment. Therefore, alternative processes have been designed using so-called CO-surrogates that enable 

the avoidance of gaseous CO.56-58 However, only limited examples include the reduction of nitroarenes so 

far.59 In addition to the conversion of nitro compounds to amines, catalytic reduction of nitroarenes using CO 

can be selectively directed to other important bulk (carbamates or isocyanates)60,61 or fine chemicals (mainly 

nitrogen-containing heterocycles).62-64 These reactions, conducted in the absence of water, are generally 

catalyzed by homogeneous Pd and Ru metal complexes and thus they are not included in this review. Within 

this topic, is worth to mention that a homogeneous Fe-catalyzed allylic amination of olefins with nitroarenes 

was reported by Nicholas before 2000.65 

Typically, on small scale, the reductions of nitro compounds are performed using different non-gaseous 

reducing agents, sometimes under non-catalytic conditions. For instance, hydrazine is an often used 
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alternative, which formally decomposes to dihydrogen and dinitrogen under catalytic conditions. Pure 

hydrazine is very toxic and hazardous, therefore its less harmful hydrated form (N2H4·H2O) is preferably 

applied. The processes using N2H4·H2O are operationally simple and can be carried out using standard 

glassware. A disadvantage for nitroarenes bearing C=C or C=O bonds is the competitive reduction to alkanes 

or hydrazones formation, respectively. In this respect, diazene (diimide), an intermediate of the hydrazine 

dehydrogenation, is known to reduce carbon-carbon double bonds in a non-catalytic way (Scheme 4).66 

Scheme 4 Main side-reactions using N2H4 as reductant. 

 

Reactions employing hydrazine hydrate as reducing agent take place at low temperature and a large array of 

catalytic systems (especially based on Fe) were successfully employed. It is noteworthy that simple 

commercially available metal oxides were active which makes this reactant appealing for laboratory scale 

preparations. 

Alcohols, often in combination with basic media (especially methanol, ethanol, isopropanol and glycerol), 

represent cheap reducing agents.  However, commonly added inorganic bases need to be used in significant 

amounts (often >1 equivalent with respect to the nitro compound). As a consequence, large quantities of salts 

are present and corrosion might be an issue. Under specific reaction conditions, alkali/alcohol couples are 

able to smoothly reduce nitroarenes to anilines in the absence of a catalyst along with variable amounts of 

azo- and azoxyarenes.67,68 Another disadvantage of reduction of nitro compounds carried out with metal 

alkali/alcohols might be the hydrolysis or transesterification of carboxylic acid derivatives.  

Sodium borohydride is widely used as reducing agent in organic chemistry. Indeed, the textbook reduction of 

ketones and aldehydes to alcohols is a great example for this relatively cheap and easy-to-use reagent. Under 

aqueous or protic solvent conditions it is (slowly) hydrolysed to give H2 according to the following equation. 
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However, transition metal based catalysts are able to remarkably accelerate this reaction paving the way for 

the use of NaBH4 in the catalytic reduction of nitro compounds. In fact, a multitude of catalysts based on 

coinage (Au, Ag, Cu), noble (mostly Pd and Pt) and non-noble (Ni, Co, Fe) metals can catalyze this 

reaction.69 Nevertheless, the price of the reductant as well as the formation of salts as by-products prevent, in 

most cases, larger scale applications. In addition, most of the papers dealing with this transformation use the 

reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) as benchmark reaction. The latter is considered 

to be a useful transformation both in the pharmaceutical industry and in the pollutant-remediation field. 

Indeed, 4-NP is a toxic compound that derives as a by-product of the manufacture of pesticides and synthetic 

dyes. In addition, 4-AP is used as intermediate in the pharmaceutical industry in the original processes for 

the production of Paracetamol (N-acetyl-4-aminophenol, Scheme 5) and as a starting material in the 

preparation of developing agent for other  applications. 

Scheme 5 Original method for the preparation of Paracetamol. 

 

The catalytic reduction of 4-NP to 4-AP generally shows good rates at room temperature and the 

experimental protocol is simple. Moreover, the transformation can be easily followed by spectrophotometric 

methods such as UV-Vis. Nonetheless, the reagent is too expensive for this transformation and produces 

large amount of salts (sodium metaborate). Thus, the actual industrial approach for the production of 4-AP is 

based on the stoichiometric reduction of 4-NP by Fe/HCl (Béchamp method) or catalytic hydrogenation 

using Raney®-Ni or supported noble metals. Another important method for the preparation of 4-AP is the 

direct conversion of nitrobenzene to 4-AP via a two-steps one-pot reduction/Bamberger rearrangement 

process. The reaction takes place under acidic conditions since the rearrangement occurs at the stage of N-
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hydroxylamine (Scheme 6). The industrial acid-resistant catalyst for this transformation is based on carbon-

supported Pt.70 

Scheme 6 Synthesis of 4-aminophenol from nitrobenzene through reduction/Bamberger rearrangement sequence. 

 

It should be highlighted that many of the papers dealing with the specific reduction of 4-NP to 4-AP use this 

transformation only as a model reaction for testing the capability of the prepared materials. Here, often the 

substrate/metal molar ratio either approaches or is lower than 1. Most commonly, the weight of the catalyst 

exceeds that of the substrate by 10 to >100 times. For this reasons, we limit our discussion of such 

“catalytic” systems dealing mainly with the reduction of 4-NP as a model reaction. 

Formic acid is widely recognized as a promising and sustainable reducing agent since it can be produced 

from biomass or CO2 hydrogenation.71 Additionally, it is cheap and shows low toxicity in diluted solutions. 

However, it is corrosive with respect to metals and skin, requiring also resistant reaction vessels. Formic acid 

is used as reductant often combined with bases (e.g. triethylamine) and only few reports showed a base-free 

protocol. Obviously, the latter are strongly favored since separation of unreacted triethylamine or 

triethylammonium formate salts is avoided. Because of the corrosive effects of HCOOH, it is clear that the 

employed catalysts have to be acid resistant. Especially in heterogeneous catalysis, this constitutes a 

challenging task since many nanostructured catalysts are degraded by HCOOH. 

Finally, hydrosilanes are worth mentioning as selective reducing agents for organic synthesis.72 The 

possibility to change the substituents bound to silicon allows controlling the reactivity pattern of multi-

functional substrates towards the desired product. Several hydrosilanes are commercially available at a 

reasonable price and they do not require high-pressure equipment for their use. Hence, the reduction of 

nitroarenes in combination with a metal catalyst was reported by few groups. For a recent review describing 

hydrosilanes for the synthesis of amines, the reader is referred to the work of C. Darcel and co-workers.54 

3. Heterogeneous iron-based catalysts 
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The use of iron in the stoichiometric reduction of nitro compounds is known for more than one century. In 

the introduction we have already provided a brief discussion of the Béchamp process as one of the first and 

still, although marginally, used method for the reduction of nitro compounds. Apart from this, some attention 

is paid to the development of simpler stoichiometric methods for the title reaction.73-76 However, the 

generated wastes limit such protocols to laboratory preparation purposes. On the other hand, because of the 

low price and eco-compatibility of this metal, the development of Fe-based catalytic reductions of nitro 

compounds represents an ongoing goal for organic synthesis and catalysis. 

3.1. Reductions with molecular H2 

In recent years, the combination of Fe-based metal/metal oxides NPs and nitrogen-doped carbonaceous 

supports has been shown to be promising for various reductive transformations. The first report on the use of 

heterogeneous Fe-based catalysts for nitroarene hydrogenation using molecular hydrogen was published in 

2013 by the group of Beller.77,78 Catalysts were prepared by pyrolysis of iron/phenanthroline complexes 

supported onto carbon. The most active material (pyrolyzed at 800 °C) is composed by Fe2O3 NPs of 

different sizes surrounded by nitrogen-doped graphene layers (Figure 1). 

Figure 1 Representative picture of Fe2O3/NGr@C developed by the group of Beller. (Reproduced with permission from Ref. 78. 

Copyright 2015, Macmillan Publishers Limited, part of Springer Nature) 

 

Higher or lower pyrolysis temperatures led to the formation of inactive/less active materials due to the 

formation of larger and not covered particles (1000 °C) or not properly grown Fe species (400 °C). The 

catalyst was applied to the hydrogenation of nitroarenes to anilines at 120-140 °C with full chemoselectivity 

in the desired products. Structurally diverse (hetero)aromatic nitro compounds, including complex molecules 

containing numerous functional groups, were successfully hydrogenated to the corresponding amines. 

Sensitive substrates including 4-nitrophenylacetylene and 3-nitrostyrene were hydrogenated affording the 
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corresponding products in 75% and 96% yield, respectively. Moreover, nitro-containing pharmaceuticals 

were converted to the respective amines in high yields. The same material was found to be active in the 

reductive amination of nitro compounds with aldehydes to give secondary amines.79 Despite the high 

temperature employed (170 °C), the corresponding amines (even from aliphatic nitro compounds and 

aliphatic aldehydes) were produced in moderate to good yields. Later on, the group of Q. Yang reported a 

similar material using CNTs as support instead of carbon (Figure 2).80 

Figure 2 Preparation of Fe-N-C@CNTs developed by Q. Yang and co-workers. (Reproduced with permission from Ref. 80. 

Copyright 2016, The Royal Society of Chemistry) 

 

The as-obtained material displayed a slightly different morphology and composition with respect to the 

catalyst reported by Beller, leading the authors to propose a pivotal role of both iron nitride (Fe3N) and iron 

carbide (Fe3C) in the reaction mechanism. Notably, it was found to be highly active in the hydrogenation of 

nitrobenzene to aniline. The successful combination of iron carbide and CNTs has been further demonstrated 

by Z. Hou and co-workers in 2016 (Figure 3).81 

Figure 3 Preparation of Fe3C@G-CNT-x developed by Z. Hou and co-workers. (Reproduced with permission from Ref. 81. 

Copyright 2016, Elsevier) 

 

The procedure was similar to one previously reported by the group of Y. Wang using Co (see Chapter 4).82 

However, in the work of Z. Hou only a single thermal treatment was applied followed by a final acid 
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leaching (aq. HCl) to remove unstable and redundant Fe NPs. The material prepared at 700 °C showed the 

exclusive presence of Fe3C reflections (XPRD) along with the lowest Id/Ig ratio (Raman spectroscopy). 

Electron microscopy demonstrated that the Fe3C particles are covered by few layers of doped graphene that 

show cracks allowing for the reactant to reach the active site. In addition, EDS and XPS analyses confirmed 

the confinement of the particles within the N-doped carbon nanotubes (N-CNTs). This specific material 

showed a notable activity in the hydrogenation of nitrobenzene to aniline under mild conditions (40 °C, 20 

bar H2, 4.5 h, 1 mol% Fe). The results are remarkable, taking into account the low activity of Fe catalysts. 

The protocol was applied to some substituted nitroarenes with few substituents (Cl, Br, CH3, OCH3). It 

should be emphasized that this catalyst is able to reduce olefins under similar reaction conditions.  

The use of biomass-derived precursors for the synthesis of nitrogen-doped carbon (NC) was evaluated by 

Xu, Sheng and co-workers in 2016.83 Similar to a work with Co-based catalysts reported by the group of 

Beller (see Chapter 4),84 chitosan was employed as concomitant source of carbon and nitrogen. The active 

catalyst was prepared in a two-step procedure: first, the Fe(II)/chitosan chelate was hydrothermally treated at 

200 °C for 12 h and then the so-obtained solid pyrolyzed under nitrogen atmosphere for 4 h (Figure 4).  

Figure 4 Preparation of Fe/N-C-x catalyst developed by S. Xu, H. Shen and co-workers. (Reproduced with permission from Ref. 83. 

Copyright 2016, The Royal Society of Chemistry) 

 

The prepared materials showed the presence of Fe-based NPs mainly in the form of Fe2O3 or Fe3O4. 

Interaction of Fe with nitrogen and carbon was proposed due to the presence of FeNx and FeCx patterns at 

XPRD. The catalyst pyrolyzed at 500 °C was the most active for the hydrogenation of nitrobenzene and  

showed the highest content of FeNx and FeCx species that were previously found to be active sites.80 Later 

on, the preparation of a similar catalyst was reported by Z. Hou and co-workers in 2017.85 However, in this 

case a four step method involving the synthesis of polyaniline (PANI), subsequent adsorption of Fe(II) ions 

followed by solvothermal treatment and pyrolysis under inert conditions was employed (Figure 5). 
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Figure 5 Preparation of Fe2O3@G‐C‐T by the group of Z. Hou. (Reproduced with permission from Ref. 85. Copyright 2017, 

Elsevier) 

 

The authors demonstrated that the pyrolysis temperature has a significant influence on the chemical and 

physical properties of the materials. In agreement with previous work,77 high pyrolysis temperatures led to 

larger particles (agglomeration) and to a decreasing of both surface area and superficial nitrogen content. The 

material pyrolyzed at 900 °C showed the largest surface area and pore volume and the smallest particles. 

This material was an efficient catalyst for the hydrogenation of nitrobenzene to aniline under mild conditions 

(70 °C, 20 bar H2, 2 h). In addition, as already demonstrated in the seminal works of Beller and co-workers, 

it should be mentioned that the use of oxidic supports (SiO2, Al2O3) led to poor or negligible activity 

indicating the positive effect of carbon as support.  

Apart from iron catalysts activated by nitrogen-doped carbon, X. Tong, X. Guo and co-workers reported the 

capability of FeS2 NPs to mediate the hydrogenation of nitrobenzene using molecular hydrogen.86 The active 

catalyst was prepared through a solvothermal method starting from Fe(II) chloride and elemental sulfur 

yielding FeS2 NPs with minor components such as iron (hydroxy)oxides, mixed sulfides and elemental sulfur 

(in the form of S8) present. One year later, Schaak and co-workers demonstrated the activity of bulk pyrite 

FeS2 in the hydrogenation of nitroarenes.87 As in the previous case, XPS revealed the presence of iron oxides 

on the surface of the material raising a question on which phase is actually the active catalyst. Regardless the 

advantages of iron pyrite (availability, good biocompatibility, low price), the reported activity was poor. In 
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fact, only substoichiometric reactions were performed. Worth of note is the chemoselectivity of these FeS2-

based systems in the presence of carbon-carbon double and triple bonds, which were unreactive. In fact, 3-

nitrostyrene and 4-nitrophenylacetylene were hydrogenated to the corresponding amines with full selectivity 

at complete conversion. Conversely, 4-iodonitrobenzene showed full selectivity only at ≤75% conversion, 

which indicates the possibility of dehalogenation side-reactions at higher conversions. Despite the good 

selectivities obtained, the use of FeS2 as catalyst does not bring any actual advantage over carbon-based 

systems (vide supra) since the reported activities are very poor. 

Furthermore, J.-J. Zou and co-workers reported a comprehensive study using unsupported bulk iron oxides in 

the hydrogenation of nitrobenzene.88 As shown in Scheme 7, the materials were simply prepared through 

solvothermal and calcination/pyrolysis procedures. 

Scheme 7 Preparation of various Fe-based oxides employed in the work of J.-J. Zou and co-workers. 

 

During the reaction the catalysts were converted into other more active species due to the formation of 

oxygen vacancies on the surface which are considered to be important for the activation of the H-H bond. 

Notably, all the catalysts showed enhanced performances in the second run. This effect was pronounced in 

the case of α-Fe2O3 and γ-Fe2O3, which showed the appearance of an Fe(II) peak in the XPS spectra. The 

reactivity order was found to be the following: Fe3O4 >> γ-Fe2O3 > α-Fe2O3 > FeO both in the first and the 

second run (Figure 6). 

Figure 6 Catalytic performances of Fe3O4, γ-Fe2O3, α-Fe2O3 and FeO in the reduction of nitrobenzene at 150 °C under hydrogen 

pressure (30 bar H2): comparison of 1st vs. 2nd catalytic run. (Reproduced with permission from Ref. 88. Copyright 2016, American 

Chemical Society) 
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In this report, in addition to relatively harsh conditions (150 °C, 30 bar H2, 15 h), the Fe/PhNO2 molar ratio 

approaches the value of 1, making the reaction almost stoichiometric in Fe. Nevertheless, the simplicity, 

cheapness and availability of the presented catalysts make it appealing for further studies aimed to improve 

the activity. 

Among all the presented Fe-based catalytic systems, only the ones based on Fe-N-C materials (Fe-based 

nitrogen-doped carbons) seem to be competitive and working under “real” catalytic conditions. Furthermore, 

some of them are active even at low temperature and pressure (up to 40 °C and 20 bar H2), which makes 

them comparable to catalysts of less abundant Co or Ni. 

3.2. Transfer hydrogenations 

3.2.1. Reductions with N2H4 

Due to its easy activation, the use of hydrazine (in its hydrated form) as reducing agent was extensively 

studied using heterogeneous Fe-based catalysts. A seminal work on this topic was published by T. Hirashima 

and co-workers already in 1975 assuming that FeCl3 in combination with active carbon is able to produce 

iron oxyhydroxyde that acts as the real catalyst.89 Based on this working hypothesis, the same authors later 

synthesized Fe(III) oxyhydroxyde and subsequently used this in catalysis.90 The catalyst, composed of β-

FeO(OH) (or β-Fe2O3·H2O), was able to reduce a few number of nitroarenes and it was recycled up to 8 

times maintaining its activity after being converted into the less active α-Fe2O3. The successful use of Fe(III) 

oxides was later on confirmed by N. R. Ayyangar and co-workers.91 In a series of papers appeared in the late 

90’s, the groups of P. Rys and R. Prins investigated systematically the catalytic system based on Fe(III) 
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oxide hydroxide both from a mechanistic and synthetic point of view. Mössbauer spectroscopy and XPRD 

analysis of the catalyst evidenced that the material is better classified as ferrihydrate.92,93 The latter is a 

Fe(III)-based mineral with the general formula 5Fe2O3·9H2O.94 Compared to other iron oxides, the produced 

ferrihydrate exhibited a relatively large surface area (up to 300 m2 g-1). Mechanistic insights (in-situ XPRD 

and Mössbauer spectroscopy) revealed the presence of a superficial Fe(II)/Fe(III) redox cycle that might be 

responsible for the catalytic activity (Scheme 8).  

Scheme 8 Schematic representation of the Fe(II)/Fe(III) redox cycle proposed to take place in the catalytic system developed by the 

groups of P. Rys and R. Prins. 

 

The catalyst was pre-activated by little amounts of water and above 70 °C the material was slowly converted 

into hematite that showed a sharply decreased activity. Following papers by the same authors focused on the 

synthetic applicability of this catalyst.95 The scope of the reaction included nitroarenes substituted with 

halogens (except I-substituted nitro compounds), carboxylic acid derivatives, sulfonic acids and other 

functional groups. The yields are influenced by both steric and electronic factors. Indeed, a Hammett 

correlation revealed that EWG-substituted nitroarenes undergo reduction more rapidly than EDG. 

Limitations of the protocol were carefully studied and explained (Scheme 9). 

Scheme 9 Limitations to the reaction scope using ferrihydrate as catalyst and hydrazine hydrate as reductant. 
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Dinitroarenes substituted in positions 1,2 and 1,4 were transformed into the corresponding polyazo and 

polyazoxy compounds whereas 1,3-dinitrobenzene was quantitatively converted into the corresponding 3-

nitroaniline. As mentioned in the introduction, aldehydes are often not suitable substrates in the presence of 

hydrazine due to rapid formation of the corresponding hydrazones. Finally, the authors concluded that 

anthranilic acid derived from 2-nitrobenzoic acid poisons the catalyst. In subsequent works they focused 

their attention on the reduction of nitroazo compounds (Scheme 10).96 The resulting products are of interest 

as starting materials for the preparation of dyes and related molecules.97  

Scheme 10 Reduction of nitroazoarenes: desired (A) and undesired side-reactions’ pathways (B, C, D). 

 

Interestingly, a ferrihydrate catalyst in the presence of hydrazine as reductant can catalyze this reaction 

achieving yields up to 99% with azoarenes bearing EWG groups. Modifications of this method were 

performed by the groups of R. Lu98 and R. S. Varma99 supporting hydrazine onto polymers and alumina. The 
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purpose of such modification was to overcome environmental issues concerning the disposal of toxic 

hydrazine. However, the absolute amount of supported hydrazine needed is relatively high (up to 2 g per 

mmol of nitroarenes) and the overall activity is slower if compared to the original protocol. Unfortunately, 

no information about recyclability and leaching was provided. Based on the work of R. Prins and P. Rys the 

activity of catalysts was later enhanced by F. Figueras and co-workers.100,101 They prepared Fe(III) 

oxide/MgO from thermal treatment (450 °C, under nitrogen atmosphere) of a Mg-Fe hydrotalcite obtained by 

co-precipitation of Mg(NO3)2 and Fe(NO3)3 in basic aqueous media. The material is composed of a solid 

solution of Fe(III) oxide in MgO. In more detail, Mg-Fe hydrotalcite was converted into γ-Fe2O3 that exhibits 

the same Fe(II)/Fe(III) redox behavior reported for Fe ferrihydrate. Moreover, the presence of MgO enables 

a high dispersion of the active phase on the support. Owing to this increased activity, accumulation of 

hazardous intermediate species N-phenylhydroxylamine was never detected. 

Simple magnetite (Fe3O4) has also been assessed as catalyst for the reduction of nitroarenes with hydrazine 

hydrate as the reductant. Magnetite is commercially available at a low price and exhibits a ferromagnetic 

behavior that makes it magnetically recyclable. B. M. Kim and co-workers showed for the first time the use 

Fe3O4 in the reduction of nitroarenes.102 Commercially available Fe3O4 NPs (average size <50 nm) catalyzed 

this reaction, albeit relatively high catalyst loadings (up to 20 mol% Fe3O4) were required. Along with non-

reducible moieties, the functional group tolerance comprises halogens (including iodine) and carboxylic acid 

derivatives. Conversely, carbon-carbon double bonds were not completely retained due to their reduction by 

diimide (i.e. the monodehydrogenated intermediate of hydrazine). Interestingly, aliphatic nitro compounds 

showed a poisoning effect towards the catalysts. The Fe3O4 NPs were easily recycled by magnetic 

separation, however the recyclability was not complete, requiring elongation of the reaction times or addition 

of fresh portion of catalyst in order to restore the original activity. Further studies on this topic were done by 

R. Zboril and M. B. Gawande, who prepared magnetite microspheres from iron(III) oxalate (Figure 7).103 

Figure 7 Preparation of the Fe-based materials reported in the work of R. Zboril, M. B. Gawande and co-workers. (Reproduced with 

permission from Ref. 87. Copyright 2017, Nature Publishing Group) 



22 
 

 

The metal precursor was first converted into iron(III) oxide and then to magnetite under air and hydrogen. 

SEM and TEM images showed the flower-like structure of the obtained magnetite whose chemical 

composition was established by XPRD and Mössbauer spectroscopy. The catalytic activity is comparable to 

the one achieved by B. M. Kim under similar reaction conditions.102 Nevertheless, higher efficiency can be 

achieved using microwave irradiation that allowed to significantly reduce the reaction times (from 180 to 15 

minutes). Under these conditions, the authors showed a good functional group tolerance using differently 

substituted nitroarenes. However, substrates carrying carbon-carbon double bonds or carbonyl compounds 

were not included in their studies. Notably, homogeneous Fe(III) species are known to catalyze the reaction 

in liquid phase. Thus, as a general remark the possible leaching of iron species from the catalyst can be 

partially responsible for the observed catalytic activity (for the discussion of the use of soluble Fe catalyst the 

reader is referred to chapter 8). The same heterogeneous catalyst was shown to be active in related 

transformations using HCOOH as the reductant (vide infra). In 2013, two independent works on the use of 

graphene oxide and graphene as supports for Fe3O4 NPs, respectively, were reported by the groups of Q. 

Chen104 and C. Wang105 . In both cases, the supports were prepared through multi-step modified Hummers’ 

method (oxidative conversion of graphite using potassium permanganate under acidic media) and the Fe-

based catalysts through a co-precipitation of Fe(II) and Fe(III) precursors. In the case of graphene-supported 

catalysts, Fe3O4 NPs have a size ranging from 25 to 50 nm, whereas in the graphene-oxide supported one a 

narrow and decreased average size of 12 nm. This difference was imputed to a confinement effect provided 

by the oxygenated groups present on the surface of GO. The GO-supported Fe3O4-based catalysts exhibited 

an increased activity with respect to both the graphene-supported and the unsupported ones. Most probably, 
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this result is due to the smaller NPs size in GO-supported Fe3O4. It should be underlined that even 

carbonaceous materials alone can act as catalysts for this reaction. In fact, r-GO, graphite and carbon in some 

case were found to promote such reductions also at room temperature.106-108 Although Q. Chen and co-

workers did not provide the control experiments, C. Wang stated that the reaction conducted with the pristine 

graphene furnished the desired product in 86% yield, only 8% less than the reaction conducted with the Fe-

based catalyst. For this reasons, metal catalysts supported onto carbonaceous materials in combination with 

hydrazine should be always corroborated by control experiments devoted to clarify if the support alone could 

play any role in the stated transformation. In a first communication109 and in a subsequent full paper110, C. O. 

Kappe used Fe3O4 in continuous flow for the reduction of nitroarenes. Since hydrazine can be utilized for 

both producing Fe2O3 and as a reducing agent for the nitro compound, an in-situ protocol was developed. 

Here, Fe3O4 NPs were formed from Fe(III) or Fe(II) precursors, which then catalyzed the reduction of 

nitroarenes with high selectivity including challenging substrates (for instance, 4-iodoaniline was obtained in 

98% yield). An impressive activity (TOF up to 12000 h-1) was achieved under microwave irradiation at 

150 °C in the presence of only 0.25 mol% of Fe. Under these conditions, various nitroarenes were converted 

into the corresponding anilines with full selectivity. Using the same catalyst under normal heating (80 °C), 

the reaction was completed in 60 minutes. In order to overcome the well-known issues due to exothermicity 

in microwave-induced reactions, the protocol was transferred to a continuous-flow setup. Since the Fe3O4 

NPs are initially colloidal, the reaction mixture remained (quasi)homogeneous within the first minutes. 

Various amines were synthetized with productivity up to 60 g h-1. In particular, three industrially relevant 

pharmaceutical intermediates were efficiently produced using this technology (Scheme 11).  

Scheme 11 Flow reactor setup for the reduction of nitroarenes and selected synthesis of pharmaceutical substrates used in the group 

of O. Kappe. 
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The main disadvantage of the two latter approaches is the poor recyclability of the catalyst. In order to 

overcome this drawback, the same group reported on the use of basic alumina as support and stabilizer for 

the colloidal produced Fe3O4.111 Using this technology, full recyclability under microwave conditions (up to 

10 runs) was achieved. Moreover, a flow protocol using a heated and pressure-stable cartridge was 

established. 

In other works, bulk maghemite (γ-Fe2O3) was evaluated as catalyst for the title reaction.90,92 However, it was 

found to be less active than Fe(III) oxide hydroxide employed in the work of Hirashima and Prins (vide 

supra). The reason for that was essentially ascribed to the low surface area of this material. Nonetheless, in 

2013 Z. Su, X. Xu, D. Su and co-workers developed a γ-Fe2O3-based catalyst that worked well in the 

reduction of nitro compounds to anilines.112 Following a hydrothermal approach, they prepared a polymer-

embedded γ-Fe2O3 from Fe(acac)3. The preparation strategy involved the formation of polymers derived 

from the reaction between formaldehyde and acetylacetonate under basic conditions (Figure 8).  
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Figure 8 Preparation of γ-Fe2O3–polymer porous composites. (Reproduced with permission from Ref. 112. Copyright 2013, The 

Royal Society of Chemistry) 

 

The final material is composed by γ-Fe2O3 NPs (average size of 3.5 nm) uniformly embedded into a 

polymeric matrix that prevents them against agglomeration. This catalyst was able to reduce nitrobenzene to 

aniline at 85 °C in only 20 minutes further showing a complete recyclability over six runs. A useful 

comparison with commercially available γ-Fe2O3 demonstrated both the vital role played by the polymer and 

the formation of γ-Fe2O3 as active phase. In fact, magnetite (Fe3O4) and hematite (α-Fe2O3) showed a 

significant decrease in activity. A similar preparation of the catalyst was very recently reported by H.-B. Sun, 

Q. Liang and co-workers.113 Differently from the previous work, the γ-Fe2O3-embedded polymer was 

pyrolyzed instead of hydrothermally treated, furnishing NPs with increased size (20 nm average) embedded 

into porous carbon. It should be noticed that despite the high temperature reached during the pyrolysis 

treatment, γ-Fe2O3 was neither converted into hematite (α-Fe2O3), nor magnetite (Fe3O4) demonstrating the 

beneficial protection of the carbonaceous shells. The main differences between the two materials were the 

surface area and the porosity. Indeed, the hydrothermal treatment furnished a microporous material whereas 

pyrolysis caused a collapse of the polymeric structure giving rise to a mesoporous solid. The material 

pyrolyzed at 800 °C showed the highest activity in the reduction of 4-NP to 4-AP along with other 

substituted nitroarenes. Worth of note is the use of a labile 1,3-dioxolane-protected nitro compound as 

substrate that afforded the corresponding product in 90% yield without affecting the protective group. 4-

nitrobenzamide was reported by R. Zboril and M. B. Gawande as a problematic substrate.103 However, under 

similar reaction conditions the protocol proposed by H.-B. Sun, Q. Liang and co-workers provided in this 

case the desired product in almost quantitative yield. 

A γ-Fe2O3-based MOF-derived catalyst was proposed by H.-L. Jiang in 2016 (Figure 9).114 
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Figure 9 Preparation of γ-Fe2O3 NPs@C by the group of H.-L. Jiang. (Reproduced with permission from Ref. 114. Copyright 2016, 

The Royal Society of Chemistry) 

 

As previously observed for a Co-based catalysts derived from MOF (see chapter 4), the pyrolysis 

temperature affects the composition and the morphological features of the material and thus the catalytic 

performances. In particular, higher pyrolysis temperatures produced materials mainly composed of metallic 

α-Fe and Fe3C that showed decreased activity compared to the material prepared at 500 °C, which was found 

to be mainly composed by γ-Fe2O3. This catalytic protocol was exploited for the reduction of various 

nitroarenes, even containing sensitive functional groups like ketones and aldehydes. Here, the use of a polar 

aprotic solvent (DMF) instead of a polar protic one (EtOH) ensured the selective reduction of 4-

nitrobenzaldehyde without the formation of the corresponding hydrazone. Moreover, simple alkyl nitro 

compounds were reduced to the corresponding primary amines. Similarly to the approach described by H.-L. 

Jiang, the group of Z. Dong prepared a catalyst based on γ-Fe2O3 NPs supported onto carbon by the pyrolysis 

of a Fe(III)/1,4-naphthalenedicarboxylic acid chelate.115 As previously noticed in the work of H.-L. Jiang, 

pyrolysis temperatures >500 °C resulted in the formation of Fe(0) NPs which displayed a drastically lower 

activity than the material pyrolysed at 500 °C that contained exclusively γ-Fe2O3 NPs. The performances of 

such materials were explored in the reduction of halogenated nitroarenes showing complete selectivity to the 

corresponding haloanilines even in the case of 4-iodonitrobenzene (conversion and selectivity >99%). 

Another carbon-encapsulated γ-Fe2O3-based catalyst was proposed by Z. Dong and co-workers.116 The 

material was prepared by high-temperature thermal treatment of a Fe(III) precursor and hollow-mesoporous 

carbon microspheres (h-MCM) (Figure 10). Interestingly, using a short (15 minutes) pyrolysis process, 
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mesoporous γ-Fe2O3 NPs embedded into spherical h-MCM were formed with average size dependent on the 

pyrolysis temperature which greatly affected the catalytic activity.  

Figure 10 Preparation of γ-Fe2O3/h-MCM. (Reproduced with permission from Ref. 116. Copyright 2016, The Royal Society of 

Chemistry) 

 

The use of NC as support for γ-Fe2O3 was reported by M. Beller and co-workers in 2011.117 The catalyst was 

prepared through the thermal decomposition of a mixture of Fe(II) salts and phenathroline (Phen) adsorbed 

onto Vulcan® XC72R carbon. The full characterization of the catalyst was provided two years later when the 

same material was found to be active in the reduction of nitro compounds using molecular hydrogen.77 The 

nano-structured iron-supported composite catalyzed the reduction of more than 40 nitroarenes carrying 

various labile functional groups such as halogens (excluding I-substituted), carbon-heteroatom multiple 

bonds and nitro-substituted heterocycles. Moreover, dinitro compounds were selectively reduced to the 

corresponding nitroaniline or diamine depending on the amount of catalyst employed. A similar approach for 

the preparation of γ-Fe2O3 NPs supported onto NC was subsequently reported by Z. Dong and co-workers.118 

The material was prepared from the pyrolysis of an iron precursor with polyacrylonitrile and melamine 

(Figure 11). 

Figure 11 Schematic representation for the preparation of γ-Fe2O3/mCN-900-20 developed by Z. Dong and co-workers. (Reproduced 

with permission from Ref. 118. Copyright 2017, The Royal Society of Chemistry) 
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Here, the pyrolysis temperature seemed to have an opposite effect since the material prepared at 900 °C was 

the only one showing the formation of γ-Fe2O3 NPs and a suitable porous structure. Materials prepared at 

lower temperatures or with lower amount of melamine (<800 °C) neither show porous structure nor the 

complete formation of NPs. For these reasons, the catalyst prepared at 900 °C (γ-Fe2O3/mCN-900-20) 

showed the best activity with a TOF of 312 h-1. Other undoped carbonaceous materials or common metal 

oxides as supports, as well as unsupported γ-Fe2O3 provided lower or negligible activity. Further works 

showed the use of unsupported γ-Fe2O3 NPs in the catalytic reduction of nitroaromatics. In a first paper by I. 

N. Lykakis, G. S. Armatas and co-workers119 γ-Fe2O3 NPs were prepared through a polymer-assisted ligand-

stripped method. Briefly, the original oleyl alcohol-capped γ-Fe2O3 NPs were stripped with NOBF4 in order 

to remove the protecting agent and stabilized into a DMF solution of a nonionic surfactant (Pluronic®P-123). 

Then, after very slow evaporation of the solvent (7 days), the latter was completely removed upon thermal 

degradation at 300 °C under air, thus furnishing the desired mesoporous γ-Fe2O3 NPs (γ-Fe2O3-MNAs). 

Using this approach, solid-state transformations of γ-Fe2O3 into hematite (α-Fe2O3) and magnetite (Fe3O4) 

were feasible (Figure 12). 

Figure 12 Schematic representation for the preparation of γ-Fe2O3-MNAs and further transformation into α-Fe2O3-MNAs and 

Fe3O4-MNAs. (Reproduced with permission from Ref. 119. Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) 
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This oxides exhibited the following activity order in the reduction of 4-nitroaniline to 1,4-phenylenediamine: 

γ-Fe2O3>α-Fe2O3>Fe3O4. From a synthetic perspective, worth of note is the ability of this catalyst to convert 

aliphatic nitro compounds to N-hydroxylamines instead of the fully-reduced product. Moreover, the double 

bond in 3-nitrostyrene was retained affording the desired product in 94% yield. The addition of water 

dramatically improved the activity of the reaction due to a possible interaction of the nitro group. Superficial 

modification of the catalyst could also be a possible reason, since iron oxides can undergo drastic alteration 

of their chemical structure upon water contact, which most commonly comprises the formation of hydroxyl 

groups.120-122 In fact, materials similar to the ones reported by the groups of I. N. Lykakis and G. S. Armatas, 

were found to be active in the same transformation previous activation by water as demonstrated by the 

pioneering work of R. Prins and P. Rys.92,93 In a recent paper, Z. Dong and co-workers prepared ultrathin γ-

Fe2O3 nanosheets (γ-Fe2O3-UNSs) through a simple reduction method under air (Figure 13).123 

Figure 13 TEM image of γ-Fe2O3 nanosheets developed by Z. Dong and co-workers. (Reproduced with permission from Ref. 123. 

Copyright 2018, Elsevier) 
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The catalyst was then used for the reduction of various nitro compounds, among which 4-iodonitrobenzene 

and 4-nitrobenzaldehyde stand out since they were selectively converted into the corresponding amines 

without dehalogenation or hydrazone formation, respectively. Activated carbon fibers supported Fe2O3 NPs 

were as well reported by L. Kiwi-Minsker.124 They were prepared in three steps: activated carbon fibers were 

wet impregnated with the Fe(III) precursor and then pyrolyzed at 350 °C followed by passivation under 

air/Ar. The as-obtained material showed microporosity with tiny pore diameter (<2 nm) and a large surface 

area (2140 m2g-1) compared to the other carbon-support Fe-based catalysts. The latter was found to be active 

in the reduction of various nitroarenes, and in particular 4-iodonitrobenzene and 3-nitrostyrene were obtained 

with a selectivity of 95% and 75% at 95% conversion of the starting material. The result obtained with 3-

nitrostyrene is worth of note due to the capability of diazine in reducing carbon-carbon double bonds without 

the necessity of a metal catalyst. Unfortunately, the catalyst tends to leach little amount of Fe and this has an 

obvious negative impact on the recyclability. The same group published a similar catalyst based on Ni125 and 

Co126 which are described in the dedicated chapters. 

Maghemite-bismuth bimetallic oxides were evaluated as catalysts in the reduction of nitrocompounds to 

aniline. In a first work, H.-B. Sun, Q. Liang and co-workers prepared the mixed oxide (Fe/Bi mol. ratio 18.5) 

by co-precipitation and then impregnation onto graphene oxide (GO).127 The catalyst was used both in batch 

and in flow conditions. Using the latter technology, the mechanic robustness of the catalyst has been 

improved through calcination under air allowing for producing the desired amines in relatively large amount 

(>30 mmol scale). A similar approach proposed by the same authors, for the preparation of bimetallic Fe/Bi 

catalyst, consisted in the functionalization of carbon nanotubes with chitosan followed by cross-linking with 
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glutaraldehyde and addition of Fe(III) and Bi(III) precursors.128 Then, after the co-precipitation by means of 

aqueous NH3, the solid was calcined at 250 °C to finally obtain the γ-Fe2O3/Bi2O3 NPs anchored onto 

chitosan-functionalized carbon nanotubes. The as-prepared catalyst showed catalytic activity comparable to 

the previously discussed one, but it can be directly used under continuous flow conditions without any pre-

treatment. Despite photocatalytic methods are out of the aim of this review, the presence in the literature of a 

work dealing with the preparation of α-Fe2O3/Bi2S3 heterojunction for the catalytic transfer hydrogenation of 

nitroarenes should be mentioned.129 H. Sun, D. Niu and co-workers prepared a glucose-derived carbon-

coated Fe2O3/SnO2 NPs through precipitation method (Figure 14).130 

Figure 14 Preparation of C@Fe2O3-SnO2 developed by H. Sun, D. Niu and co-workers. (Reproduced with permission from Ref. 130 

Copyright 2018, Elsevier) 

 

The synergistic effect of Sn was ascribed to its ability to promote the oxidation of Fe2+ to Fe3+. It should be 

noticed that hematite (α-Fe2O3) never showed better catalytic activity than maghemite (γ-Fe2O3) or magnetite 

(Fe3O4) using hydrazine as reductant. However, the combination of SnO2 with α-Fe2O3 resulted in enhanced 

activity. 

3.2.2. Reductions with alkali/alcohols 

In the early 2000’s, P. Selvam and co-workers studied the preparation and use of Fe(III) substituted 

hexagonal mesoporous aluminum phosphate as catalyst for various organic reactions, especially oxidative 

and reductive transformations. In particular, this catalyst was applied in combination with iPrOH/KOH for 

the reduction of nitro compounds131 and azoarenes.132 The combination of both acidic and basic Lewis sites 

in the catalyst, formed after the calcination step, was supposed to participate in the reaction mechanism. A 

range of substituted aromatic nitro and azo compounds was reduced to the corresponding amines. Worth of 

note is the preservation of the carbonyl group in ketones and aldehydes that are known to be reduced to the 

corresponding alcohols even in the absence of catalyst.67,133,134 Moreover, unlike many other reports, the 
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recyclability was proven to be effective for each substrate up to six runs. P. Veerakumar, S.-B. Lui and co-

workers reported the preparation of Fe3O4 NPs embedded into biowastes-derived carbon.135 A two-step 

protocol was employed for the preparation of the active material. Firstly, micro-mesoporous carbon was 

prepared by thermal treatment (600-900 °C) of beetroot-derived wastes with ZnCl2 as an activating agent. 

Then, the as-obtained material was impregnated with Fe(acac)3 and pyrolyzed at 900 °C affording the 

composite material constituted by Fe3O4 NPs (average size of 3.8 nm) incorporated into nitrogen-doped 

carbon. The reduction of nitro compounds was performed under microwave conditions showing good 

selectivity with many nitroarenes. Fe-impregnated SBA-15 was prepared by S. Velmathi and co-workers 

using tetraethyl orthosilicate (TEOS), Pluronic® P-123 and Fe(NO3)3 as SiO2 precursor, surfactant and Fe 

source, respectively.136 The catalytic activity of this material was comparable to other previous works in the 

field131 with the disadvantage to have only a partial recyclability even after reactivation of the catalyst. The 

use of perovskite-type catalysts was evaluated by R. V. Jayaram and co-workers in 2003137 and S. Farhadi 

and co-workers in 2011.138 In the former work the authors proposed a successful microwave-assisted method 

for the production of bulk perovskite-type mixed oxides (LaMO3 with M=Al, Fe, Cr, Co, Mn), whereas in 

the latter LaFeO3 NPs were produced by pyrolysis of La[Fe(CN)6]·5H2O at 700 °C. Both catalysts reduced 

nitro compounds using iPrOH/KOH. Unfortunately, since the reactions in the S. Farhadi work were 

performed under microwave irradiation, a direct comparison is not possible. However, under microwave 

irradiation, the nanosized LaFeO3 catalyst showed five-fold activity than the bulk LaFeO3. The reaction 

scope of both papers included many nitroarenes bearing various functional groups among which aldehydes 

and ketones were completely unaffected allowing for a complete selectivity towards the desired aniline. 

3.2.3.  Reductions with NaBH4 

During the last years, various Fe-based catalysts were proposed for this transformation. Bulk and supported 

iron oxides, Fe(0) NPs, and anchored defined complexes have been applied as catalytic systems. Metallic 

iron nanoparticles were proposed by the groups of K. Hanna139 and Y. Cai.140 In the former case, Fe(0) NPs 

were produced through the reduction of FeCl2 by NaBH4. For maintaining Fe in zero oxidation state, an 

excess of NaBH4 is necessary during the catalyst storage. Recycling experiments via magnetic separation 

revealed leaching of Fe since the first recycled run which led to decreased activity. Y. Cai and co-workers 
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developed an operationally-simple protocol for the one-pot preparation of citrate-coated Fe(0) NPs, which 

allow for nitro reductions. A complex of Fe(II) and citrate was in-situ prepared and reduced with NaBH4 in 

the same vessel containing the nitro substrate (Figure 15).140 

Figure 15 Mode of action of the catalytic system developed by Y. Cai and co-workers. (Reproduced with permission from Ref. 140. 

Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) 

 

The reaction proceeded efficiently with a good activity allowing the reduction of substituted nitroarenes 

beside 4-NP, such as 4-nitrobenzonitrile and 4-nitrostyrene. Even in this case the recyclability was not 

efficient since the original activity was maintained only for five runs.  

Moreover, various Fe-based supported catalysts were proposed for the titled reaction in recent years. In this 

respect, X. Wang, J. Kong and co-workers described Fe(0) NPs coated with Fe(II) oxides embedded into a 

carbonaceous matrix, which were produced through the pyrolysis of ferrocenyl-functionalized 

polydivinylbenzene particles (Scheme 12).141 

Scheme 12 Preparation of Si-C-Fe. (Reproduced with permission from Ref. 141. Copyright 2016, Wiley-VCH Verlag GmbH & Co. 

KGaA, Weinheim) 
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Very recently, S. Song and co-workers developed Fe-N-S-C materials prepared via a three-step methodology 

involving the production of Fe3O4 microspheres, subsequent Fe3+-induced polymerization of 

pyrrole/thiophene on the surface and finally annealing treatment (Scheme 13).142 

Scheme 13 Preparation of DSHM-Fe/SNC catalyst. 

 

The synergistic interaction of both N and S in the carbon network was found to be crucial for achieving 

catalytic activity. Finally, D. Astruc and co-workers reported on the preparation and use of α-Fe2O3 NPs 

supported onto GO (Figure 16).143 Apart from the application of this catalyst in the Suzuki-Miyaura cross-

coupling, a good activity was shown for 4-NP reduction. 

Figure 16 Preparation of α-Fe2O3 NPs supported onto GO. (Reproduced with permission from Ref. 143. Copyright 2017, Wiley-

VCH Verlag GmbH & Co. KGaA, Weinheim) 
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3.2.4. Other reductants 

In addition to the aforementioned reducing agents, also formic acid (HCOOH) and paraformaldehyde were 

employed. The group of M. B. Gawande and R. Zboril reported the preparation and use of a flower-like 

magnetite (Fe3O4) nano-assembly for the reduction of nitroarenes using HCOOH in combination with tris[2-

(diphenylphosphino)ethyl]phosphine (Tetraphos) as additive.144 The same group used also hydrazine hydrate 

under microwave conditions in this transformation.103 In case of formic acid, the authors proposed an iron 

hydride surface species, which is related to a previously published molecular-defined Fe-Tetraphos complex 

(Figure 17, see also Chapter 8.2).145 

Figure 17 Proposed catalytic cycle the reduction of ArNO2 to ArNH2: coordination of both tetraphos (PP3) and anion HCOO- and the 

subsequent formation of a superficial hydride species. (Reproduced with permission from Ref. 145. Copyright 2016, Wiley-VCH 

Verlag GmbH & Co. KGaA, Weinheim) 
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Because of the similarity between these works, leaching of the heterogeneous catalyst might occur under 

operative conditions and the leached species could be the “real” active species. Unfortunately, the possible 

leaching of Fe species (either active or not) was not investigated and therefore cannot be ruled out. 

Comparing the two protocols by the groups of M. B. Gawande and R. Zboril (the one based on HCOOH and 

the one based on N2H4) the latter system has the intrinsic advantage of short reaction times (15-25 min). The 

first protocol based on HCOOH showed a similar efficiency at lower reaction temperature (70 °C) and does 

not require for special reactor apparatus. Regarding the reaction scope, the main difference can be found in 

the possibility of the HCOOH-based procedure in selectively reducing nitroarenes carrying carbonyl groups 

and carbon-carbon double bonds which are both known to be problematic if N2H4·H2O is used.  

In 2005, B. M. Choudary developed a hydrogen evolving system from proton reduction with iodide anions as 

electron donor catalyzed by Fe(III)-exchanged montmorillonite (indicated as Fe(III)-mont in Scheme 14).146 

The system was applied for the reductive acylation of nitrobenzene to the corresponding acetanilide. 

Scheme 14 Fe(II)/Fe(III)-based redox cycle in the production and consumption of hydrogen and related reduction of nitroarenes. 

 

Finally, M. Beller, R. V. Jagadeesh and co-workers developed a Fe-based catalytic method for the 

dimethylamination of nitroarenes.147 Using the Fe2O3/NGr@C catalyst developed in 2013,77 

paraformaldehyde was employed both as a reductant and a methylating agent (Scheme 15). 
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Scheme 15 Fe2O3/NGr@C catalyzed reductive methylation of nitroarenes without gaseous hydrogen. 

 

Aromatic and heteroaromatic nitro compounds carrying different functional groups were selectively 

dimethylated. Functional groups like –OH, -SH, -CONH2 and heterocycles were not affected in this protocol, 

which was applied to diverse life science molecules including the preparation of existing drug molecules. By 

careful variation of both the amount of paraformaldehyde and the reaction time, monomethylation of nitro 

compounds was also feasible. 

4. Heterogeneous cobalt-based catalysts 

4.1. Reductions with molecular H2 

Seminal works reporting on the catalytic activity of Co using H2 as reductant were first published in 1921148 

and 1937149 by O. W. Brown and later on, in 1975, in a patent by Bayer AG.150 In all cases, the active 

catalyst was claimed to be cobalt sulfide produced by treating Co oxides under a H2S stream. Further 

publications regarding the use of homogeneous Co-based catalysts were then published and they will be 

discussed in chapter 8. In 2005, R. Raja and co-workers published one of the first modern reports in this area 

using heterogeneous catalysts.151 The authors prepared metallic Co NPs supported onto commercially 

available mesoporous SiO2 through an inverse-micelle method. Along with bimetallic Ni-Pd NPs, the 

supported Co NPs were able to efficiently catalyze the hydrogenation of nitroarenes to the related anilines 

with very high TOF (up to 23000 h-1 at almost complete conversion) at 80 °C and 25 bar H2. The achieved 

efficiency of the catalyst is until now one of the highest ever reported, although the recycling turned out to be 

incomplete. After this important report, in 2013, the group of Beller developed a novel heterogeneous 

catalyst based on Co nanoparticles supported onto nitrogen-doped carbon (called Co-Co3O4/NGr@C).152,153 

The synergistic and complementary combination of both the Co-based NPs and the nitrogen-doped carbon 

seems to be crucial for the peculiar reactivity of this class of materials. The catalysts were prepared by 

pyrolysis of a Co(II)/N-ligand complex impregnated onto Vulcan® XC72-R carbon. Upon thermal treatment 
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(800 °C for 2 h under Ar atmosphere) ordered nitrogen-doped carbon layers along with core-shell NPs are 

formed. The architecture of the materials is composed of an inner core of metallic Co and an external layer 

of Co3O4 (Figure 18). Interestingly, the nitrogen-donor is able to indirectly tune the activity of the final 

material. Among the investigated ligands, 1,10-phenanthroline (Phen) afforded the catalyst that provided the 

best activity in the hydrogenation of nitrobenzene to aniline. 

Figure 18 Preparation of the Co-Co3O4/NGr@C catalyst developed by the group of Beller in 2013 and relative TEM images (green 

arrows highlight the graphene layers around the NPs).   

 

Furthermore, the catalytic activity of the prepared material has been evaluated in the hydrogenation of 

substituted nitroarenes demonstrating excellent chemoselectivities. Aromatic nitro compounds bearing 

reducing-labile groups (e.g. carbon-carbon and carbon-heteroatom multiple bonds, halogens, carboxylic acid 

derivatives) were smoothly converted into the corresponding anilines without affecting the residual moieties. 

Later on, the performance of this catalytic system was enhanced through carefully assessing the composition 

of the reaction media (alcoholic solvents in combination with small portion of water) and the use of basic 

additives (such as triethylamine).154 Even under those improved conditions, the selectivity in the case of 

substituted nitroarenes was maintained. Subsequently, the Co-Co3O4/NGr@C was used in the reductive 

amination of nitro compounds for the synthesis of secondary amines.155 As general concept, this reaction 
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occurs in three stages: reduction of the nitro compound to aniline, condensation of the latter giving the imine 

and then finally its hydrogenation (Scheme 16). 

Scheme 16 Reductive amination of carbonyl compounds from nitroarenes. 

 

Commonly, in this sequential process the rate determining step is the hydrogenation of the imine over the 

nitro group. For this reason, the overall transformation has to be conducted under harsher conditions than 

those used in the reduction of nitro to primary amine. The authors reported good yields only in the case of 

both nitroarenes and aldehydes bearing electron-donating groups (EDG). Other kind of substrates provided 

lower yields because of the presence of residual imine in the reaction mixture. This protocol also allowed for 

the synthesis of secondary amines from more challenging aliphatic nitro compounds and aldehydes. Finally, 

because of combined steric and electronic factors, ketones can be employed only if carbonyl activators 

(acids) and water scavengers (molecular sieves) are employed. 

Starting from these works, a large number of reports dealing with the preparation and use of this kind of 

materials for reduction of nitroarenes were published. Various parameters such as nitrogen-donor, cobalt 

precursor, type of support, pyrolysis protocol and so on have been explored. In this context, in 2015 the 

group of Y. Wang prepared N-CNTs through a solvent-free method involving the use of cheap carbon 

precursors (D-glucosamine and melamine) and Co(NO3)2·6H2O as the Co source in a two-temperature step 

pyrolysis procedure (Figure 19).82 Similar to Co-Co3O4/NGr@C, this material is composed by Co(0) and 

Co3O4 NPs embedded in N-doped matrix onto CNTs. The as-obtained catalytic material exhibited a high 

productivity in the hydrogenation of nitrobenzene. 

Figure 19 Preparation of CoOx@N-CNTs. (Reproduced with permission from Ref. 82. Copyright 2015, American Chemical Society) 
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The authors claimed that the catalyst is reduced in situ to CoO and Co(0) and the latter species is supposed to 

be mainly responsible for the catalytic activity. The scope of the reaction was established using 20 

nitroarenes substituted with various functional groups demonstrating high chemoselectivity. In 2014, the 

group of W. Xia reported an interesting study about the role of nitrogen atoms in the support.156 They 

produced Co-based N-CNTs (produced through annealing of CNT at high temperature under NH3 stream) 

via wet impregnation and applied them in the gas-phase hydrogenation of nitrobenzene. Using various 

techniques (XPRD, TPR-H2 and XPS) they demonstrated that the presence of nitrogen atoms in the N-CNTs 

(1) promoted both the decomposition of the Co precursors and the reducibility of Co oxides thus forming 

active sites in the final catalyst, (2) improved the resistance of Co(0) to oxidation under exposition to air and 

(3) reduced the size distribution of the formed NPs. All these features led to an increased activity by at least 

two-fold with respect to the nitrogen-free catalyst. The importance and role of the nitrogen doping was also 

demonstrated by Ragaini, Beller and co-workers (vide infra).68 In 2016, R. Kempe and co-workers developed 

a cobalt-based silicon carbonitride catalyst (Co-SiCN) from a defined cobalt amidinato complex (Scheme 17, 

upper part).157 The prepared material was composed of small cobalt-based NPs (average of 1.7 nm) including 

both metallic Co and CoOx. The oxidic nature of the material was confirmed by both XPS and TPR-H2 

analysis. The catalyst was not fully recyclable, in fact after the second run a decreased yield was notice. This 

fact was mainly attributed to oxidation of the Co(0) and in a small extent to metal leaching. Indeed, activity 

could be gained again by subjecting the catalyst to TPR-H2, thus restoring Co in its low oxidation state. All 

these evidences point out to the role of Co(0) as active phase of the catalyst. The selectivity of the proposed 

transformation was then demonstrated using a number of nitro compounds containing reducible functional 



41 
 

groups. For example, both 3-nitrostyrene and 4-iodonitrobenzene can be converted into the corresponding 

anilines with 82 and 76% yield, respectively. Furthermore, the same catalyst was applied in the reductive 

amination of nitro compounds with both aldehydes and ketones. Here again, the reductive amination of 

ketones required harsher condition and a higher catalyst loading along with carbonyl activators (Amberlyst® 

15 and molecular sieves). Afterwards, the same authors reported the preparation of a catalyst using a similar 

approach (Scheme 17, lower part).158 A block copolymer was firstly prepared from polycarbosilanes and 

hydroxyl-terminated polyethylene and then a Co(II)/Phen chelate was added and the material subjected to 

pyrolysis. The resulting mesoporous material was found to be composed of metallic cobalt Co NPs (average 

size 5 nm). The activity of this catalyst in the hydrogenation of nitrobenzene to aniline was conducted under 

reaction conditions similar to those reported for the Co-SiNC (vide supra), although with a decreased 

catalyst loading. The catalytic system was then applied to some other nitro derivatives showing complete 

selectivity even when challenging substrates like 4-iodonitrobenzene or 3-nitrostyrene were used (99% yield 

in both cases). Moreover, the new material showed an improved recyclability, unlike in the Co-SiNC. 

Scheme 17 Preparation protocols for Co-SiCN and Co@N-SiC developed by the group of R. Kempe. 

 

Dong and co-workers developed a Co-N-C material produced from polyacrylonitrile and melamine coupled 

with an inorganic Co source via pyrolysis.159 They found that 700 °C was the best pyrolysis temperature 

concerning both activity and selectivity in the hydrogenation of nitrobenzene. The thermal treatment at this 

specific temperature provided small (average size of 6 nm) and dispersed Co NPs onto mesoporous N-doped 

carbon along with the highest BET surface area and pore volume. Lower or higher temperatures did not 

provide proper growing of NPs and the formation of the mesoporous structure. The material mainly consists 

of metallic Co, even though some oxidic patterns cannot be ruled out. The catalyst demonstrated a good 
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activity in the hydrogenation of nitrobenzene to aniline at relatively low H2 pressure (10 bar). Nevertheless, 

some limitations are observed when carbonyl compounds or iodo-substituted nitroarenes were employed. In 

particular, nitroarenes substituted in 4-position with iodo, ketones, aldehydes and sulfonamides showed 

complete selectivity only at low conversion values, especially in the case of 4-iodonitrobenzene (24% 

conversion with 99% selectivity). The same catalyst was also applied in the reductive amination of 

nitroarenes with aldehydes under harsher conditions, showing good yields towards the desired products. 

However, aromatic aldehydes containing OH groups afforded the corresponding imines as major product 

without proceeding further towards the secondary amine.  

In 2017, Ragaini, Beller and co-workers prepared a series of cobalt heterogeneous catalysts using α-diimine 

instead of Phen as nitrogen donor ligand, following the protocol established in 2013 (Scheme 18).68 

Scheme 18 Preparation of the catalyst developed from α-diimines by Beller and Ragaini (upper part) and proposed reaction 

mechanism (lower part): evidences for an heterolytic activation of the dihydrogen molecule. (Partially reproduced with permission 

from Ref. 68. Copyright 2017, Elsevier) 

 

The materials showed a core-shell structure composed of an inner metallic and an outer oxidic layer with N-

doped shells around the NPs. All the prepared materials showed activity in the hydrogenation of 

nitrobenzene to aniline. Kinetic studies revealed that the catalytic activity is directly correlated to the amount 

and configuration of the nitrogen species present in the carbonaceous matrix. On the basis of this 

experimental proofs, and supported by previous evidences,154 the authors proposed a reaction mechanism in 

which the active site is composed of Co species (both in the form of NPs or isolated atoms) in contact with 

nitrogen atoms incorporated into the support. This specific conformation could allow for a heterolytic 
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cleavage of the dihydrogen molecule. With the best catalyst, the reaction scope was demonstrated. It should 

be pointed out that the case-study 4-iodonitrobenzene did not provide the corresponding aniline at all, since 

complete hydrodehalogenation occurs under reaction conditions.  

In most of the presented papers dealing with Co-N-C catalysts, the materials were prepared using a nitrogen-

donor and a pre-formed carbonaceous support. In 2017, Beller and co-workers demonstrated that it is 

possible to use a unique and cheap molecule that combines these two features. Chitosan, a biopolymer 

derived from shrimp-shells bio-waste, contains -NH2 and -OH moieties capable to coordinate metal ions and 

a carbon-based skeleton that is able to produce carbonaceous materials upon pyrolysis (Scheme 19). 

Scheme 19 Preparation of Co-based catalysts derived from chitosan. 

 

This material was firstly presented as active catalyst in hydrodehalogenation reactions160 and afterwards used 

in the hydrogenation of nitroarenes.84 As in the previous cases, the material showed the concurrent presence 

of N-doped graphitic layers embedded Co(0) and core-shell Co3O4/Co(0) NPs. After an optimization of the 

reaction that confirmed the beneficial use of organic bases, a series of substituted nitroarenes were evaluated 

as substrates. Hydrogenation of halogen-containing nitroarenes proceeded smoothly resulting in obtaining 

the corresponding haloanilines with full selectivity, even if the same catalyst was used in the 

hydrodehalogenation reactions of Csp2/sp3-X (X = Cl, Br, I) bonds. This evidence suggests a higher reaction 

rate for the nitro reduction over the hydrodehalogenation. The established protocol allowed for the synthesis 

of amine-containing intermediates involved in the preparation life-science molecules. 

Y. Li and co-workers prepared an active Co-N-C material by the pyrolysis of well-defined Co-MOF (ZIF-

67).161 The preparation of the catalyst involved the synthesis of ZIF-67 and then its thermal treatment at 

various temperatures using both long pyrolysis times (10 h) and heating rates (1 °C min-1). The material 

prepared at 600 °C was found to be the most active and selective one, achieving 97% selectivity in 3-

nitrostyrene hydrogenation at full conversion. The presence of nitrogen species and in particular Co-N 

configurations in the catalyst is proposed as the reason for the high selectivity. This evidence is supported by 

a correlation between the conversion and the N content in the catalyst. Even if the authors have not proven it, 
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this correlation was further observed by Ragaini and Beller (vide infra).68 Moreover, in-situ ATR 

investigations revealed how the styrenic double bond is not adsorbed on the catalyst surface thus leading to a 

complete selectivity towards the aminostyrene without formation of side products. Various nitroarenes and 

heteronitroarenes with different reducible functional groups (including 4-iodonitrobenzene) were efficiently 

reduced to the corresponding anilines. As a consequence of the complete enveloping of the Co-based NPs 

into the carbonaceous matrix (which prevents them from agglomeration and overoxidation), recyclability of 

the catalyst was found to be complete over five reaction runs. The effective use of MOF as sacrificial starting 

materials for the preparation of Co-N-C catalysts was further demonstrated by Gascon and co-workers in two 

interconnected papers. In a first work,162 the authors prepared the ZIF-67 MOF and afterwards direct 

pyrolysis led to the formation of the Co@NC catalyst. The preparation was similar to that previously 

reported by Y. Li and co-workers,161 except for a passivation step that involved a post-treatment of the 

pyrolyzed material under an oxidative stream (5 vol% O2 in N2 for 2 hours). Comparing the preparation of 

the catalysts by J. Gascon and Y. Li, it turned out that the material prepared with passivation step still 

contains metallic Co NPs embedded into nitrogen-doped graphitic carbon structures. J. Gascon proved the 

presence of isolated CoNx centers along with NPs through HCl leaching, poisoning test and HAADF-EDX 

techniques. The acid leached catalyst still showed activity indicating that both Co NPs and CoNx centers play 

a role in the catalytic event. Acid leaching experiments were also performed by Y. Li and co-workers. 

However, the authors used aqua regia instead of hydrochloric acid, which resulted in the removal of every 

Co species leading to complete loss of activity. Indeed, the treatment with hydrochloric acid is known to be 

milder and thus more selective resulting in the removal of only uncovered Co NPs.163 In a further work 

published in the same year, Gascon and co-workers studied a Co catalyst supported onto mesoporous N-

doped carbon (Co@mesoNC), which was prepared following a sacrificial template approach.164 Here, a silica 

precursor (tetramethyl orthosilicate, TMOS) was hydrolyzed inside the micropores of a Zn/Co-based MOF 

(BIMZIF(Co, Zn)) followed by pyrolysis (900 °C) and basic leaching of the obtained SiO2 (Figure 20). 

Figure 20 Preparation of Co@mesoNC. (Reproduced with permission from Ref. 164. Copyright 2017, Elsevier) 
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The material shows exclusively the presence of single CoNx centers at a remarkable loading of 3.5 wt% Co 

without the formation of NPs as verified by various complementary analytical techniques (TEM, EDX, 

XPRD, XPS and XAS). Crucial for the formation of such isolated centers was the presence of Zn atoms in 

the original MOF which spatially separate Co centers preventing them from agglomeration into NPs. In 

addition, Zn evaporates during the high temperature treating process generating vacant sites in the 

carbonaceous matrix. Finally, the controlled synthesis of SiO2 NPs and its removal created a mesoporous 

material network with 4-fold increased BET area. Hence, improved activity was achieved. Moreover, in 

contrast to the previous example, Co@mesoNC is able to reduce 3-nitrostyrene with full selectivity 

highlighting the importance of single CoNx centers. Even though the preparation of Co@mesoN needs many 

steps, its performance is among the best for the hydrogenation of nitroaromatics. Following a similar 

procedure, F. Zhang, X.-M. Zhang, H. Yang and co-workers prepared a mesoporous Co-based catalyst using 

Co(II)/phthalocyanine as molecular precursor and SiO2 as sacrificial templating agent (Figure 21).165 In 

contrast to the Gascon work, they did not use a soluble molecular precursor of SiO2 but the Co complex and 

the solid template were directly mixed together. 

Figure 21 Preparation of Co@NMC-T (Reproduced with permission from Ref. 165. Copyright 2017, Elsevier) 
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The composition and architecture of the catalysts were found to be strictly dependent on the pyrolysis 

temperature. More specifically, the formation of NPs occurred only for pyrolysis temperature >600 °C and 

the material prepared at 800 °C showed the best activity in the benchmark hydrogenation of nitrobenzene to 

aniline. Again, here the pivotal role of Co(0) as dominant active species was established as shown by other 

precedent works. Worth of note are the mild reaction conditions (10 bar H2, 80 °C, 1.2 h) and the ability to 

hydrogenate 4-iodonitrobenzene with full selectivity at 97% conversion. Within the same year, the group of 

Z. Zhang prepared a very active catalyst using a Co(II)/phthalocyanine complex and colloidal SiO2 as 

sacrificial templating agent (Figure 22).166 

Figure 22 Preparation of the catalyst developed by Z. Zhang and co-workers. 

 

They demonstrated that acidic treatment (aqueous HF) is favorable over the basic one (aqueous NaOH) 

because HF simultaneously removed both SiO2 and redundant/unstable Co NPs. Thus, after the acidic 

etching only individual single CoNx centers were left. Despite the low metal loading (0.25 wt% of Co) the 

material pyrolyzed at 800 °C and afterwards treated with HF was found to be active in the hydrogenation of 

nitrobenzene under mild conditions (1 bar H2, 40 °C in water). Moreover, under more severe conditions (3.5 

bar H2, 110 °C in EtOH), the catalyst exhibited a productivity that outperforms the previously reported 
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systems. Regarding the substrate scope, in addition to various nitroaromatics, the catalyst is also able to 

reduce more challenging aliphatic (both linear and cyclic) nitro compounds. 

At a first glance, the works of Z. Zhang and co-workers166 and F. Zhang, X.-M. Zhang and H. Yang and co-

workers165 may appear very similar. However, some key variations can be found that might explain the very 

different activity and morphology of the obtained materials. In the work of F. Zhang, X.-M. Zhang, H. Yang 

and co-workers, after the first pyrolysis a non-specified chemical leaching was performed followed by a 

second pyrolysis. This might explain the formation of NPs instead of single centers due to thermally-driven 

agglomeration. Unfortunately, the authors did not provide any information about the morphology and/or 

composition of the material obtained after the first pyrolysis step. Furthermore, the two employed Co(II) 

precursors differ in the ligand structure (Scheme 20). Though, according to TGA measurements it seems that 

the -NO2 moieties were lost during the pyrolysis process questioning their actual role.  

Scheme 20 Comparison between the two cobalt phthalocyanine precursors used in the works of F. Zhang, H. Yang, X.-M. Zhang and 

co-workers and Z. Zhang and co-workers. 

 

The catalyst produced by Z. Zhang and co-workers was further employed in the reductive amination of nitro 

compounds under H2.167 In accordance with the results described by Beller and co-workers (vide supra), the 

authors reported that the use of protic solvents and high reaction temperatures (>130 °C) accelerate the 

conversion of the imine into the secondary amine. The broad reaction scope included various substituted 

nitroarenes and aryl aldehydes that were transformed into the corresponding secondary amines with good to 

excellent yields. However, in some cases (especially if one or both of the two reactants are sterically 

hindered) residual imine can be still detected limiting this protocol. Notably, the reductive amination of 

ketones (cyclic or acyclic) is possible by increasing the temperature (130 °C), avoiding the use of acids or 
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molecular sieves. The catalyst reported by Z. Zhang and co-workers was found to be more active than Co-

Co3O4/NGr@C.  

In the field of Co-N-C catalysts derived from MOF´s, very recently the group of Beller reported the pyrolysis 

of a Co-MOF prepared from Co(NO3)2, DABCO and terephthalic acid deposited onto carbon (Figure 23).168 

Figure 23 Preparation of the catalyst developed by Beller and co-workers in 2017. (Reproduced with permission from Ref. 168. 

Copyright 2017, American Association for the Advancement of Science) 

 

The final material contained various Co species such as metallic Co NPs, core-shell Co/CoOx NPs and single 

Co atoms. Along with reductive aminations from carbonyl compounds and amines (both aldehydes and 

ketones), this catalyst was applied in the synthesis of tertiary amines from nitroarenes. Both transformations 

provided the desired compounds in high yields even using substrates with multi-functionalized scaffolds. 

Finally, the group of T. Zhang and A. Wang demonstrated that the original system proposed by Beller in 

2013 can be tuned to produce a single-atom catalyst.169 The key-point was the use of Mg(OH)2 as sacrificial 

template agent and a Co(II)/Phen chelate as the molecular-defined precursor (Scheme 21). 

Scheme 21 Preparation of the catalysts developed by Beller and co-workers and A. Wang, Z. Zhang and co-workers. 
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It was demonstrated that Mg(OH)2 guarantees the proper dispersion of the Co(II)/Phen chelate and moreover 

it is converted into MgO which was subsequently acid-leached. Thanks to this approach, Co(II) single sites 

were unequivocally detected by HAADF-STEM and XANES in the sample pyrolyzed at 700 °C. 

Additionally, DFT calculations in combination with EXAFS depicted the possible configuration of the active 

species as a Co(II) atom coordinated to four pyridinic-configurated N atoms (Figure 24). 

Figure 24 Comparison between the K-edge XANES experimental spectrum of Co–N–C (solid red line) and the theoretical spectrum 

(black dotted line) calculated with the inset structure. (Reproduced with permission from Ref. 169. Copyright 2016, The Royal 

Society of Chemistry) 

 

The catalyst was employed in the base-promoted reductive coupling of nitroarenes for the synthesis of 

symmetric azo compounds (Scheme 22). 

Scheme 22 Co-N-C catalyzed reduction of nitroarenes to azocompounds in the presence of NaOH. 
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The catalyst remains rather stable over the recycling runs, even if the reaction was conducted under basic 

conditions. This was due to the stability of the CoNx centers embedded into the doped carbonaceous network 

that are prevented from leaching. This work constitutes a rare example of the direct reduction of nitroarenes 

to azoarenes using a Co-based catalyst. Apart from stoichiometric methods, this transformation still relies on 

noble-metal based catalytic systems.97,170 

Very recently the group of W. L. Queen, broadened the use of Co-N-C catalyst demonstrating that Co2P 

supported onto NC are good catalysts for the hydrogenation of nitrobenzene.171 The active materials were 

prepared from the pyrolysis of ZIF-67 along with red phosphorous (Scheme 23).  

Scheme 23 Preparation of Co2P/CNx nanocubes. (Reproduced with permission from Ref. 171. Copyright 2017, Wiley-VCH Verlag 

GmbH & Co. KGaA, Weinheim) 

 

After the thermal treatment, Co2P phosphides NPs with an average size of 5 nm supported onto nitrogen and 

phosphorous doped nanocubes were formed. Interestingly, the nanocubic structure was maintained after the 

thermal process. Despite the relatively mild conditions employed, the activity of such material is comparable 

to that obtained using the P-free catalyst. 

As demonstrated in the case of Fe (vide supra) cobalt sulfides act as catalysts in the hydrogenation of nitro 

compounds. In 2017, X. Guo and Y. Wang reported on the preparation of CoS2 particles supported onto 

graphene produced through a hydrothermal method. Co(NO3)2·6H2O and Na2S2O3·5H2O were used as 

inorganic precursors while graphene and polyvinylpyrrolidone carbonaceous ones (Scheme 24).172 
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Scheme 24 Preparation of CoS2/G. 

 

The material is composed by large CoS2 particles (average size of 300 nm) distributed onto graphene. 

Initially, it was tested in the photocatalytic hydrogenation of nitrobenzene. Even though the reaction was 

performed in the dark, activity was still detected (nitrobenzene conversion <23% with full aniline 

selectivity). Both the inclusion of CoS2 particles onto graphene and irradiation with visible light (300 W Xe 

lamp, 400-800 nm) enhanced the activity under mild conditions (30 °C, 2.5 bar H2, 1.5 h). However, catalyst 

loadings were high (30 mol% based on CoS2 using the graphene supported catalyst) and the provided 

information does not allow for a rigorous comparison with other materials. Few months later, Y. Wang 

reported a similar material for the hydrogenation of 3-nitrostyrene in the absence of light.173 Various metal 

disulfides based on Fe, Co and Ni were prepared following the so-called oxide-to-sulfide method and then 

supported onto porous carbon (PC in Scheme 25). 

Scheme 25 Preparation of MSx/PC following the oxide-to-sulfide method. 

 

Both CoS2/PC and FeS2/PC provided the desired 3-aminostyrene with complete conversion and selectivity. 

However, the Co catalyst showed an improved activity with respect to the Fe one. It should be noted that two 

more works regarding these FeS2-based materials were recently published (vide supra). Combining 

theoretical (DFT) and experimental (EXAFS) studies the presence of two distinct cobalt sites was proposed 

for the H2 activation and substrate adsorption. As straightforwardly demonstrated in previous works 

(especially from the group of A. Corma), the preferential adsorption of the NO2 moiety instead of the C=C 

bond is the essential point for the observed selectivity in this specific transformation.18,174 Moreover, the 

group of Corma group presented a very interesting work in the field of transition-metal sulfur-containing 

catalysts by developing a nanolayered unsupported Co-Mo-S material showing very good catalytic activity in 
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the hydrogenation of nitro compounds. The catalyst was prepared through a simple hydrothermal method 

starting from inorganic precursors (Scheme 26).175 

Scheme 26 Preparation of Co-Mo-S and selected application in the reduction of dinitrobenzenes reported by the group of A. Corma. 

 

Through careful optimization of both temperature and amount of cobalt, the authors were able to prepare 

ordered layers of MoS2 with Co atoms included in the structure. This resulted in the formation of active Co-

Mo-S assemblies with minor amount of isolated CoS2. Both MoS2 and CoS2 showed negligible activity in the 

hydrogenation of 3-nitrostyrene to 3-aminostyrene, chosen as case-study benchmark reaction. The Co-

promoted Mo-S catalyst prepared at 180 °C with a precise Co/Mo ratio indicated highest activity that was 

ascribed to the presence of isolated Co atoms into the MoS2 layers. In fact, catalysts rich of CoS2 were found 

to be less active. It should be noticed that in all the catalytic experiments complete selectivity towards the 

desired 3-aminostyrene was observed as previously reported by Y. Wang and co-workers173 highlighting the 

importance of the presence of metal-sulfur interactions. Following the catalytic protocol developed by 

Corma and co-workers it is possible to hydrogenate substituted nitro compounds with full selectivity in the 

presence of many labile groups such as halogens (despite 4-iodonitrobenzene was not included, 3-

iodonitrobenzene was hydrogenated with full selectivity), carbon-carbon multiple bonds, carbonyls and 

carboxylic acid derivatives. Remarkably, dinitro compounds were successfully hydrogenated to the 

corresponding diamine or nitroanilines simply by varying the amount of catalyst. Finally, the catalyst 

showed a reduced activity over the recycling runs due to the deterioration of the ordered Co-Mo-S structures 

and the concomitant formation of agglomerated phases of CoS2 thus still ensure the desired selectivity but 

lowers the conversion.173 

In general, the use of pristine transition metal-based MOF´s in reduction reactions is limited. In this respect, 

only few examples for reduction of nitro compounds have been reported in the open literature. For example, 
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in 2017 W. Lin and co-workers prepared a Zr/Co-based MOF. The authors claimed that differently 

configured OH groups created binding sites for Co(II) ions, which were reduced with NaBH4 immediately 

before the catalytic experiments.176 Despite the tedious preparation of the catalyst, the activity was low under 

rather severe conditions (40 bar H2, 110 °C, 42 h). In addition, the material was not selective for nitroarenes 

having reducible functional groups such as polar or non-polar double bonds and C-I moieties. Most recently, 

the group of N. H. Khan proposed a new nitrogen-rich starting material (Cucurbit[6]uril) for the preparation 

of the Co-N-C catalysts active in nitro reductions (Figure 25).177 

Figure 25 Preparation scheme for Co@g-C/N-T. (Reproduced with permission from Ref. 177. Copyright 2018, Royal Society of 

Chemistry) 

 

In agreement to the report by Beller, Ragaini and co-workers higher N-content in the final material led to 

increased activity.68 The pyrolysis of the Co(II)/cucurbit[6]uril complex generate a mesoporous material that 

showed a relatively high N concentration (8.54 wt%). As observed in many other cases, both Co(0) and Co 

oxides  structures were detected by XPRD and XPS, respectively. The as-obtained material was active in the 

hydrogenation of nitrobenzene under mild conditions using low catalyst loading (ca. 0.02 mol% Co) 

exhibiting outstanding TOF (up to 14000 h-1). The impressive activity outperformed the one obtained by Z. 

Zhang in 2017.166 The reported reaction scope included dinitro compounds and substituted nitroarenes, but 

only few challenging substrates. Unfortunately, the catalyst is not well recyclable due to metal leaching after 

the second run. Notably, the organic precursor adopted in this work was also employed by the group of W. 

Ding for the preparation of an acid-resistant Ni-based nitrogen-doped carbon catalyst for the selective 

conversion of nitrobenzene to 4-AP under molecular hydrogen.178  



54 
 

In all the aforementioned studies, the materials prepared without the addition of the nitrogen precursor are 

not active in the hydrogenation of nitro compounds. Accordingly, the synergistic combination of Co/Co 

oxide with the nitrogen atoms included in the carbon matrix is crucial for the reactivity. However, in 2016 F. 

Li and G. Yuan demonstrated that Co NPs embedded in ordered undoped carbon are equally active catalysts 

for the hydrogenation of nitro compounds.179 The material was prepared by a two-step method: a first 

solvothermal treatment of a mixture of Co tartrate, glycerol, water and nanographite was followed by drying 

in the air and pyrolysis at 800 °C under Ar atmosphere (Figure 26). Unfortunately, the authors did not 

provide any characterization data for the material prepared through the solvothermal method. 

Figure 26 Preparation of Co/CoO@Carbon. (Reproduced with permission from Ref. 179. Copyright 2016, Wiley-VCH Verlag 

GmbH & Co. KGaA, Weinheim) 

 

It might be supposed that both the glycerol and the nanographite could act as the reductant towards the 

Co(II) salt forming unsupported or capped Co(0) NPs that, upon exposure to air, were superficially oxidized 

to Co(II)/Co(III) oxides. Subsequently, the pyrolysis treatment might create graphene layers around such 

particles and again the Co(II)/Co(III) oxides could be reduced to Co(0). The authors clearly demonstrated 

that the generation of Co(0) during the pyrolysis process is correlated with its temperature, thus the catalyst 

prepared at 800 °C showed the highest activity. The reaction scope embraces many substrates bearing 

diverse functional groups including 4-iodonitrobenzene that was converted into the corresponding aniline in 

80% yield. The recyclability test showed that after the 9th recycle the yield decreased dramatically, ascribing 
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this behavior to the physical abrasion of the graphene shells that readily expose the Co(0) centers to 

oxidation. The key role of Co(0) NPs in the hydrogenation of nitro compounds was extensively studied by 

Corma and co-workers. In 2016, they reported an easy way to prepare metal-rich Co(0) NPs covered by 

graphenic layers following a two-step protocol.174 A Co(II) precursor (in the specific case Co(II)-EDTA) was 

solvothermally treated in MeOH and then reduced under H2 atmosphere at 450 °C. The as-prepared Co@C 

material displays a core-shell structure in which Co in zero oxidation state is surrounded by CoOx (mainly in 

the form of Co3O4) covered by few graphenic layers that present cracks. It should be noticed that, even if 

EDTA was used, the final material does not contain nitrogen. Through the use of in-situ XPS the authors 

proved that under reaction conditions CoOx species are completely converted into metallic Co without 

affecting the morphology of the material. The material prepared under air at lower temperature (250 °C) is 

composed by both Co(0) and CoOx showing a decreased activity in the hydrogenation on 3-nitrostyrene. 

However, the material prepared under air at 450 °C displayed only Co3O4 and was not active in the 

hydrogenation of nitroarenes. Under optimized conditions hydrogenation of 3-nitrostyrene proceeded with 

93% selectivity and 95% conversion. In a further work by the same group, a similar strategy was followed to 

produce Co(0) NPs embedded in glucose-derived carbon (Figure 27).180 Nevertheless, a pyrolysis step was 

necessary for achieving the graphitization of carbon. 

Figure 27 Preparation of Co@C NPs (Reproduced with permission from Ref. 180. Copyright 2017, Elsevier) 

 

Despite the formation of protective carbon shells around the Co(0) NPs their exposure to air creates an oxidic 

layer that can be converted back to the pristine Co(0) by pre-treating the catalyst under H2 before the 

catalytic reaction. Moreover, the use of glucose as carbon source provides a higher number of exposed active 

sites (Co(0) atoms) with respect to the previously discussed catalyst prepared from Co(II)/EDTA (vide 

supra). The two latter features ensure an increased catalytic activity in the selective hydrogenation of 3-

nitrostyrene (selectivity up to 97% at conversion >95%). In order to enhance the formation of Co(0), a 
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bimetallic Ni/Co catalyst was then developed which showed further improved activity (for an exhaustive 

discussion the reader is referred to chapter 7). 

In the last years, a series of dedicated papers dealing with the specific transformation of 4-iodonitrobenzene 

to 4-iodoaniline was published. It should be noted that all of them include some authors from chemical 

industry highlighting the importance of this specific transformation. In 2016, Hassfeld, Roggan and co-

workers prepared Co3O4-NPs encapsulated into nitrogen-doped graphene shells deposited onto CNTs 

through pyrolysis of Co(OAc)2, Phen and carbon nanotubes.181 The prepared material displayed an 

architecture similar to that observed in the material prepared by Beller and co-workers in 2013. Metal NPs 

composed of both Co(0) (detected from XPRD) and Co3O4 (detected from XPS) are incorporated into layers 

of graphene doped with nitrogen atoms and supported onto CNTs. The Co-Co3O4/NGr@CNTs catalyst 

efficiently catalyzed the hydrogenation of 4-iodonitrobenzene to 4-iodoaniline with complete conversion and 

93% selectivity in the desired product under batch conditions. After a careful evaluation of its mechanical 

stability, the catalyst was employed in flow process. Interestingly, despite many structural and chemical 

parallels, the congener Co-Co3O4/NGr@C provides only the hydrodeiodinated product. In further series of 

papers by S. Roggan, N. Steinfeldt and P. Loos a careful evaluation of various catalysts and reaction 

parameters were examined in the hydrogenation of 4-iodonitrobenzene. In a first report,182 among various 

commercially available noble-metal based heterogeneous catalysts (mainly Pt or Pd), Raney®-Co was found 

to provide superior selectivity with hydrodehalogenation <1%. However, complete conversion was never 

reached since upon full conversion the hydrodehalogenation rate became significant and thus leading to a 

rapid decrease of the selectivity. Although the use of Raney®-Co is worthwhile from a selectivity point of 

view, it showed less activity and for this reason high catalytic loadings were required (15 mol%). Good 

performances were achieved under continuous flow conditions, in which Raney®-Co displayed remarkable 

high-term stability over the standard Pt-V/C catalyst normally used in this specific reaction. Raney®-Co was 

applied as catalyst for the reduction of nitroarenes containing a halogen group in their structure. In particular, 

intermerdiates of Clofazimine (used against dermatological diseases) and Refametinib (selective MEK1/2 

inhibitor) were prepared with remarkable selectivity (Scheme 27).183 

Scheme 27 Synthesis of Clofazimine and Refametinib using Raney®-Co. 
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Later on, the performances of another family of commercially available catalysts (namely CoEnCat™) were 

studied.183 The latter are composed by a Co/Al (Co/Al up to 21 wt%) alloy with minor amount of Ni (<6 

wt%) and traces of Cr and Fe encapsulated into a polymeric network. As stated in the paper, the preparation 

of the same was not explained due to intellectual property reasons. However, characterization techniques 

revealed the formation of Al/Co and Al/Ni alloys (specifically Al5Co2 and Al3Ni2). Thanks to the significant 

mechanical stability, CoEnCat™ were successfully employed in continuous flow conditions showing high 

chemoselectivity in the desired 4-iodoaniline (<1% hydrodeiodination). Moreover, CoEnCat™ catalysts 

generally showed higher activity than Raney®-Co and more importantly they do not suffer of hazardous 

pyrophoricity. However, a comparison of the three reported systems revealed how the Co-

Co3O4/NGr@CNTs provided greater productivity and selectivity with respect to both Raney®-Co and 

CoEnCat™. 

In conclusion, catalysts developed by the groups of Z. Zhang166 and N. H. Khan177 represent state-of-the-art 

in terms of activity. The first material can be effectively recycled, a crucial factor for a potential application. 

However, the availability of the starting material for the preparation of the catalyst is scarce since most of the 

common chemical suppliers do not provide that specific molecule (Scheme 11). On the other hand, the N-

containing precursor proposed by N. H. Khan has to be preliminarily prepared (the synthetic pathway is 

rather simple – and involves commercially available chemicals - but concentrated acids need to be used). In 

this respect, the use of commercially available starting materials is advantageous. For instance, catalysts 

described by the groups Beller, F. Zhang, and A. Corma employed phenanthroline, chitosan, phthalocyanine, 

glucose and simple inorganic Co-precursors, thus making them more appealing. 
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4.2. Transfer hydrogenations 

4.2.1. Formic acid and CO/H2O as reductants 

In addition to catalytic hydrogenations, the Co-Co3O4/NGr@C catalyst described by Beller in 2013 was used 

in the transfer hydrogenation of nitro compounds using formic acid and trimethylamine.184 It turned out that 

the reduction of the nitro moiety proceeded with a very high chemoselectivity towards the desired product, 

especially in the case of nitroheterocycles. The same group demonstrated the use of CO/H2O as reducing 

couple in the reduction of aromatic nitro compounds showing selectivities comparable to the two latter 

systems, which is another alternative to molecular hydrogen.185 However, the efficiency of the catalyst is 

lower along with the necessity of higher operative temperature and pressure. In contrast to the previous 

systems, the catalyst was not recyclable. In fact, after the second, run both conversion and selectivity 

gradually decreased. The reason for that was ascribed to cobalt leaching, most probably in the form of 

carbonyl complexes. Recently, Jagadeesh and co-workers employed the Co-Co3O4/NGr@C catalyst in the 

reductive methylation of nitro compounds using aqueous formaldehyde as methyl source.186 In addition, 

reductive amination of aryl aldehydes was also described by the authors. The transformations were 

conducted under transfer hydrogenation conditions using HCOOH/Et3N (Scheme 28). 

Scheme 28 Co-Co3O4/NGr@C-catalyzed reductive amination and dimethyamination of nitroarenes using HCOOH/Et3N as reducing 

agent. 

 

Both the reactions were applicable to many substrates. Along with structurally-simple nitroarenes, various 

bio-active molecules were converted into the corresponding secondary or tertiary amines with very high 

chemoselectivity. Furthermore, upscaling (up to 3 g) and recyclability were successfully demonstrated. 
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After reporting the production of an active Co-N-C catalyst using a template approach,166 the group of Z. 

Zhang described the use of the same and related materials in the catalytic transfer hydrogenation of nitro 

compounds to substituted amines. Since the catalyst was prepared using hydrofluoric acid as leaching agent, 

it turned out to be intrinsically acid-resistant. This allowed for the successful application of the same in the 

reductive amination using an appealing base-free protocol in which only formic acid is employed as 

reductant.187 The reaction was conducted at relatively high temperature (T>150 °C) in order to accelerate the 

imine hydrogenation found as the rate determining step. Consequently, at lower temperature, mixtures of 

imine and amine were always detected. The reaction scope included various amines prepared from nitro 

compounds and aldehydes bearing electronically-diverse functional groups. Later on, the transfer 

hydrogenation of nitroarenes was combined with the well-known Pall-Knorr synthesis for the production of 

N-substituted pyrroles in a one-pot fashion (Scheme 29).188 

Scheme 29 Synthesis of pyrroles from nitroarenes and 2,5-hexadione with HCOOH as reductant using Co-Nx/C-800-AT catalyst 

developed by Z. Zhang group. 

 

The transformation proceeded well with both aromatic and aliphatic nitro compounds leading to the 

corresponding N-substituted-2,5-dimethylpyrroles in high yields. However, at present the reaction is 

restricted to 2,5-dimethylpyrroles which limits its general applicability. 

Shortly after, the same group prepared and evaluated the use of a Co-N-C catalyst produced from ZIF-67 and 

SiO2 following the previously reported acid-mediated template approach (Figure 28).189 Within the 

procedure, hydrofluoric acid was employed to simultaneously remove both silica and the excess of Co NPs 

leading to a mesoporous structure of the material with average particle size dependent on the pyrolysis 

temperature.  

Figure 28 Preparation scheme for Co@CN-800 developed by the group of Z. Zhang. (Reproduced with permission from Ref. 189. 

Copyright 2017, Elsevier) 
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The latter is a phenomena previously observed with catalysts belonging to the Co-N-C family. Compared to 

similar works, XPS analysis showed the presence of both Co(0) and Co(II) oxide and XPRD only displayed 

the presence of Co(0). This evidence indicates the formation of oxidic layers on the surface that might be 

derived from the exposition of the material to air. Even in this case, a large number of nitro compounds, 

ketones and aldehydes were converted into the corresponding secondary amines. The use of Co-N-C 

catalysts in the reductive amination of nitro compounds was further studied by the same group using a 

material derived from ZIF-67 (Figure 29).190 In addition to MOF, a carbonaceous support (graphene oxide; 

GO) was employed. 

Figure 29 Preparation scheme for Co@NC-600-AT developed by the group of Z. Zhang. (Reproduced with permission from Ref. 

190. Copyright 2017, American Chemical Society) 

  

This material showed a micro-mesoporous support with Co(0)/Co(II) oxide NPs. Interestingly, the Co 

content decreases with the rising of the pyrolysis temperature. In fact, when ZIF-67 is directly pyrolyzed 

without any additional support, an opposite trend is observed. With respect to other systems using formic 

acid and Co-N-C as catalyst, the achieved efficiency was lower. Even if the reaction requires high 

temperatures (190 °C), many secondary amines can be produced with high selectivity. However, challenging 

substrates such as 4-iodonitrobenzene as well as furfural were converted to the corresponding amine with 

partial hydrodeiodination (<30%) and decomposition, respectively. Moreover, both aliphatic nitro and 



61 
 

carbonyl compounds were successfully transformed. In the case of ketones, a decreased reactivity was found 

due to steric and electronic reasons. In the same year, Z. Zhang and co-workers published the same reaction 

using a Co-N-C catalyst under water-gas shift conditions. The catalytic material was produced through the 

direct pyrolysis of ZIF-67.191 The structure and composition of the obtained material are in accordance to 

previously published works.161,162,192 The microporous structure of ZIF-67 was converted into a carbonaceous 

mesoporous material upon pyrolysis. With the increased pyrolysis temperature the Co content rose, whereas 

the N content showed an opposite trend. The material is mainly composed of Co(0) NPs along with Co(II) 

oxides on the surface and with increasing the pyrolysis temperature the activity is lower. As a consequence, 

both high temperatures and high CO pressures were crucial for achieving high selectivity towards the desired 

secondary amine without the detection of the intermediate aniline and imine.  

4.2.2. Reductions with NaBH4 

Numerous Co-based catalysts were explored for the reduction of nitroarenes to anilines using NaBH4 as 

reductant, especially in the reduction of 4-NP to 4-AP as model system. Both bulk catalysts, supported and 

unsupported Co-based NPs were found to be active, leading to a large amount of reports on this topic. For 

instance, commercially available bulk Co3O4 was demonstrated to be very effective in this transformation as 

reported in 2011 by Gopal and co-workers.193 In a following study, Meijboom and co-workers showed that 

mesoporous Co3O4 prepared by an inverse surfactant micelle method are more active than the commercial 

one.194 The observed enhanced activity could be ascribed to a plethora of factors, namely high surface area, 

low pore and crystallite sizes. An improved activity was further reported by the same authors demonstrating 

that small amount of alkali- or alkaline earth metals are beneficial for the reaction rate.195 In particular, 

electronic effects rather than morphological and/or structural changes are responsible for the observed 

outcome. Furthermore, M. Yang and G. Chen proved the formation of oxygen vacancies through a partial 

reduction of Co(III) to Co(II) by pre-reducing Co3O4 with NaBH4.196 The catalytic activity of this material 

was found to be higher than the pristine Co3O4. This fact could have a general implication for the reaction 

mechanism in other Co3O4-based catalysts since pre-reduction steps occur in-situ prior or in concomitance of 

the catalytic event. Co3O4 NPs were subsequently supported onto carbonaceous materials (reduced graphene 

oxide; r-GO)197 or silica,198 however without a significant improvement of the catalytic performances. In 

2017, H. Song and co-workers reported that the pyrolysis of commercially available Co3O4 adsorbed onto 
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melamine generated a Co-N-C catalyst showing higher activity than the pristine Co3O4.199 Finally, S.-Z. 

Kang and co-workers reported a Co3O4/CoP composite that was produced through a two-step method,200 

which resulted in hollow polyhedrons of Co3O4 and CoP. The authors claimed that the catalytic activity of 

this material increased with the CoP content. It should be noted that the use of cobalt phosphides was already 

known before. Indeed, in 2013, Y. Ni and co-workers published rod-like Co2P nanostructures produced via 

solvothermal method from cobalt(II) chloride, hexamethylenetetramine and white phosphorous (Scheme 30, 

upper part).201 In another work, Co2P structures were obtained using a similar approach (Scheme 30, central 

part).202 

Scheme 30 Summary of CoxP-based catalyst and related SEM/TEM images developed by the groups of Y. Ni and S.-Z. Kang.  

 

J. J. Gutierrez and co-workers documented the use of Co3S4 as catalysts for the reduction of nitroarenes with 

NaBH4.203 In their work, the authors prepared various transition metal sulfides (NiS, Co3S4, CuS, ZnS and 

Fe3S4) and evaluated them in the benchmark reduction of nitrobenzene to aniline showing that Co3S4 is the 

most active. Subsequently, the catalytic protocol was extended to nitroarenes substituted with simple 

functional groups such as halogens, ethers and hydroxyl groups. 
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Supported metallic Co NPs were as well evaluated in this transformation. Q. Chen and co-workers prepared 

a catalyst through annealing under inert atmosphere of Co3[Co(CN)6]2 with SiO2 using a sol-gel method 

(Figure 30).204 

Figure 30 Preparation of Co@SiO2 developed by Q. Chen and co-workers. (Reproduced with permission from Ref. 204. Copyright 

2014, American Chemical Society) 

 

The material is solely composed by small and well dispersed metallic Co(0) NPs onto silica. Furthermore, N. 

Sahiner and co-workers prepared metallic Co NPs caged into a sulfonated hydrogel structure (Figure 31).205  

Figure 31 Schematic representation of the Co NPs incarcerated into the sulfonated hydrogel polymer (left) and its appearance (right). 

(Reproduced with permission from Ref. 205. Copyright 2010, Elsevier) 

 

Co-based catalytic materials derived from MOF were tested with NaBH4 as reductant, as in the case of 

reduction with molecular hydrogen. In 2016, J. Wang and co-workers used Co-MOF-74 (based on 2,5-

dihydroterephtahalic acid) as starting material for the preparation of Co@C catalyst (Figure 32).206  
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Figure 32 Preparation of Co@C hexagonal-shaped prisms developed by J. Wang and co-workers. (Reproduced with permission from 

Ref. 206. Copyright 2014, Materials Research Society) 

 

The Co@C was composed of metallic Co NPs covered by cobalt oxide with an average size of 5-7 nm. The 

catalytic activities of the materials prepared by J. Wang and co-workers, and Q. Chen and co-workers were 

similar (kinetic constant value of approximately 10-2 s-1 for a pseudo-first order reaction). However, the 

catalyst prepared by N. Sahiner and co-workers showed an activity lower by one order of magnitude. This 

might be ascribed to the larger size of the NPs and mass transfer limitations inside the hydrogel that could 

limit the accessibility of the reactants. 

The use of Co-N-C materials as catalysts in the reduction of nitroarenes (and in particular 4-NP) with NaBH4 

has been extensively studied. The methods for the preparation of these catalysts are similar to those already 

discussed which comprise the pyrolysis of mixtures of Co/N-ligands complexes (or soluble metal chelates 

with or without the addition of supports) or the thermal treatment of coordination polymers (including 

MOF). For example in a recent paper, Z. Wu and co-workers developed Co-N-C material supported onto 

SiO2.207 In particular, the material was prepared following a solvent-free mechanochemical method including 

coating of mesoporous silica (SBA-15) with a Co(II)/Histidine complex. The solid was then pyrolyzed at 

high temperature (600-1000 °C) leading to the formation of an interesting composite constituted by tiny 

metallic Co nanoclusters (average size <1 nm) dispersed into nitrogen-doped carbon present in the 

mesoporous channels of silica. The catalyst displays an impressive activity towards the reduction of 

nitrobenzene to aniline using NaBH4 as reducing agent. Furthermore, as previously discussed, MOFs were 

successfully used as sources of Co-N-C catalysts. For instance, in 2016 H. Song and co-workers208 as well as 

J. Jiang and co-workers209 independently reported on the use of ZIF-67 for the preparation of active Co-N-C 

catalysts. The textural, morphological and chemical properties of the obtained materials are comparable to 

those reported by other authors.161,162,192 The porous materials are both composed of metallic Co NPs covered 

by layers of Co(II) oxides enveloped into the doped carbon matrix. As a result, the two catalysts showed 
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similar activity in the reduction of 4-NP. In a following work, L. Zhao and co-workers reported on the 

preparation of a Co-N-C catalyst from Co-MOF using a two-step protocol.210 After the synthesis of ZIF-67, a 

post-nitrogenation step with urea and thioacetamide was performed. Using this catalyst, the reduction of 4-

NP with NaBH4 was completed after only 80 s with a remarkable pseudo-first order kinetic constant of 6·10-2 

s-1  higher than the one achieved with the catalyst prepared by the pyrolysis of untreated ZIF-67. In 2016, A. 

Choudhury and co-workers used a 1D coordination polymer made from Co(II) precursor and two organic 

components (a dicarboxylic acid and methylimidazole) for the reduction of 4-NP.211 After pyrolysis the 

obtained material displays a mesoporous structure with relatively low surface area. The chemical 

composition was comparable to the one obtained in the case of ZIF-67 with a cobalt particle size distribution 

from 20 to 100 nm. However, the activity was found to be of one order of magnitude lower than that 

obtained applying 3D-coordination polymer-derived catalysts (MOF or ZIF). Finally, a very recent report by 

Y.-N. Liu, L. Deng and co-workers described the preparation of Co4N nitride supported onto nitrogen-doped 

carbon porous nanocages (Figure 33).212 

Figure 33 Preparation (upper part) and corresponding TEM images of: (a) Co-MOF nanocubes; (b) Co3O4@C PNCs; (c) Co4N@NC 

PNCs reported by Y.-N. Liu, L. Deng and co-workers. (PNCs: porous nanocages). (Reproduced with permission from Ref. 212. 

Copyright 2018, American Chemical Society) 

 

The preparation of this material was carried out via a two-step transformation involving the synthesis of Co-

MOF nanocubes (Co3[Co(CN)6]2) followed by pyrolysis and high temperature nitridation using gaseous NH3 

as nitrogen source. After the first pyrolysis step formation of Co3O4 NPs occurred, which were transformed 
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into Co4N phases after nitridation. The temperature of this latter step plays a key role since it was shown that 

below 300 °C only CoO oxides are obtained without incorporation of nitrogen atoms. Among all the 

prepared materials, the one treated at 500 °C (Co4N@NC PNCs-500) was the most active. The reason for 

this was imputed to the higher concentration of Co4N phases and the maximum pore volume. 

4.2.3. Reductions with N2H4 and other reducing agents 

In this section, other reducing agents will be discussed focusing our attention on the use of hydrazine. 

Compared with Fe vide supra only few reports using heterogeneous Co-based catalysts for the reduction of 

nitro compounds were published with N2H4. In a work of D. S. Rawat and co-workers, a catalyst composed 

of Co3O4 supported onto SiO2/Al2O3-mixed oxide was prepared by an impregnation method (Figure 34).213 

Figure 34 Preparation of Co3O4@Al2O3/SiO2 developed by D. S. Rawat and co-workers. (Reproduced with permission from Ref. 

213. Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) 

 

The material displays a microporous-mesoporous structure in which Co3O4 NPs of narrow size (2-3.5 nm) 

are present. This catalyst showed good activity in the reduction of substituted nitro compounds at 60 °C. In 

addition, the protocol tolerates typical functional groups including nitrile and other carboxylic acid 

derivatives, avoiding any hydrodehalogenation pathway while using Cl- and Br-substituted nitro derivatives. 

However, the authors did not test any more demanding iodo-substituted nitroarenes as starting materials. 

Noteworthy is the reduction of nitroarenes containing carbonyl moieties and carbon-carbon double bonds. In 

the case of 4-nitrobenzaldehyde the corresponding aminohydrazone formed, whereas 4-nitroacetophenone 

was selectively converted into the corresponding amine (Scheme 31). 
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Scheme 31 Side-reactions for the reduction of 4-nitrobezaldehyde and 4-nitroacetophenone using Co3O4@Al2O3/SiO2 as catalyst. 

 

As mentioned in the introduction, C=C bonds are easily reduced in the presence of hydrazine. Interestingly, 

in this work both conjugated and isolated double bonds were completely retained. The specific role of the 

mixed oxidic support was not investigated by additional control experiments. Although the authors claimed 

the full recyclability, a continuous decrease of the yields was detected after each run. In a related work, X. 

Wang,X. Lu and co-workers reported on the preparation and use of a mesoporous γ-Al2O3-supported Co 

catalyst.214 The material was obtained through a co-precipitation/impregnation technique followed by 

calcination in the air at 450 °C. At this stage, Co3O4 NPs along with mixed oxides and Co/Al/O spinels were 

formed, which did not display any activity in the reduction of 2-chloronitrobenzene using hydrazine hydrate 

as reducing agent. However, if the so-obtained material was treated with Phen and then pyrolyzed at 700 °C, 

it showed good activity. So far, the necessity of this two-step procedure remains unclear. Characterization of 

the active material suggested the formation of metallic Co NPs (average size of 10-20 nm) and Co-Nx 

species. The reaction scope included 35 substrates carrying various functional groups. In general, EWG 

groups (halogens, trifluoromethyl) caused shorter reaction times than EDG substituents (methyl, hydroxyl, 

amino). Adjusting the reaction times, complete conversion and selectivity were achieved in both cases 

(EWG, EDG). Other reducible functional groups such as carboxylic acid derivatives, double bonds (and in 

particular 4-nitrostyrene), and nitroheteroarenes were successfully retained, although standard carbonyl 

compounds (ketones and aldehydes) were not included in the reported reaction scope. L. Kiwi-Minster and 

co-workers presented a Co-based catalyst supported onto active carbon nanofibers (CoOx/ACF) obtained by 

pyrolysis of ACF impregnated with Co(NO3)2.126 As in the parental case of Fe and Ni, the catalyst displayed 

a microporous structure with very high surface area (>2100 m2g-1) and small NPs composed of CoO (average 

size of 2 nm). A comparison with the corresponding FeOx/ACF and NiOx/ACF interestingly showed how the 

Co-based one possesses a similar activity to the Fe-based one. Both the Fe and Co catalysts provided a two-
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fold activity with respect to the Ni-based one. However, only CoOx/ACF showed both the maximum activity 

and selectivity in the reduction of 3-nitrostyrene affording the corresponding 3-aminostyrene in quantitative 

yield under relatively mild conditions. Z. Zhao and co-workers reported on the use of Co-modified 

molybdenum carbide as catalyst for reduction of nitro compounds.215 The catalysts were prepared by wet 

impregnation of Co(NO3)2 and (NH4)2MoO4 onto activated carbon with hydrogen peroxide followed by 

pyrolysis (Scheme 32). 

Scheme 32 Preparation of M-Mo2C/AC and Co-doped MoS2 developed by the groups of Z. Zhao and M. Rajamathi, respectively. (M 

= Fe, Ni, Co, Cr; AC = activated carbon) 

 

They found that the addition of a transition-metal (Fe, Ni, Co, Cr) greatly enhanced the catalytic activity 

through a synergistic interplay between metal and Mo. Compared with the pristine Mo2C/AC, the Co-

modified material turned out to be the most efficient one. The reaction scope included a relatively small 

number of nitroarenes substituted by various functional groups. Notably, 4-nitrobenzaldehyde was 

quantitatively transformed into the corresponding amine without hydrazone formation. A work published by 

M. Rajamathi and co-workers reported on the preparation of a Co-Mo-S material216 similarly prepared to that 

proposed by Corma and co-workers within the same year. The catalyst was prepared through a hydrothermal 

approach starting from cobalt acetate and ammonium tetrathiomolybdate as sources of Co and MoS2, 

respectively. The catalyst is composed of MoS2 layers containing Co(II) species. Using NaBH4 as reducing 

agent, three benchmark reactions were successfully exploited. In particular, 4-NP, 4-nitroaniline and 

nitrobenzene were reduced to the corresponding amines within 7 minutes. 

The use of a MOF-derived catalyst in the transfer hydrogenation of nitroarenes was proposed for the first 

time by Y. Li and co-workers.217 The Co-MOF was prepared according to a previous report 218 and then 

pyrolyzed at various temperatures (Scheme 33). 

Scheme 33 Preparation of Co@C–N-T developed by Y. Li and co-workers. (Partially reproduced with permission from Ref. 217. 

Copyright 2015, Royal Society of Chemistry) 
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As shown for the catalytic hydrogenation of nitroarenes using molecular H2, the microporous Co-MOF 

structure was converted thermally to a mesoporous Co-rich (37-41 wt%) carbon-based material. XPRD and 

XPS confirmed the metallic nature of Co in the catalyst. The authors further demonstrated that both pyrolysis 

temperature and time have a significant impact on the properties of the materials with respect to the NPs size 

and the surface area. In particular, long pyrolysis time and high temperatures ensured formation of smaller 

particles and large surface area. This general trend was later on confirmed by other authors not only in the 

case of MOF-derived materials (vide supra). The most active catalyst turned out to be the one pyrolyzed at 

900 °C for 15 h employed in various reductive transformations including the transfer hydrogenation of nitro 

compounds, where only isopropanol was employed as reductant under base-free conditions. Along with 

carbonyl compounds (aldehydes and ketones), nitriles and olefins, aromatic nitro compounds were smoothly 

reduced to the corresponding primary amines. The substrate scope regarding the latter family of compounds 

was narrow and the only significant example was the reduction of 4-iodonitrobenzene to the corresponding 

aniline with full selectivity at 98% conversion. However, high catalyst loadings (10 to 20 mol%) and long 

reaction times (>50 h) were needed. The versatility of such a catalyst might be self-defeating since 

nitroaromatics carrying carbonyl and/or nitriles groups could be simultaneously reduced. A few years later, 

H.-L. Jiang and co-workers reported ZIF-67 as precursor for Co-N-C materials (Figure 35).192 

Figure 35 Preparation and related application (NH3·BH3 dehydrogenation and nitro compounds reduction) of Co-CoO@N-doped 

carbon. (Reproduced with permission from Ref. 192 Copyright 2016, Royal Society of Chemistry) 
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The obtained material is composed of Co NPs (mainly Co(0) with an average size of 6-20 nm) bound to 

nitrogen atoms present in the carbon network. This results are in agreement with the one reported by J. 

Gascon and co-workers,162 and Y. Li and co-workers.161 The catalyst was employed in the tandem 

dehydrogenation of ammonia borane followed by hydrogenation of nitroarenes. Here again, the best catalyst 

was the one prepared at lower temperature (500 °C with long reaction time) demonstrating this general 

feature for Co-N-C materials derived from MOF. The proposed protocol was proved to be general for 

reducing nitroarenes in the presence of sensitive groups. As rare example, alkyl nitro compounds were 

reduced to the corresponding anilines with full selectivity. The high Co content (>20 wt%) ensured a 

magnetic behavior rendering easy the recyclability of the catalyst. 

W.-F. Fu and co-workers presented hollow Co3S4 as catalyst for the reduction of nitroarenes using Na2S and 

Na2SO3 as reductants in a sort of catalytic Zinin reaction.219 The catalyst was produced by treating ZIF-67 

with thioacetamide as sulfur-source and subsequently pyrolyzed at 350 °C under inert atmosphere. The 

mechanism and the role of the two reductants are still unclear and water might be involved in the catalytic 

cycle as hydrogen donor. The applicability of the proposed system is not general since nitroarenes 

substituted with different labile groups (ketones, nitriles) and N-heteroaromatic nitro compounds showed low 

selectivities and activities. Nevertheless, no explanation of this observation was provided. 

 

5. Heterogeneous nickel-based catalysts 

5.1. Reduction with molecular H2 

For a long time Raney®-Ni has been employed even in industry as a standard catalyst for the hydrogenation 

of simple nitroarenes. However, more sensitive and demanding substrates cannot be selectively reduced. In 

order to overcome these problems, various tailor-made Ni catalysts were developed over the years. For 

instance, the promoting effect of vanadium additives on the accumulation of the intermediate aryl N-
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hydroxylamines during the reduction of electron deficient nitro compounds to the corresponding amines with 

Raney®-Ni was investigated by Studer, Neto and Blaser in 2000.220 Both supported and unsupported 

promoters in different oxidation states were tested and compared with respect to unmodified Raney®-Ni. 

With the use of promoters, it was possible either to increase or decrease both the accumulation of aryl N-

hydroxylamines and the overall rate. When the accumulation was reduced, however, the catalysts showed a 

pronounced deactivation at the same time. It was found that for an efficient vanadium-containing modifier, 

oxidation states of +4 and +5 are optimal, and that a certain solubility of it is necessary. Usually, the most 

efficient modifier for low accumulation of aryl N-hydroxylamines and for reasonable rates is NH4VO3. In the 

case of 2-chloronitrobenzene, only 14% of aryl N-hydroxylamine accumulated for this modifier, whereas for 

unmodified Raney®-Ni it was 71%. It was proposed that the vanadium modifiers catalyze the 

disproportionation of the intermediate aryl hydroxylamines and in that way affect its accumulation. 

X. N. Li and co-workers have shown that the selectivity of Raney®-Ni for the hydrogenation of 

halonitroarenes towards the corresponding haloanilines can be improved by the addition of dicyandiamide as 

a ligand.221 Ni-hydride species were suspected to be responsible for hydrodehalogenation processes in the 

case of unmodified Raney®-Ni. Those species might be stabilized by dicyandiamide via interaction of the N-

ligand with Ni-H, which results in a suppression of hydrodehalogenation. However, the tested reaction times 

for the unmodified Raney®-Ni were about 2-3 times longer, which might also be the reason for unwanted 

side reactions.  

The effect of metal fluorides on the performance of Raney®-Ni was studied by Y. Liu and C. Xia and co-

workers in 2015.222 The addition of a moderate amount of CaF2, NaF, KF or MgF2, successfully increased 

the reactivity. The most effective additive was CaF2. The effect for this increased activity is not well 

understood, yet.  

As an alternative to Raney®-Ni, Y. W. Chen and co-workers reported a series of nickel borides for nitro 

reductions. In 2006, the group demonstrated the hydrogenation of 4-chloronitrobenzene in the presence of 

nano-Ni-B,223 and a second system consisting of La-promoted Ni-B.224 In both systems, the catalysts were 

produced in a very similar way. Either solely Ni(OAc)2, or combined with LaCl3 (Ni/La ratios of 10 and 

40 wt%, respectively) in the second system, were dissolved in water and subsequently a 1 M solution of 
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NaBH4 was added dropwise. The black precipitate was then isolated. For the Ni-B materials, average 

nanoparticle sizes of 27 nm, 33 nm, and 35 nm were found depending on various parameters related to the 

catalysts preparation. The lanthanum modified Ni-B materials had average sizes of 14 nm and 25 nm for 

Ni/La ratios of 10 wt% and 40 wt%, respectively. In both studies, the catalytic activity was investigated for 

the hydrogenation of 4-chloronitrobenzene in ethanol or methanol. The results indicated that lanthanum is 

promoting the hydrogenation, giving rise to an accelerated reaction, which could be attributed to electronic 

modifications of nickel by lanthanum. 

In the same year, the same group also used P-modified Ni-P-B nanocatalysts for the reduction of 4-

chloronitrobenzene.225 The materials were prepared by the addition of sodium borohydride to a mixture of 

nickel acetate and sodium hypophosphite in water/ethanol (1:1). The B:P:Ni ratio was set to 3:3:1 in order to 

obtain complete reduction of Ni(II) to Ni(0). Overall, six catalysts were prepared and compared. Besides of 

surface areas/compositions and particle dimensions, the different conditions also affected the catalytic 

activity of the materials. A lower metal-loading on the catalyst increased its activity. A strong dependence 

from the solvent was observed as well, as in methanol the reactivity was significantly increased, compared to 

ethanol as reaction medium. In general, the promoting role of boron and phosphorous were thought to be 

both owed to electronic effects; whereas boron can donate electrons to nickel within the composite, 

phosphorous can accept electron density from the metal. This finding was indicated by XPS data. 

The same group also studied tungsten-modified Ni-Co-B-catalysts for the reduction of 4-chloronitrobenzene 

(vide infra).226 In 2011, they investigated molybdenum-doped Ni-B cluster catalysts with different Mo/Ni 

ratios.227 The synthetic methodology was again comparable to the other systems, starting from a methanolic 

solution of nickel acetate and ammonium heptamolybdate. The average size of the nanoparticles decreased 

with an increase amount of molybdenum, resulting in 3-5 nm sized particles. Again, 4-chloronitrobenzene 

was chosen as model substrate. Mo/Ni ratios of 0.4, 0.6, and 0.8, respectively, resulted in higher active 

materials compared to Ni-B, among which a ratio of 0.4 showed the highest activity. It was found that Mo 

did not only act as a spacer and preserved the amorphous state of Ni-B and reduced the particle dimensions, 

but also donated electron density to Ni, and so modified the electronic structure. In 2013, the authors 

combined the promotional effects of Mo and La on Ni-B-catalysts, and hence prepared lanthanum-doped Ni-
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Mo-B nanocluster catalysts.228 Applying the same synthetic strategy, a series of materials was prepared with 

a Ni:Mo:B ratio of 1:0.4:3 and different La:Ni ratios. Particles with a size of 3-4 nm were obtained, which is 

comparable with the Mo-doped Ni-B materials. The optimum molar ratio of La:Ni was found to be 0.2, 

resulting in a high content of Ni0 and higher activities and selectivities.  

Ni-B type catalysts were also reported by H. Li and co-workers in 2007.229 The ultrasound-assisted reduction 

of Ni(NH3)6
2+ with KBH4 in 25% NH3·H2O yielded in a black precipitate, which was then washed with water 

and ethanol. TEM images of the materials revealed that without ultrasound, almost shapeless particles with a 

very broad size distribution were obtained. With increasing power during ultrasound treatment, the size of 

the particles enlarged. Applying 50 W resulted in uniform spherical particles of average 100 nm, which are 

ascribed to cavitation effects of ultrasound. This generates intense shock waves, which induce a 

homogeneous and smooth reaction of Ni(NH3)6
2+ and BH4

-. The formation and destruction of bubbles in 

solution, induced by ultra-sonication, might create localised supersaturation due to the evaporation of solvent 

in the bubbles at elevated temperature, which triggers the nucleation. The active surface area of the particles 

was smaller for 75 W. Using 100 W, this high power induced melting agglomeration of Ni-B particles. The 

catalytic activity of the as prepared materials was investigated in the hydrogenation of 4-chloronitrobenzene. 

Due to the greater active surface area and uptake of hydrogen, a power of 50 W resulted in best activity. 

Noteworthy, all investigated Ni-B type catalysts revealed superior selectivity compared to Raney®-Ni. 

Responsible for this are both the amorphous alloy structures of the materials, as well as the electronic 

interactions between B and Ni. 

Two years later, the same group reported the synthesis of hollow Ni-B amorphous alloy and its activity in 

reducing 4-chloronitrobenzene.230 A mixture of NiCl2·6H2O and polyethylene glycol (PEG) in water was 

sonicated and a viscous and slightly opaque solution was obtained. To this mixture, an emulsion of KBH4, 

PEG and cyclohexylamine was added during ultrasonication. The obtained black precipitate was washed 

with water and ethanol, and stored in the latter. The formation of hollow spheres was thought to originate 

from reversed micelles having hydrophobic groups towards the outside and hydrophilic groups to the inside. 

In this way water is entrapped inside the micelles. Due to the affinity of Ni(II) towards –NH2 of 

cyclohexylamine and oxygen of PEG, it accumulates at the interface of oil and water. When BH4
- is added, 
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NPs are formed in the shape of hollow nano-spheres (Figure 36, (b)). This final reduction is highly 

exothermic and partially destroyed the spheres. When neither PEG, nor amine were added during 

preparation, no hollow spheres were observed by TEM (Figure 36, (a)). In the absence of cyclohexylamine 

solely, monodisperse Ni-B NPs were obtained, and without PEG, hollow spheres and solid NPs coexisted. 

The simultaneous use of both cyclohexylamine and PEG therefore was crucial for the hollow spheres 

formation. In addition, these spheres gave a higher activity compared to solid Ni-B NPs, resulting in an 

improved selectivity and comparable yield after much shorter time. Several chloronitrobenzenes were 

investigated, and all were converted to the corresponding chloroanilines with high conversions and 

selectivities.  

Figure 36 TEM images of Ni-B (a) without, and (b) with added cyclohexylamine and PEG during preparation. The formation of 

hollow nano-spheres can be observed. (Reproduced with permission from Ref. 230. Copyright 2009, Elsevier) 

 

In 2008, related Ni-P-B catalysts were disclosed for the reduction of 4-chloronitrobenzene, which 

demonstrated the synergistic promoting effects of B and P.231 The materials were prepared by the addition of 

aqueous KBH4 to a solution of NiCl2 and NaH2PO2 in water at 30 °C. The molar ratio of P/B was varied, and 

for comparison also materials with either KBH4 (Ni-B) or NaH2PO2 (Ni-P) were prepared. Ni-B showed the 

highest active surface area, Ni-P the lowest. The hydrogen uptake per gram Ni, however, was by far the 

greatest for Ni-B-P materials, along with the yield of 4-chloroaniline. The higher gas uptake could be 

attributed to various reasons, namely alloying degree, B-promoted dispersion of Ni and electronic effects 

(electron density donation from B to Ni). 

F. Li and co-workers studied the catalytic activities of Ni-B particles located either inside or outside of 

carbon nanotubes for the hydrogenation of chloronitroarenes.232 By applying slightly different impregnation 

procedures, Ni(II) was selectively deposited in the tube cavity or outside the tubes, and the subsequent 
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addition of KBH4 generated Ni(0) NPs. Due to the restricted space, NPs inside the tubes were uniformly 

sized and smaller (8 nm) than those outside the tubes (12 to 26 nm), and they tend less to agglomeration. As 

a consequence, more active centres were provided. The promotional effect of Ni-B alloy compared to just Ni 

was explained by a stronger adsorption of the nitro group. Whereas electron-rich Ni interacts with N atoms, 

the electron deficient B further activates the nitro group by electronic interaction with the O atoms.  

A increased activity of NiO NPs located inside multi-walled carbon nanotubes (MWCNTs) was also 

observed by R. Li, Z. Li and co-workers in the same year.233 Whereas inside the channels nitrobenzene was 

reduced to aniline with a yield of 97%, outside of them only 61% aniline was formed at 15 bar H2 within 5 h.  

The hydrogenation of 2-chloronitrobenzene using supported catalysts was investigated by J. Chen and co-

workers in 2007.234 Different inorganic supports were tested regarding their influence on the catalytic activity 

of the material. After aqueous impregnation of ZrO2, SiO2 TiO2, and γ-Al2O3, respectively, with Ni(NO3)2, 

the mixture was let stand at room temperature for 12 h, dried, and finally calcined at 500 °C for 4 h under air, 

followed by reduction in a flow of H2/Ar (1:9) for 2 h. The metal loading was set to 15 wt% for all materials 

and catalytic reactions were carried out at 90 °C and 15 bars of H2 in ethanol. A strong dependence of the 

catalytic performance from the support could be observed. Whereas nickel loaded on TiO2 (anatase) was 

found to be the most active catalyst, with a substrate conversion of 99% after 30 min, selectivity towards the 

amine of 99% and a TOF of 34.9 s-1, γ-Al2O3 was the least suitable support. The superior activity of the 

former catalyst, might be due to a strong polarization of the N=O bond, induced by oxygen vacancies of 

TiOx. One year later, the same group investigated the impact of pre-calcination of the support TiO2 at 

different temperatures for the catalytic activity in hydrogenation of 2-chloronitrobenzene.235 The catalysts 

were prepared as described above,234 but the support was calcined at 500, 600, 700, 800 and 900 °C before 

use. The metal content was set to 20% for each material. The properties of the catalysts were strongly 

affected by the different calcination temperatures. For instance, the specific surface area and the pore volume 

of the materials decreased with increasing temperature. Optimal activity of the catalyst was observed for a 

pre-calcination temperature of 700 °C. The authors associated the performances of the catalyst with the 

active area of metal and the interaction between Ni and TiOx. 
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More recently, the promotional effect of surface defects on the catalytic activity of titania supported nickel 

catalysts was demonstrated by F. Li and co-workers.236 Materials rich in defects, such as oxygen vacancies or 

Ti3+ species, were prepared via dropwise addition of an aqueous mixture of NaOH and Na2CO3 to a solution 

of Ni(NO3)2·6H2O and Ti(SO4)2 in water. The Ni:Ti ratios were set to 1.0, 2.0 and 3.0, respectively. After 

stirring at pH = 9.5 and subsequent ageing and centrifugation, the dried solid was calcined at 500 °C for 6 h 

in static air, followed by reduction in an atmosphere of 10% H2/N2 at 500 °C for 2 h. The as prepared 

catalysts were more active in the hydrogenation of 2-chloronitrobenzene compared to materials derived via 

conventional incipient wetness impregnation method. This was mainly attributed to surface defects, 

including oxygen vacancies and a higher Ti3+:Ti4+ ratio on the surface. 

In 2008, Keane and co-workers investigated the use of nickel on several supports for the hydrogenation of 

chloroanilines in the gas phase.237 In their methodology, a solution of Ni(NO3)2 in 2-butanol was added 

dropwise to the support, with constant stirring. The catalytic activity of the resulting materials decreased in 

the order Al2O3 > SiO2 > AC > graphite for the reduction of 4-chloronitrobenzene. The metal loading of the 

catalysts was 4-6 wt%. At 120 °C and 1 atm of H2, the model substrate was hydrogenated to 4-chloroaniline 

with a selectivity of 100% in a continuous gas phase reaction. Further, 1-chloro-, 2-chloro-, and 4-

bromonitrobenzene were successfully tested. Palladium on Al2O3 was by far more active than nickel on the 

same support; however, in this case the main product was not the chloroaniline, but the hydrodehalogenated 

product. 

Also in 2008, J. L. Figueiredo and co-workers showed that the accumulation of the common but hazardous 

intermediate N-phenylhydroxylamine during the reduction of nitrobenzene to aniline can be avoided by using 

nickel NPs, which are stabilized by filamentous carbon.238 The only side-product reported was 

cyclohexylamine, with a yield of <1%. Three catalysts were produced via removing aluminium from 

Raney®-Ni with concentrated NaOH, followed by simultaneous generation of filamentous carbon along with 

Ni NPs by methane decomposition (see Figure 37). The temperature and the time during the methane 

decomposition were varied to achieve different materials. All of the catalysts revealed a higher activity than 

Raney®-Ni towards the reduction of nitrobenzene at 15 bars of H2 and 120 °C in methanol. Other substrates 

were not investigated.  



77 
 

Figure 37 SEM image of one of the catalysts. Carbon filaments can be seen, holding Ni-NPs on top. (Reproduced with permission 

from Ref. 238. Copyright 2008, Elsevier) 

  

A broad substrate scope was reported for Ni supported on SiO2 by Y. Zheng R. Li, J. Ma and co-workers in 

the same year.239 After passivating the catalyst, it was stable in the air and applied for catalysis without prior 

activation. At 110 °C and H2 pressures of 20 to 30 bar, all of the investigated nitroarenes were converted 

completely, with selectivities of >82% with respect to the primary amine. Alcohols were tolerated, along 

with halogens, aldehydes, ethers and carboxamides. Due to the high Ni content of the catalyst (about 55 

wt%) the material showed magnetic behaviour, which simplified its recycling. While fresh catalyst reduced 

nitrobenzene to aniline within 7 h, the five times recycled one required prolonged reaction time (10 h) to 

reach the same activity and selectivity.  

In 2015, D. Zhou, Q. H. Xia and co-workers tested Ni catalysts on different supports for the hydrogenation 

of 1,5-dinitronaphthalene to 1,5-diaminodecahydronaphthalene.240 The most active catalyst was based on 

SiO2 with a Ni loading of 10 wt%, and modified with sesbania powder. It was found that this modifier led to 

increased BET surface area and pore volume. At H2 pressure of 52 bar and temperature of 220 °C, the 

catalyst completely hydrogenated 1,5-dinitronaphthalene to 1,5-diaminodecahydronaphthalene (95%). Both 

conversion and selectivity dropped slightly during 9 runs in recycling studies. 

As previously shown with cobalt,157 Kempe and co-workers reported a related silicon carbonitride (SiCN) 

based Ni catalyst with remarkable tolerance towards sensitive functional groups.241 To a dispersion of 

polystyrene spheres in toluene, commercial polysilazane was added, together with Ni(nacnac)2 and dicumyl 

peroxide as cross-linker (see Figure 38). After removal of the solvent and crosslinking at 110 °C, the material 
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was pyrolyzed at 900 °C under N2. Aldehydes, iodides, C=C bonds and nitriles survived under the reaction 

conditions of 50 bars of H2 and 110 °C. The catalyst still had an unchanged activity after five runs despite a 

metal leaching of 0.1% was observed during catalysis. 

Figure 38 Synthesis of the SiCN based Ni catalyst reported by Kempe and co-workers. (Reproduced with permission from Ref. 241. 

Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) 

 

In the same year, Z Qin, Z. Liu and co-workers reported the preparation, characterization and catalytic 

activity of a supported Ni-B/SiO2 sol amorphous alloy for nitrobenzene reduction.242 A sol-gel method was 

used for the preparation of the silica sol: a mixture of TEOS in ethanol was treated with ammonia in different 

amounts. Subsequently, an aqueous Ni-solution was added, obtaining a Ni/silica sol after 12 h. The addition 

of KBH4 reduced the nickel, finally. A metal loading of 10% and a TEOS:ammonia ratio of 1:1 were found 

to be optimal, converting nitrobenzene to aniline with full selectivity and the catalyst was successfully 

recycled four times. 

F. Zhao, M. Arai and co-workers demonstrated the beneficial effect of scCO2 as solvent in the hydrogenation 

of nitrobenzene to aniline with Ni supported on γ-Al2O3.243 Compared to ethanol and n-hexane an improved 
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rate was observed for Ni/Al2O3 in condensed CO2 phase. Under a CO2 pressure of 120 bar, H2 pressures of 20 

to 60 bar and a temperature of 50 °C, the amine was formed with conversions up to 68%. In situ FTIR-

measurements suggested interactions of scCO2 with nitrobenzene and the potential intermediates 

nitrosobenzene as well as N-phenylhydroxylamine. Based on the observed side-products, the authors 

postulated the formation of nitrosobenzene from nitrobenzene to be rate-determining. Later, the CO2-

pressures could be reduced to just 8 bar for the hydrogenation of water-insoluble nitrobenzene with 

Ni/Al2O3, by using a H2O-compressed CO2 system at 35-50 °C.244 Both the interactions of H2O and CO2 with 

the reacting species, along with a better dispersion of Ni/Al2O3 in H2O, and the in situ formation of acid sites, 

were determined as crucial factors for this improved system. 

In 2010, the same groups documented that a Ni/TiO2 catalyst can hydrogenate chloronitrobenzenes to 

chloroanilines selectively in scCO2.245 Reactions were carried out at 35 °C under pressures of 40 bar H2 and 

100-110 bar CO2. Compared to ethanol and hexane, again the performance of the catalyst was found to be 

the best in scCO2. Here, the chemoselectivity was 97-99% in a conversion range of 9-100%. Aniline 

formation and accumulation of harmful intermediates was sufficiently suppressed. Interestingly, Ni/Al2O3 

showed similar chemoselectivity, however, the TOF is less than one third. The better performance of Ni/TiO2 

in scCO2 compared to the organic solvents was again explained by interactions of CO2 with the reacting 

species, as described above: due to the interaction of the nitroso group with CO2 its reactivity is increased. 

Furthermore, the conversion of N-chlorophenylhydroxylamine to chloroaniline is likely promoted by CO2, 

too. The use of titania-based Ni catalysts in the hydrogenation of nitrobenzene was reported by B. 

Viswanathan and co-workers two years later.246 

A nickel sulfide material active for nitro reduction was reported by the group of H. Zhang in 2010. 247 By 

applying a mild hydrothermal methodology, uniform nanostructured Ni7S6-flowers were obtained. They were 

active in the hydrogenation of chloronitrobenzenes at 40 bars of H2 and 150 °C. Interestingly, the highest 

conversion was obtained for 2-chloronitrobenzene (98%), whereas 4-chloronitrobenezene was converted the 

least (74%). An even lower conversion of 48% was observed for unmodified nitrobenzene. Selectivities were 

similar for all substrates (96-99%).  
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Another Ni-based system for the hydrogenation of chloronitrobenzenes was reported by J. Qiu.248 Here, 

carbon nanofiber supported Ni catalysts were prepared by a deposition precipitation method in ethylene 

glycol, which achieved over 98% conversion and 97% selectivity with respect to 2-chloroaniline at 20 bars 

of H2 and 140 °C. The size of the Ni particles could be tuned by precipitation temperature, varying from 5 to 

15 nm approximately.   

W. Li and co-workers achieved hydrogenation of 4-chloronitrobenezene by Ni-NPs supported on 

boehmite.249 The conversion dropped from 88% after 50 min in the first run, to 76% after 120 min in the 

fourth run. This was accompanied by a selectivity drop from 96% to 89%. In the hydrogenation of 4-NP a 

decreased conversion was observed as well, although the selectivity stayed constant at 99%. 

D. K. Dutta reported a clay supported Ni(0) based catalyst for the hydrogenation of halogenated 

nitroarenes.250 Via incipient wetness impregnation of Ni into nanopores of activated montmorillonite, and 

eventual reduction with hydrazine hydrate small Ni(0) NPs with a size of approximately 5 nm were achieved. 

Six different halogenated nitroarenes were investigated, resulting in conversions between 78 to 100% and 

selectivities from 96 to 99%. In recycling studies with 4-chloronitrobenzene, a drop of conversion of about 

10% during three runs was observed at marginal decrease of selectivity. 

A carboxymethyl cellulose (CMC) based Ni catalyst for the hydrogenation of both carbonyl compounds and 

nitroarenes was reported by M. Ait Ali.251 At room temperature and under a H2 pressure of 40 bar, 

nitrobenzene and derivatives were converted to the respective amines in high yields. In a recycling study 

with acetophenone as model substrate, the yield of product decreased from 98% in the first run to 81% in the 

fourth. Furthermore, ICP analysis revealed a loss of Ni of 58% during four runs, and oxidation of Ni to NiO 

was detected by XPRD. The authors stated that the formation of the latter might not be the cause of the 

reduced activity during the recycling. 

In 2014, W. Ding and co-workers demonstrated a Ni catalyst for the reduction of nitroarenes in strongly 

acidic medium.252 Highly dispersed Ni on alumina was encapsulated in CN, which isolated the metal from 

the reactive environment (see Figure 39). 

Figure 39 CN encapsulated, highly dispersed Ni on Al2O3 as reported by W. Ding and co-workers. (Reproduced with permission 

from Ref. 252. Copyright 2014, American Chemical Society) 
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According to the authors, hydrogen adsorption and activation occurred at surface nitrogen atoms in the CN 

capsule, by electron donation from nickel. According to the authors the CN shell has two functions: first, 

adsorption and dissociation of the dihydrogen molecule and protection of Ni from the highly acidic media 

(H2SO4 was added for the conversion of nitrobenzene to 4-AP). In such a particular kind of activation, Ni 

atoms could be capable to donate electron density to the CN which is the formal responsible for the H2 

dissociation. A similar mode of activation was proposed by Y. Wang and co-workers in the case of Co 

(Co(0) NPs onto nitrogen-doped carbon nanotubes) supporting it with DFT calculations.82 Later, K. S. R. 

Rao and co-workers also reported carbon-covered, Al2O3-supported Ni catalysts for the hydrogenation of 

nitrobenzene.253 Z. Zhao and co-workers reported a Ni system supported on W2C and activated carbon (AC), 

which hydrogenated nitrobenzene to aniline with a yield of 100% in the presence of Lewis acid.254 In the 

absence of Lewis acid, only 52% substrate was converted with the same catalyst, demonstrating the 

synergistic effect between Ni-W2C and the Lewis acid (in particular, FeCl3 provided the best selectivity). A 

scope of 16 substrates was reported, with selectivities towards the corresponding amine of >99 %. The 

recyclability was demonstrated during nine runs with almost no loss of activity and selectivity. Later on, the 

same group modified this system with mesoporous graphitic CN.255 

L. C. Yang, Q. S. Gao and co-workers reported Mo2C nanowires with highly dispersed Ni as novel catalyst 

for the hydrogenation of nitroarenes.256 A strong metal-support interaction was supposed to be the 

responsible for the good dispersion. The nanowires were synthesized by adding aniline to an aqueous 

solution of ammonium heptamolybdate, followed by acidification to pH = 4-5. Mo3O10(C6H8N)2·H2O 

precipitated and subsequently The final catalyst was then obtained through impregnation with NiCl2 and 

thermal treatment under a stream of 5 vol% H2/Ar. Using this catalytic material, the nitro reductions was 

found to be promoted by water, however to the detriment of recyclability (metal leaching was found to be > 
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90% in some cases). In order to circumvent this issue, the stability of the catalyst was successfully enhanced 

by coating it with carbon via a hydrothermal approach, which protects Ni from the aqueous acidic medium 

partially suppressing the Ni leaching and gaining a discreet recyclability. 

Besides the nanofiber-based system reported by J. Qiu and co-workers (vide supra),248 also H. Jiang and co-

workers used them for the development of their catalyst.257 By fast pyrolysis (1-2 seconds) of NiCl2 and 

FeCl3 preloaded lignocellulose at 600 K, Ni-NiFe2O4/carbon nanofibers were formed. They showed high 

activity and selectivity in the hydrogenation of various nitroarenes at 10 bars of H2 and 150 °C, tolerating 

alcohols, chlorides, and aldehydes. At higher H2 pressure (40 bar), ketones and aldehydes were reduced to 

alcohols in high yields, too. 

 L. Kiwi-Minsker and co-workers published metallic Ni(0) NPs of just about 2.0 nm size, stabilized by 

microporous network of AC fibers, and their catalytic activity in the hydrogenation of nitroarenes.125 The 

catalyst had to be prepared freshly and activated in situ by H2 in order to achieve optimum activity. 

Furthermore, by pre-treatment of the fibres with nitric acid, the activity of the catalyst was increased, due to 

a high concentration of oxygen-based functionalities. Compared to Raney®-Ni, the best catalyst was about 

20-fold more active in the hydrogenation of 4-chloronitrobenzene. In recycling studies, this catalyst showed 

a decreased activity during the first six runs, however, it was relatively stable over the following seven 

consecutive runs. 

In addition to the already mentioned materials, a number of carbon supported Ni catalysts were reported in 

the last decade. Exemplarily, J. Qiu and co-workers reported magnetic, metallic Ni particles on carbon, 

synthesized by a one-step hydrothermal synthesis, followed by calcination.258 

Figure 40 Typical SEM image of the Ni-loaded material reported by J. Qiu and co-workers (Reproduced with permission from Ref. 

259. Copyright 2015, The Royal Society of Chemistry) 
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The most active catalyst was obtained at a calcination temperature of 300 °C. It converted nitroarenes to the 

corresponding amines with high conversions and selectivities, including chloronitroarenes. In recycling 

experiments with 2-chloronitrobenzene, neither the conversion, nor the selectivity revealed an obvious drop 

during 10 cycles. One year later, the same group documented the in-situ synthesis of cotton-derived, carbon 

supported Ni catalysts and tested their activity in the same hydrogenation (see Figure 40).259 This time, 

400 °C seemed to be the optimum calcination temperature, which led to very high conversion and good 

selectivity after 5 h and 5 bar H2. The size of the well-dispersed nickel particles was about 6-14 nm, and the 

metal content was 51 wt%, resulting in a magnetic material.  

By treating AC with nitric acid, oxygen surface groups are created, as was shown by A. Wang, T. Zhang and 

co-workers.260 Those surface groups can stabilize Ni particles by preventing them from sintering, and assist 

catalysis by interacting with the nitro group of the substrates. In that way, they play a key role in this system 

and are responsible for high activity and chemoselectivity. Substituted nitroarenes were successfully 

hydrogenated to the corresponding anilines, whereas α,β-unsaturated nitroarenes were rapidly hydrogenated 

to oximes. 

Thermolysis of a nickel containing MOF to achieve graphitic carbon layers, which encapsulate Ni NPs, was 

reported by E. C. Yang, X. J. Zhao and co-workers in 2017.261 The MOF structure was build up with 

terephthalic acid and NiCl2·6H2O. The prepared MOF was then thermolyzed under nitrogen at 450-750 °C. 

In that way, a highly active material for the nitro reduction with H2 was obtained. After 40-80 min at 140 °C 
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and 5 bar H2, all investigated substrates were successfully hydrogenated with very high conversions and 

selectivities. The catalyst was recycled five times, without notable loss of activity. 

In 2017, T. Chen and co-workers reported a C60-stabilized nickel-catalyst for the hydrogenation of 

nitrobenzene.262 It was synthesized by mixing a Ni-precursor with HCl pre-treated C60 in ethanol assisted by 

sonication. The mixture was stirred at 60 °C for 12 h, and after evaporation of the solvent, the material was 

dried. Prior to use in catalytic experiments, the catalyst was reduced either by N2H4·H2O or NaBH4. The 

material with a Ni-content of 30% reduced nitrobenzene to aniline at 90 °C and 20 bar H2 within 40 min with 

almost quantitative conversion and selectivity. Ni(OAc)2 was found to be the best precursor, and the optimal 

molar ratio of NaBH4 to Ni was 4:1. The catalyst was recycled six times, and both conversion and selectivity 

showed just small decrease during the runs. 

Besides, also N-doped and N-functionalized carbon supported systems were of interest. In this respect, W. 

Ding and co-workers reported nickel embedded in nitrogen-doped carbon for the direct hydrogenation of 

nitrobenzene to 4-AP in sulfuric acid.178 The catalyst was obtained by dipping a nickel nitrate solution into 

an N-containing polymer, built up with glycoluril and terephthalaldehyde, followed by subsequent pyrolysis 

at 600 °C for 6 h under argon. The nitrobenzene conversion could be enhanced by increasing the acid 

concentration, however it remains inly moderate.  

A more general hydrogenation catalyst consisting of Ni NPs with N-doped graphene shells, was reported by 

Beller and co-workers in 2016.263 With the use of several characterisation techniques it was concluded that 

the majority of the nickel is present as metallic Ni, however, also NiO is co-existing at its surface (Figure 

41). 

Figure 41 Schematic representation of the N-doped graphene wrapped core-shell structure of the Ni catalyst reported by Beller and 

co-workers. (Reproduced with permission from Ref. 263. Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) 



85 
 

 

Those particles are highly dispersed and covered with an N-doped graphene-layer matrix. Partially, the Ni 

particles also occupy pores of the support (Figure 41). The material was synthesized by mixing Ni(OAc)2 

and Phen in a 1:2 ratio in ethanol at 70 °C. After 1 h stirring, Vulcan® XC72R as carbon support was added. 

Finally, the solvent was removed and the dried material pyrolyzed at 600 or 800 °C under argon for 2 h. The 

obtained catalysts hydrogenated nitrobenzene and other nitroarenes to the corresponding anilines in a 

THF/H2O mixture at 110 °C, H2 pressure of 50 bar, and 1.0 equivalent of triethylamine. The presence of base 

improved the activity significantly. Furthermore, reductive amination reaction between phenylacetone and N-

ethylbenzylamine was successful. 

Most recently, also X. Wang, X. Lu and co-workers made use of Phen as nitrogen source for metals activated 

by N-doped graphene, incorporated in ordered mesoporous carbon for the efficient hydrogenation of a 

variety of nitroarenes.264 Typically, a precursor solution consisting of phenol and formaldehyde was added to 

an ethanolic solution of Pluronic F127 at 40 °C. After 10 min stirring, metal nitrate solubilized in ethanol 

was added (M = Ni, Co, or Fe). Then, the solution was treated with 2 equivalents of acac and 1 equivalent of 

Phen, with respect to metal. Finally, the solvent was evaporated and the dried residues were temperature-

treated for 3 h under nitrogen. The nickel-containing materials were pyrolyzed between 500 and 900 °C, 

cobalt and iron loaded ones at 800 °C. XPS analyses revealed that with rising temperature, the nickel content 

increases on the catalysts surface, and simultaneously the relative amount of nitrogen decreases. This is also 

true for the actual elemental content of the whole material, determined by elemental analysis. The weight 

percentage of carbon, however, is constant at the surface with about 80%, whereas overall it increases with 

rising temperature. Catalytic investigations demonstrated the superior activity of the nickel containing 

material treated at 800 °C for hydrogenation of nitrobenzene at 100 °C in water and H2 pressure of 50 bars. 

At lower and higher temperatures, however, the conversions decreased, while the selectivity towards aniline 
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stayed constant. When the addition of Phen was omitted during the catalyst preparation, the activity dropped 

significantly, too. Exchange of nickel with iron or cobalt, respectively, also yielded catalysts with lower 

activity. With the most active catalyst, a broad variety of substrates was selectively hydrogenated, and a high 

functional group tolerance was observed. For instance, esters, halides, olefins and nitriles survived during the 

reaction. A good recyclability was shown during seven runs. This was compared with a catalyst, which did 

not contain any nitrogen. A loss of activity was observed for that material, which demonstrated the 

importance of nitrogen present in the material. 

A novel catalytic material for nitro and related reductions was very recently disclosed by Beller and co-

workers.265 In their work they discovered that intermetallic nickel silicide NPs supported on silica showed 

improved activity and stability compared to the benchmark catalyst Raney®-Ni. Several materials were 

synthesized via the formation of nickel complexes from Ni(OAc)2 and Phen, which were subsequently 

treated with inorganic supports and pyrolyzed at 600, 800, or 1000 °C, respectively. Among the as prepared 

catalysts, Ni-Phen@SiO2-1000 was suitable for the hydrogenation of nitroarenes, nitriles, carbonyl 

compounds, N-heterocycles and unsaturated carbon-carbon bonds at comparably mild conditions. More 

specifically, 18 nitroarenes were selectively reduced at 60 °C and 10 bars of H2 in methanol/water (1:1). A 

broad variety of functional groups was tolerated, including bromides, (thio)ethers, amides, and a 1,2,5-

thiadiazole derivative. During five recycling experiments, neither loss in reactivity, nor leaching of nickel 

was observed. In contrast to Raney®-Ni, the optimal catalyst is stable and safe to store and handle even in 

the air, which makes it an interesting alternative. Furthermore, a curious mechanism for the formation of the 

catalyst was proposed: ppon heating up to 600 °C, metallic Ni NPs are formed. Further increase of 

temperature to 800 °C leads to the reduction of surface silica and Ni17Si3 is formed. Then, diffusion of Si into 

the Ni NPs is growing exponentially with the temperature. As a consequence, a mixture of Ni31Si12/Ni2Si is 

obtained. The surface of the NPs is oxidized under air, giving rise to NiO/SiO2 shell. This increased amount 

of silicon in the nickel NPs was thought to be responsible for the superior activity of this catalyst, compared 

to lower pyrolysis-temperatures (Figure 42). 

Figure 42 Mechanism for the formation of nickel silicide NPs via reductive silicidation, as was proposed by Beller and co-workers. 
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In 2017, F. Hao, P. Liu and co-workers investigated the hydrogenation of nitro-substituted naphthalenes, 

catalyzed by Ni NPs supported on N-functionalized active carbon (AC).266 As in the previous system by 

Beller,263 pyrolysis at 800 °C resulted in the most active catalyst. The dispersion of Ni, its particle size and its 

chemical state distribution were influenced by the nitrogen-containing species on the surface of the carbon, 

which itself could be partly controlled by the applied temperature during the preparation process. The most 

active catalyst converted 1-nitronaphthalene, 1,5-, and 1,8-dinitronaphthalene to the corresponding amines 

with yields >94%. 

Recently, a work by A. Corma, M. Boronat and co-workers described a combined experimental 

(kinetics)/theoretical (DFT) study in order to get some insights into the reaction mechanism of the 

hydrogenation of nitroarenes, using Ni@C as catalyst.267 The preparation of the catalyst was earlier reported 

by the same group in previous work (see Chapter 7.1.1).180 Using nitrobenzene as model substrate the authors 

demonstrated that nitrosobenzene is formed as main reaction intermediate and the transformation occurs 

through the following elementary pathway: PhNO2 → PhNO → PhN → PhNH → PhNH2 in which the rate 

determining step is located in the H transfer to the PhN species adsorbed onto the Ni surface. This pathway is 

consistently different from the one possible on Pt surface in which the breaking of the N-O bond is more 

difficult. Moreover, they also clarified the role of water. Owing to the oxophilic nature of Ni, the oxygen 

atoms of PhNO2 are transferred onto the Ni surface and then are converted into water by H2, which represent 

an energetically demanding step. Further effort was done to understand the preferential selectivity of the 

Ni@C catalyst towards the hydrogenation of the nitro group in 3-nitrostyrene (a selectivity of 80% in 3-

aminostyrene was obtained stopping the reaction at full conversion after which the product is rapidly 
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converted into 3-ethylaniline). This behaviour was rationalized considering the different Ni surface 

adsorption geometry of 3-nitrostyrene and 3-aminostyrene. 3-Nitrostyrene is adsorbed perpendicularly with 

the nitro group avoiding the reduction of other moieties present on the arene ring. On the contrary, the latter 

adopts a parallel geometry in which the C=C bond can be easily attacked by the H atoms present on the 

surface. 

A different approach for stabilizing Ni NPs was reported by Z. Hou and co-workers in 2014.268 The 

combination of the ionic liquid (IL) 1-butyl-2,3-dimethylimidazolium acetate [BMMIm]OAc with the 

symmetric triblock copolymer Pluronic P123, produced Ni NPs stabilized by water-soluble micelles. These 

materials were active in the hydrogenation of C=C bonds as well as nitrobenzene and derivatives. Very high 

selectivities of >99% towards amines were reported at H2 pressures of 15 bar and 60-70 °C. Due to the 

micelle formation, agglomeration of the usually poorly stable Ni NPs was prevented. The addition of the IL 

avoided emulsification and simplified product separation. Furthermore, in recycling studies the activity 

decreased after three cycles in the absence of IL, whereas in the presence of [BMMIm]OAc the conversion 

did not significantly drop even after five runs. The reduced conversion from the sixth run onwards were 

mainly be attributed to leaching of Ni, and oxidation and aggregation of NPs. ICP analysis revealed a 

leaching of 15 ppm of Ni. 

5.2. Transfer hydrogenations 

5.2.1. Reductions with NaBH4 

Apart from H2, also sodium borohydride attracted much attention in nickel catalyzed reductions of 

nitroarenes. Similar to the previously described metals, numerous academic publications make use of this 

reductant in the presence of various homogenous and heterogeneous Ni compounds. As an example, in 2007 

M. Litvić and co-workers showed that Raney®-Ni successfully reduced nitroarenes in the presence of 2 

equivalents of NaBH4.269 Within 5 to 20 min, all investigated substrates gave the corresponding amines in 

high yields in MeOH at 30-40 °C. One year later, A. Rahman and S. B. Jonnalagadda investigated the effect 

of different Ni loadings supported on either silica or titania, respectively.270 Seven different catalysts were 

prepared by impregnation method, among which 5% Ni-SiO2 was found to be most active. In the presence of 
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>10 equivalents NaBH4, Ni-B was generated in situ and various nitroarenes were converted to the 

corresponding amines during 10-20 min at 5 °C. 

In addition, N. Sahinera and co-workers reported Ni NPs of about 100 nm size absorbed within an anionic 

hydrogel network of poly(2-acrylamido-2-methyl-1-propansulfonic acid).271 They were generated in situ by 

the reduction of Ni(II) with NaBH4. The material was tested with 2- and 4-NP and reduction rate constants at 

different temperatures, as well as activation parameters were calculated, revealing activation energies of 

22.70 kJmol-1 for 4-NP, and 38.69 kJmol-1 for 2-NP.   

R. J. Kalbasi and co-workers functionalized mesoporous silica SBA-15 with polyvinylamine.272 Therefore, 

acryl amide was polymerized by the radical initiator benzoyl peroxide in the presence of SBA-15. 

Subsequently, the polyacrylamide was converted to a polyvinylamine by treating it with Ca(OCl)2 in water. 

Afterwards, aqueous NiCl2 was added and in the presence of NaBH4, Ni NPs were formed (see Figure 43). 

This material was active for eight nitro-group containing substrates. Isolated yields of the corresponding 

amines of about 98% were achieved at room temperature during 2 to 85 min in the presence of 4.0 

equivalents of NaBH4 in water. The catalyst was successfully reused five times, without loss in activity. 

Later, the system was modified by growing hyperbranched polyamidoamine (PAMAM) dendrimers on its 

surface.273 The authors stated that the modified system is advantageous compared to the previous one, by 

means of higher reactivity and better reusability. Even though the new system was recycled ten times, the 

yield dropped from the sixth run on. As the recycling of the previous one was stopped after five runs, 

comparison is difficult. 

Figure 43 Synthesis of polyvinylamine-carried nickel NPs, supported on SBA-15. (Reproduced with permission from Ref. 272. 

Copyright 2011, Elsevier)  
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Later, a similar catalyst was prepared by growing Ni NPs-loaded dendrimeric PAMAM on the surface of 

Fe3O4.274 The material was able to convert nitro compounds and nitriles to amines at 40 °C and 95 °C, 

respectively, in water. Notably, also aliphatic nitroethane was converted to ethylamine with 89% yield. 

Functional groups such as carboxylic acid, ketone, aldehyde and halogen were tolerated by this system. A 

small drop of yield for the hydrogenation of 4-nitroaniline was observed during six runs. 

A. Chinnappan and H. Kim made use of transition metal based ILs for the NaBH4 promoted reduction of 

nitro compounds.275 As an IL, both 1,1’-hexane-1,6-diylbis (3-methylpyridinium) tetrachloronickelate (II) 

[C6(mpy)2][NiCl4] and polyvinylidene fluoride (PVDF)-IL nanofiber composites were investigated at 

ambient temperature in water. The latter material was prepared via electrospinning to obtain nanofibers in 

sub-micrometre sizes. Several functionalized nitroarenes were successfully converted to the corresponding 

anilines with both materials. The activity of PVDF nanofiber composite outperformed that of 

[C6(mpy)2][NiCl4]. Furthermore, its recyclability was tested during four runs.  

Zamani and Kianpour described an easy to prepare Fe3O4/β-alanine-acrylamide-Ni nanocomposite, which 

successfully transformed nine different nitroarenes in short reaction times of maximum 15 min at room 

temperature in water.276 Fe(II) and Fe(III) chloride hydrates were heated in basic conditions in presence of β-

alanine. Afterwards, acrylamide was added, followed by NiCl2·6H2O. By treatment with NaBH4, Ni NPs 
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were formed (see Figure 44). During eight runs, the yield of aniline in the reduction of nitrobenzene dropped 

from 98% in the first, to 92% in the last run. 

Figure 44 Preparation of a Fe3O4/β-alanine-acrylamide-Ni nanocomposite. (Reproduced with permission from Ref. 276. Copyright 

2014, Elsevier) 

 

In the same year, X. H. Li, K. X. Wang and co-workers tried to mimic enzymes with NiS2+x NPs on 

polymeric melon (g-C3N4).277 In comparison with analogous noble metal catalysts (Pd, Au, Pt), the novel 

NiS2+x/CN showed a better selectivity for the reduction of nitrobenzene at full conversion. For instance, 4-

bromo- and 4-iodonitrobenzene produced mainly aniline by dehalogenation-processes using Pd/CN, whereas 

NiS2+x/CN showed selectivities towards the p-halo aniline of >99%. Experiments were conducted in water 

and in the presence of 1 equivalent of NaBH4, with respect to substrate. 

N. Sahiner and co-workers made use of microgel supported Ni NPs for nitro reductions.278 Poly(sulfobetain 

methacrylate) hydrogels were prepared by inverse suspension polymerisation of the zwitterionic monomer 

(Scheme 34). This hydrogel was then loaded with Ni(II) and the addition of NaBH4 generated Ni NPs in situ. 

The resulting material showed to be active in the reduction of 4-NP and, less effective, for 2-NP and 4-

nitroaniline. During three cycles of 4-NP reduction, the activity of the catalyst dropped to only 10%. 
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Scheme 34 Polymerisation of sulfobetain methacrylate. 

 

R. J. Kalbasi and O. Mazaheri reported Ni NPs inside ZSM-5 as another efficient bi-functional catalyst for 

nitro reduction.279 Two different catalysts were prepared using specific mesoporous silica (KIT-6) to give 

Ni/mZSM-5 and its acidic form Ni/H-mZSM-5, which was obtained by ion-exchange with aqueous NH4Cl 

solution in reflux. Interestingly, the acidic form was more active in the reduction of nitrobenezene than 

Ni/mZSM-5, resulting in shorter reaction times and lower amounts of catalyst. 19 Nitro-containing substrates 

were reduced with Ni/mZSM-5 within 1 to 65 min. For instance, 1-nitronaphthalene was reduced to the 

corresponding amine with Ni/mZSM-5 after 15 min and with Ni/H-mZSM-5 after just 3 min. Both catalysts 

revealed a decreased activity in recycling experiments during seven runs. Notably, Ni/H-mZSM-5 was also 

active in the reductive amination of aldehydes with nitroarenes, resulting in secondary amines.280 

M. Karthik and P. Suresh synthesized a rGO nickel composite.281 The material was prepared by the 

simultaneous reduction of graphene oxide and Ni2+ using L-ascorbic acid in water. A relatively high nickel 

loading of 19.7% was determined, with average particle sizes of 10 nm. In the presence of 13 equivalents of 

NaBH4 in water, the material was able to reduce a large scope of substrates, including two aliphatic ones. As 

for most such systems high yields were obtained during short times (10 to 40 min). Noteworthy, a good 

tolerance towards functional groups was found: even 4-iodonitrobenzene was selectively hydrogenated to 4-

iodoaniline with 98% isolated yield. In addition, the magnetic catalyst was used in five consecutive runs with 

a slight decrease of yield. 

A Ni based N-doped mesoporous carbon catalyst was derived by calcination of a MOF by Z. Dong and co-

workers in 2016.282 After the MOF was synthesized from 4,4’-bipyridine, 1,3,5-benzenetricarboxylic acid 

and Ni(NO3)2·6H2O, it was calcined at 700 °C under nitrogen for 2 h. The as synthesised material 

successfully reduced 4-NP, using NaBH4 as reducing agent in large excess. 



93 
 

Another catalyst consisting of Ni NPs anchored on N-doped porous carbon was reported by M. Xue and co-

workers recently.283 An aqueous NiSO4·6H2O solution was added dropwise to a solution of 

dimethylglyoxime (dmgH2) in ethanol, resulting in the formation of Ni(dmgH)2 (dmgH: 

dimethylglyoximate). After purification, it was calcined at different temperatures ranging from 400 to 700 °C 

under a flow of nitrogen for two hours. The optimum calcination temperature was found to be 700 °C, and 

that material was able to reduce 4-NP with NaBH4 in water within 3 min. 

L. Liu, Z. Xue and co-workers reported amorphous NiB/carbon nanohybrids to be active in the reduction of 

4-NP in the presence of NaBH4.284 It was found that the amorphous NiB layer donates electrons to the carbon 

template, which makes NiB more electrophilic. Due to this enhanced electrophilicity, adsorption of reactants 

is favoured, along with the generation of active H species on the surface by cleavage of B-H bond. This 

facilitates the hydrogenation of 4-NP. 

Also X. Su and co-workers reported carbon coated Ni NPs for the reduction of 4-NP.285 By applying a 

calcination approach, highly dispersed NPs with a mean diameter of less than 3 nm were obtained. Several 

calcination temperatures were investigated, revealing 600 °C as the optimum one. With a large 

NaBH4/substrate ratio of >800, 4-NP was hydrogenated. The catalyst was reused four times without 

significant decreasing of the conversion. 

Ni NPs supported on carbon black were documented by L. Zhang, X. Sun, X. Wang and co-workers in the 

same year.286 Their catalyst was prepared from nickel chloride, using hydrazine hydrate as the reducing 

agent. The magnetic material reduced 4-NP to 4-AP at 30 °C with 105 equivalents of NaBH4. The authors 

ascribed the activity of this catalyst to the specific characteristics of the nanostructure of the material and the 

synergistic effect of carbon black and nickel NPs. In recycling studies, the conversion slightly decreased 

after the 8th run. 

A different nickel catalyst for the reduction of 4-NP was reported by Y. Yang and co-workers in 2014.287 It 

was prepared by the pyrolysis of surfactant directed CTAB-chitosan-nickel supramolecular aggregates 

(CTAB: cetyltrimethylammonium bromide). The pyrolysis temperature affected the textural property of the 

carbonaceous supports, the morphology of the Ni NPs, and the catalytic activity. That catalyst 

simultaneously possesses uniform spherical Ni NPs of 24 nm, and bottle-neck mesopores. The highest 
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activity of 20.9 s-1g-1 was found for the pyrolysis temperature of 750 °C. It was successfully recycled five 

times, showing almost the same conversion during all runs. 

J. Xie and co-workers investigated the reduction of 4-NP, as well.288 In their studies they used a nano sized 

nickel core surrounded by a mesoporous silica shell. The size of the metallic core was controlled by addition 

of chelating EDTA. Dependent from the concentration of the latter, sizes of 40-80 nm were obtained. More 

specifically, nickel acetate and EDTA were stirred in deionized water, and by adding NaBH4 and heating, Ni 

NPs were achieved. Afterwards, the particles were coated with TEOS in the presence of CTAB and ammonia 

using the Stöber method.289 After calcination at 550 °C for three hours, mesoporous silica was obtained. 

Increasing amount of catalyst, temperature and pH-value resulted in an increased rate constant. In addition to 

the good activity, the magnetic behaviour of the catalyst simplified the recycling procedure, resulting in a 

hardly changing rate constant during five runs. 

L. Latterini and co-workers investigated the influence of stabilising agents on the catalytic performance of 

nickel colloids in the hydrogenation of 4-NP.290 Both thermolysis and polyol procedures were used for the 

preparation of NPs, which had mean diameters ranging from 6.7 to 9.9 nm. Tested stabilizers were 

dioctylamine, trioctylphosphine, and PVP. It was found that alkyl-amine stabilised NPs resulted in a 

significantly improved reaction rate, TON and TOF. A reduced surface steric hindrance was assumed to be 

responsible for this. However, along with 4-AP, azobenzene derivatives were observed as side products. The 

selectivity towards the amine was improved with polyvinyl pyrrolidinone as capping agent. 

In 2015, S. Thakore and co-workers reported core-shell iron oxide on Ni NPs as a magnetically recyclable 

catalyst for nitro reductions.291 Here, a simple procedure for catalyst preparation was applied: addition of 

nickel acetate and soluble starch as stabilising agent to an aqueous solution of iron oxide was followed by the 

reduction of Ni2+ with NaBH4. The as obtained material reduced a broad scope of substrates to the 

corresponding anilines in water and in the presence of 4 equivalents of NaBH4. Recyclability was 

demonstrated during 30 cycles for the reduction of 4-nitroaniline. However, the needed reaction time for full 

conversion increased from initial 12 min to 140 min in the last run. 

One year later, H. Wang, W. Guo and co-workers demonstrated the use of small Ni NPs within ultrathin SiO2 

sheets, covering an iron oxide core in a yolk-shell fashion, for efficient reduction of nitroarenes.292 The metal 



95 
 

NPs have a mean diameter of 4 nm and the sheets of SiO2 have a thickness of only 2.6 nm. These latter 

sheets supresses agglomeration of the NPs which is common for other supported small NPs. Furthermore, the 

authors claimed that the active Ni sites are better accessible. The materials were synthesized by the addition 

of urea and nickel(II) nitrate to an aqueous suspension of Fe3O4@SiO2. After ultrasonication, the reaction 

mixture was heated inside an autoclave at 105 °C for 12 h. The as obtained material has mesoporous 

channels suitable for diffusion of reactants to the active sites. Those channels are provided by the large inner 

cavities and interlayer spaces between the SiO2/Ni nanosheets. A comparably high activity for the reduction 

of nitroanilines and -phenols was observed for the conversion of 4-nitroaniline during 10 runs. 

The stabilizing effect of TEMPO-oxidized nanocellulose (TEMPO: (2,2,6,6-tetramethylpiperidin-1-yl)oxyl) 

on in situ formed nickel boride from NiCl2 and NaBH4 was investigated by P. Dinér and co-workers.293 With 

a catalyst loading of 0.25 mol% with respect to Ni, 2.5 equivalents of NaBH4 and 0.01 wt% nanocellulose, 

several aromatic and three aliphatic nitro compounds were reduced to the corresponding amines in water at 

room temperature. Several functional groups were tolerated; however, nitro substrates containing aldehyde 

and ketone groups were reduced to the corresponding amino alcohols. In addition, the authors demonstrated 

the utility of their protocol in two tandem procedures: in the first one, the in situ formed amines were Boc-

protected to carbamates, by the addition of Boc2O (Boc: tert-butyloxycarbonyl) to the crude reaction mixture. 

Notably, the more difficult substrate trans-β-nitrostyrene was converted to the reduced carbamate in high 

yield (Scheme 35, path a). In the second one, the generated amines were reacted further with added epoxides, 

resulting in biological important β-amino alcohols (Scheme 35, path b). 

Scheme 35 Tandem reductions of nitro compounds to a) Boc-protected amines (carbamates) and b) β-amino alcohols as reported by 

P. Dinér and co-workers. 
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Most recently, M. M. Dell’Anna and co-workers reported another type of Ni NPs to be active in aqueous 

nitro reduction.294 Here, the polymerizable complex Ni(AAEMA)2 was synthesized by adding a basic 

solution of (2-acetoacetoxy)ethyl methacrylate (HAAEMA) in ethanol to a solution of Ni(NO3)2·6H2O in 

ethanol. After polymerisation of the latter, the material was calcined in a flow of N2 at 300 °C for 30 min. 

The resulting catalyst converted several nitroarenes to the corresponding amines in the presence of NaBH4 in 

a H2O/Et2O mixture. Noteworthy, even 4-iodonitrobenzene was reduced to 4-iodoaniline in 82% yield, 

avoiding hydrodehalogenation. In recycling experiments with 4-bromoaniline, the yields were approximately 

constant over five runs.  

Apart from pure Ni NPs, also nickel-tin bimetallic NPs were reported to be active in the reduction of 

nitroarenes.295 In this case, nickel formate, tin(II) chloride and polyvinyl pyrrolidone (PVP) were dissolved in 

ethylene glycol and heated. As soon as the temperature reached 69 °C, NaBH4 was added and the mixture 

was refluxed for 2.5 h. By varying the Ni:Sn ratio, the composition of the catalysts could be tuned, yielding 

in Ni100, Ni74Sn26, Ni59Sn41 and Ni50Sn50. With an increasing tin concentration up to 41 mol%, an enhanced 

activity was achieved with respect to pure nickel, resulting in shorter reaction times. However, further 

increase of the tin content decreased the activity. The best performance was determined for Ni74Sn26, which 

was used for a small scope of substrates at room temperature in water. 
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One year later, V. Marakatti and S. Peter used related nickel-antimony NPs restricted in SBA-15 for the 

reduction of nitro compounds.296 In their work, organosilane-functionalized SBA-15 was treated with Ni and 

Sb, and upon addition of NaBH4, NPs were formed, which were then calcined in the air and reduced with H2 

at 500 °C. The obtained Ni-Sb NPs had a uniform size of 4-6 nm. In the presence of NaBH4 they were active 

for four different nitroarenes. Different ratios of Ni:Sb were investigated, revealing 52 wt% of Ni and 

48 wt% of Sb to be most active.  

A particular catalyst system for the synthesis of N-arylhydroxylamines from nitroarenes was published by E. 

Gravel, E. Doris and co-workers in 2017.297 Here, Ni(II) hydroxide was supported on carbon-nanotubes by a 

layer-by-layer strategy. Diacetylene-nitrilotriacetic acid amphiphiles (DANTA, Figure 45 a) were sonicated 

in water together with MWCNTs, whereby DANTA adsorbed at the surface to form hemi-micellar 

structures. Afterwards, the addition of poly (diallyldimethylammonium chloride) (PDADMAC, Figure 45 b) 

created a second layer via electrostatic interactions. 

Figure 45 a) Structure of DANTA with its hydrophilic head and hydrophobic tail; b) structure of PDADMAC; c) schematic structure 

of the  architecture of the catalyst reported by E. Gravel, E. Doris and co-workers (Reproduced with permission from Ref. 297. 

Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) 

 

Finally, Ni NPs were added to form the active material (Figure 45, c), which showed very high selectivity 

towards N-arylhydroxylamines. Notably, the solvent is crucial for this system: only a THF/H2O (3:1) mixture 

with 3 equivalents of NaBH4 was suitable for the desired transformations. Several substrates were 

successfully investigated, including 4-iodonitrobenzene. The only substrate with a different selectivity was 
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2-nitrobenzonitrile. In this case, after formation of the desired N-arylhydroxylamine a cyclization into a five-

membered ring took place, which eventually evolved into aminobenzamide. Recycling experiments were 

conducted with 4-nitrobenzonitrile, showing a slight decrease of activity during five runs. 

5.2.2. Reductions with alcohols/bases, N2H4, HCOOH and other reductants 

In 2000, T. M. Jyothi and co-workers demonstrated the utility of a NiO catalyst supported on Al2O3 for the 

reduction of nitroarenes and carbonyl compounds using isopropanol as hydrogen-donor in the presence of 

KOH.298 The material was prepared from calcination (450 °C, in the air) of a Ni-Al hydrotalcite precursor. 

The catalyst allowed to isolate anilines from the corresponding nitroarenes in yields of up to 95% within 1-

2 h at reflux temperature. In the case of 1,3-dinitrobenzene, a mixture of 3-nitroaniline (65%) and 1,3-

phenylenediamine (22%) was obtained. During recycling studies a decrease of activity was observed. 

P. Selvam and co-workers reported a mesoporous nickel-containing silicate (MCM-41) to be a transfer 

hydrogenation catalyst for similar reductions, as well as in the cleavage of azo compounds.299 Again 

isopropanol was used as hydrogen donor in the presence of KOH. Several functional groups were tolerated, 

and both regio- and chemoselective transformations were possible. For instance, in the case of a dinitroarene, 

only the sterically less hindered nitro group was hydrogenated. Although the catalyst was shown competent 

catalyst for both nitro and carbonyl groups, in the presence of both, only the nitro group was reduced. Hence, 

2-nitrobenzaldehyde gave 2-aminobenzaldehyde in 89% yield. The authors claimed a better adsorption of the 

nitro group on the catalyst surface to be responsible for this selectivity. For each reported substrate the yield 

was given after the first and after the sixth run, revealing basically no change. Two years later, the same 

group reported a catalyst consisting of Ni incorporated in hexagonal mesoporous aluminophosphate 

molecular sieves, which was able to hydrogenate the same substrates under similar conditions.300  

Furthermore, Bhaumik and co-workers demonstrated the use of NiO-Al2O3 mixed oxides for the transfer 

hydrogenation of nitroarenes, using isopropanol as both solvent and hydride source.301 The material was 

prepared by a hydrothermal strategy in the presence of lauric acid as capping agent. The latter induced a self-

assembly of the NPs, leading to voids between the particles. This made the material mesoporous with a BET 

surface of 337 m2g-1. The catalytic activity of the as obtained material was rather moderate. At reflux and in 
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the presence of 1 equivalent of NaOH as promoter, nitrobenzene (50%), 4-chloronitrobenzene (58%) and 

1,3-dinitrobenzene (36%) were investigated.  

Apart from isopropanol, also ethanol was used as hydrogen donor in transfer hydrogenation reactions. As an 

example, S. Farhadi and co-workers reported NiO NPs for the microwave-assisted transfer hydrogenation of 

nitroarenes.302 This catalyst was prepared by thermal decomposition of Ni(dmgH)2  at 400 °C for 30 min 

under air. Several alcohols were tested as hydrogen donors, exposing ethanol as the optimal one. 50 mg of 

catalyst were used to hydrogenate 5 mmol of substrate with 1 equivalent of KOH in 20 mL ethanol both 

under microwave or conventional heating. Nitrobenzene was reduced to aniline in 60 min with a yield of 

96% by using conventional heating, whereas microwave heating yielded in 98% of the product after just 

13 min. Furthermore, the catalytic system tolerated several functional groups, including aldehydes, and 

showed chemoselectivity in the case of dinitroarenes, which led to nitroanilines. In recycling studies the 

conversion of nitrobenzene slightly dropped from 98% in the first, to 95% in the fourth run.  

In addition to alcohols, also hydrazine hydrate was investigated as hydrogen donor. Specifically, H. Wen and 

co-workers reported the hydrogenation of nine nitroarenes in the presence of N2H4 in methanol under reflux 

using a nano-amorphous Ni-B catalyst supported on a polymer.303 The material was produced by ion-

exchange chemical reduction, and the polymer was an anionic exchange resin, which was incorporated inside 

a megaporous glass. All substrates were hydrogenated with yields ranging from 72% for 2,6-dinitrotoluene 

to >99% for nitrobenzene. In the presence of two nitro-groups, only one was hydrogenated.  

Another protocol, which made use of hydrazine hydrate as hydrogen donor, was published by X. Liang and 

co-workers in 2015.304 In this case, nickel NPs were highly dispersed on SiO2 via atomic layer deposition, 

starting from NiCp2. As silica source both 20-30 nm dense silica NPs and porous silica gel particles were 

used. The Ni/silica gel catalyst was able to activate N2H2 and hydrogenate nitroarenes to the corresponding 

anilines. This constitutes the first report of Ni NPs for the transfer hydrogenation of nitroarenes, synthesized 

by atomic layer deposition. The system converted eight different nitroarenes in the presence of 8 equivalents 

of hydrazine hydrate in ethanol at 100 °C with high selectivities and yields, including chloro- and fluoro-

substituted nitroarenes, as well as ester- and acid-containing substrates. The catalyst was recycled four times, 

with constant activity. 
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Recently, Muralidharan and co-workers reported a Ni3S4 nanocatalyst for the nitro reduction in the presence 

of 8 equivalents of hydrazine.305 It was synthesized by simply reacting NiCl2 with thiourea and HN(SiMe3)2 

at 130 °C. The purified material was able to hydrogenate nitrobenzene and derivatives in ethanol at 125 °C 

with N2H4 at 1 mol% loading. Halogens were tolerated (including 4-iodonitrobenzene), along with alcohols, 

nitriles, acids and amines. Also 1,2-dinitrobenzene was hydrogenated to the diamine. The catalyst was 

recycled ten times, revealing just a small decrease of yield.  

In 2010, also Maksod and Saleh used hydrazine hydrate for the reduction of 4-NP, by applying Ni catalysts 

supported on Al2O3 and SiO2, respectively, with different metal loadings of 20, 5, and 2.5 wt%.306 The 

supports were impregnated with nickel, which was subsequently reduced with hydrazine hydrate. The 

catalytic tests were performed at 80 °C in methanol. In general, the Al2O3-supported catalysts were more 

efficient. Recycling studies revealed that a threefold reaction time in the fifth run was necessary for a 

complete conversion of 4-NP.  

Complementary to these works, Singh and co-workers studied Ni-, Co-, and Cu-based NPs for the 

chemoselective nitro reduction in the presence of hydrazine hydrate.307 Typically, an aqueous solution of 

NaBH4 was added to the respective metal chloride and PVP in water, and after sonication, the materials were 

obtained as black precipitates. The NPs had sizes of about 10 nm in average. Both Ni and Co catalysts 

exhibited high activity for aromatic and aliphatic substrates in water, including several functionalized 

derivatives, such as bromides and iodides. In most cases Ni-based catalysts outperformed the other metals. A 

subsequent work by the same group studied the mechanism of this transformation using DFT calculations. 

They found that the direct reduction pathway is preferred over the indirect one (see Scheme 3) both from a 

thermodynamic and kinetic point of view.308 

More recently, X. Wang, X. Lu and co-workers demonstrated that Ni-Mo oxide on SBA-15 exhibits high 

chemoselectivity in the catalytic reduction of nitroarenes.309 To prepare active catalysts, SBA-15 was added 

to a solution of Ni(NO3)2·6H2O and (NH4)6Mo7O24·4H2O in water/ethanol (1:1). After evaporation of the 

solvents, the remaining solids were calcined at 400 °C for 2 h in the air. The content of Ni was fixed to 6 %, 

but the amount of Mo was varied from 0 to 7.5% in steps of 1.5%. After calcination, the materials were 

added to a solution of Phen in water/ethanol (1:3) and sonicated for 30 min. Finally, they were again dried 
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and pyrolyzed under a flow of N2 for 2 h at 700 °C. Catalytic test reactions revealed a Ni:Mo ratio of 1:1 

(both 6%) to be optimal for the reduction of nitroarenes with hydrazine hydrate in ethanol at 40 °C. A broad 

substrate scope demonstrated the activity, selectivity and functional group tolerance. All substrates were 

converted almost quantitatively with a selectivity of >99% in maximum 60 min. In addition, the catalyst was 

successfully recovered by magnetic separation and recycled nine times in the reduction of 2,4-

dichloronitrobenzene, without decrease in conversion (74%) and selectivity (>99%). The activity of this 

catalyst was attributed to synergistic effects of metal Ni and MoO3. The latter mainly activates hydrazine and 

therefore accelerates the rate determining step. 

D. C. Gowda and co-workers made use of hydrazinium monoformate as hydrogen donor for Raney® Ni-

catalyzed nitro- and nitrile-reductions.310 At room temperature, both aliphatic and aromatic nitro compounds 

including several functional groups, such as ethers, alcohols, amides, esters, acids, halides, and others were 

reduced. It was found that also nitriles were converted to the corresponding amines. Furthermore, the authors 

stated that hydrazinium monoformate is a more efficient hydrogen donor than hydrazine or formic acid, for 

which they published a nickel-system two years earlier.311 Back then it was shown that activated nickel can 

reduce both aliphatic and aromatic nitro compounds to the corresponding primary amines at room 

temperature using formic acid or ammonium formate as reductants.311 High yields were achieved for 

nitroarenes after short reaction times of 10-30 min with Raney®-Ni in methanol. Aliphatic nitro compounds 

gave lower yields, because of their higher volatility.  

In 2003, Bhaumik and co-workers showed that, apart from H2,220-222 NaBH4,269 and hydrazinium 

monoformate,310,311 also NH4Cl can be used as hydrogen donor for the Raney®-Ni-catalyzed nitro 

reduction.312 However, even for 2-chloronitrobenzene, 20% hydrodehalogenated product was observed.   

Finally, Shalom and co-workers demonstrated the use of formic acid as hydrogen donor for the reduction of 

nitrobenzene in 2014.313 Sponge-like, nanoporous Ni- and Ni3N-based materials, partly embedded in an 

amorphous carbon-nitrogen matrix, were synthesized by calcination of dicyandiamide together with a 1:1 

mixture of NiCl2 and LiCl at temperatures between 400 and 800 °C. NiCl2 and LiCl have a eutectic melting 

point at 600 °C, which means that at lower temperatures, reactions can be considered as solid state synthesis, 

whereas above 600 °C it is a salt flux process. It was found that the materials syntheses started as solid-state 
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condensation of dicyandiamide. Then, nickel carbodiimide is formed at temperatures below 600 °C. By 

further increasing the temperature to the eutectic melting point of the salt mixture, sponge-like Ni3N was 

formed, embedded in an amorphous, nitrogen-rich carbon, possessing a high surface area. At even higher 

temperatures, Ni3N is converted completely towards sponge-like Ni and the surface area increased further. 

SEM images for each calcination-temperature can be seen in Figure 46. Regarding catalytic activity it was 

found that a calcination temperature of 800 °C is the optimal among the investigated ones, for the reduction 

of nitrobenzene. The catalyst was also recycled; however only once. 

Figure 46 SEM images for the dicyandiamide-NiCl2/LiCl-materials at different calcination temperatures reported by Shalom and co-

workers. (Reproduced with permission from Ref. 313. Copyright 2014, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) 

 

6. Heterogeneous copper-based catalysts 
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6.1. Reduction with molecular H2 

Copper-based NPs have gained tremendous interest in recent years, particularly in catalysis.314 Hence, also 

for the reduction of nitroarenes a series of Cu-catalysts were reported; however, only few of them working 

with molecular hydrogen as reductant. In 2015, as a special case, M. A. Keane and co-workers demonstrated 

a system that made use of H2, which was generated in situ by dehydrogenation of 2-butanol to 2-butanone.315 

Two systems of copper supported on silica with different loadings of 15.9 wt% and 1.8 wt%, respectively, 

were prepared by dispersing silica in a Cu(NO3)2 solution. After the mixture was basified to pH > 10 with 

NaOH and heated, the solid was isolated, neutralized with water, dried, and finally calcined at 450 °C for 2 h 

and passivated with 1 vol% O2/He. The catalytic investigation was carried out in continuous flow fixed bed 

vertical glass reactor at 150-250 °C. The hydrogen produced from 2-butanol was directly utilized in the 

reduction of nitrobenzene to aniline. The dehydrogenation was more efficient with the catalyst consisting of 

15.9 wt% of copper particles with a mean diameter of 7.8 nm. The 1.8 wt% material with mean diameter of 

3.1 nm, however, was more active in the nitro reduction. When using the material with a higher loading, 

exclusive production of aniline and 2-butanone at full conversion was obtained. The utilization efficiency of 

H2 was by a factor of 50 greater than in the conventional procedure with pressurized H2. 

One year later, M. Gupta and co-workers made use of copper on N-CNTs for the reduction of nitro 

compounds with H2.316 The catalyst synthesis started by treating sugar with concentrated H2SO4. After 

neutralisation, it was oxidized with hydrogen peroxide and dried. A 1:1 mixture of the as prepared CNTs and 

nitrogen containing guanidine carbonate was calcined under air flow at 300 °C. Finally, Cu NPs were 

prepared by reduction of Cu(acac)2 with hydrazine hydrate, followed by its addition to the N-doped CNTs. 

With a loading of 0.11 mol% based on copper, several nitroarenes were reduced to the corresponding amines 

in few hours under a H2 atmosphere and in the presence of acetic acid in ethanol at room temperature. The 

material was recycled five times, during which a slight decrease of yield was observed. 

Recently, Nuzhdin and co-workers demonstrated both the reduction of nitroarenes to anilines, and their 

reductive coupling with aldehydes to secondary amines, applying a flow reactor.317 Therefore, copper was 

loaded on different supports, applying a simple impregnation procedure followed by calcination in the air at 

300 °C. Al2O3 was found to be superior support compared to SiO2, giving higher conversions of nitroarenes 
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and very high selectivities, with respect to anilines. The coupling of nitroarenes with aldehydes was also 

found to be efficient giving secondary amines with yields up to 97%. 

In the same year, Hosono and co-workers reported a copper-based intermetallic electride for the 

hydrogenation of both nitroarenes to anilines, and ketones and aldehydes to alcohols.318 The material with the 

formula LaCu0.67Si1.33 was prepared by arc-melting lanthanum, copper and silicon ingots under argon. The 

obtained material selectively hydrogenated nitroarenes with TOFs up to 5084 h-1. The transfer of electrons 

from La to Cu increases the electron density of the latter, and therefore the energy barrier for H2 dissociation 

decreases, as was determined by mechanistic investigations. In the hydrogenation of nitrobenzene, a kinetic 

isotope effect with rH/rD = 3.8 was determined, which implied that the H-H cleavage was rate-determining. A 

broad scope of substrates was successfully investigated including nitroarenes bearing olefins, nitriles, 

ketones, amides and esters that were retained by the system at 30-50 bar H2 and 120 °C. The selective 

hydrogenation of nitro groups next to carbonyl groups was explained with a more stable adsorption of the 

substrate via two oxygen atoms of the nitro, compared to just one oxygen atom of the carbonyl group. In 

methanol, however, a variety of ketones and aldehydes were hydrogenated to the corresponding alcohol. The 

catalyst was successfully recycled several times. 

6.2. Transfer hydrogenations 

6.2.1.  Reductions with NaBH4 

Most of copper-based heterogeneous systems for nitro reductions published since 2000 make use of NaBH4 

as reductant. T. Pal and co-workers investigated the activity of copper, silver and gold NPs for this kind of 

reaction.319 NPs were obtained either prior to hydrogenation by treating metal salts with NaBH4, or in situ by 

adding an aqueous solution of metal salt to a solution of substrate and NaBH4. Time-dependent conversions 

were detected by UV/Vis spectroscopy. It was found that NPs of all three coinage metals were active in the 

nitro reduction with the order Au > Ag > Cu. 

In 2012, H. K. Kadam and S. G. Tilve used CuBr2 as pre-catalyst, which was in situ reduced to copper 

NPs.320 Typically, substrate and copper or iron salts were mixed in ethanol, and NaBH4 was added in 

portions. In a first screening, iron showed only small conversion of nitrobenzene, however, copper was more 
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active. CuBr2 showed full conversion and high yield of aniline at room temperature after 5 h. It was 

successfully applied for a variety of substrates, showing a good functional group tolerance, including halides. 

However, nitriles and olefins were also hydrogenated to the corresponding amine and alkane, respectively. 

The catalytic loading of this system was quite high with 10 mol% of CuBr2, at the presence of up to 5 

equivalents of NaBH4 at room temperature. 

Two years later, another in situ approach was reported by P. Bharali and co-workers.321 Here, the pre-catalyst 

was prepared following a hydrothermal approach by heating urea and CuCl2·2H2O at 120 °C for 6 h inside a 

stainless-steel autoclave. Finally, the catalyst was recovered by filtration. Its catalytic activity was 

investigated by addition to an aqueous mixture of 4-NP and NaBH4, which resulted in the formation of Cu 

NPs. Dependent from the added amount of pre-catalyst, the reduction of 4-NP was completed within 45 to 

>100 min.  

J. Santhanalakshmi and L. Parimala studied the effect of stabilizers in the Cu NPs catalyzed reduction of 

nitroarenes in 2012.322 The NPs were produced by reducing copper(II) chloride with hydrazine hydrate in the 

presence of the stabilizer, which were PEG, CMC, and PVP, respectively. From the reported results it can be 

stated that the PVP capped NPs have the lowest activity, while PEG and CMC capped ones show a similar 

one. 

R. Srivastava and M. Tumma investigated the catalytic activity of transition metal NPs supported on 

mesoporous polyaniline for the reduction of nitroarenes.323 A variety of materials with different metal 

loadings was synthesized by adding a metal salt (M = Mn, Fe, Co, Ni, and Cu) to an aqueous solution of 

polyaniline, followed by the addition of NaBH4, in order to form NPs. The authors stated that the Cu catalyst 

with initial 10% metal loading was the most active one, giving full conversion of 4-nitroaniline to the amine 

within 45 min in a 1:1 mixture of water and ethanol. A small scope of substrates was shown to be 

successfully converted to the corresponding amine. 

L. G. Qiu and co-workers have reported a MIL-101 (Cr) MOF-based copper catalyst for the nitroreduction in 

2013.324 The composite was synthesized by microwave-assisted hydrazine reduction of MIL-101 (Cr) loaded 

with copper nitrate. Here, three substrates were investigated, which were hydrogenated to the corresponding 

amine with high yields and selectivities.  
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One year later, C. Tamuly and co-workers prepared a CuO-catalyst, by making use of biomass.325 The peel of 

the wild-type banana plant Musa balbisiana was burned and an aqueous suspension of it was filtered. To the 

filtrate, copper sulphate was added and the dry precipitate was heated at 300 °C for 2 h. SEM images 

revealed a flowerlike architecture of the material. It showed to be catalytically active in the reduction of 

nitroarenes in the presence of 5 equivalents NaBH4 in water at 30 °C. In the first run, a yield of 96% of 4-AP 

was obtained in water, in the fifth run 91%. Five more substrates were investigated, with fluorine-, chlorine-, 

bromine-, and ether-functionalities, giving yields of 74% to 88%. 

Another biomass-derived catalyst for nitroreduction was reported by A. R. Fajardo and co-workers in 

2017.326 They produced Cu NPs supported on chitosan-based films by blending a solution of chitosan in 

acetic acid and an aqueous solution of polyvinyl alcohol (chitosan/polyvinyl alcohol mass ratio of 1:2). 

Afterwards, a glutaraldehyde solution was added dropwise and after transferring the solution into petri dishes 

the volatiles were evaporated (Figure 47). Finally, the films were immersed in a CuCl2·2H2O solution, and 

by the addition of NaBH4, the Cu2+ ions were reduced forming Cu NPs. The latter material was able to 

catalyze the hydrogenation of nitrobenzene to aniline in the presence of NaBH4 showing high mechanical 

stability and chemical resistance. The activity was more or less constant during six runs. 

Figure 47 Photographs and corresponding SEM images of chitosan/polyvinylalcohol-films (a, d,), loaded with Cu2+ (b, e) and with 

reduced Cu(0) (c, f), as reported by A. R. Fajardo and co-workers. (Reproduced with permission from Ref. 326. Copyright 2017, 

Elsevier) 

 

A. Veerappan and co-workers reported the synthesis of Cu NPs with pectin as a capping agent.327 CuCl2 was 

added to an aqueous solution of pectin, followed by concentrated ammonia solution, in order to get basic 

conditions. Finally, the addition of hydrazine hydrated in the air led to the formation of Cu NPs within 3 

hours. The as synthesized material was tested in the hydrogenation of 4-NP to 4-AP in the presence of 
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NaBH4. An induction period of about 120 s was observed, and the reaction was complete after 250 s, with a 

pseudo first-order kinetic, due to a large excess of NaBH4, and a rate constant k = 1.08·10-2 s-1. Four further 

substrates were investigated, with induction periods of about 80 to 170 s. It was observed that nitro groups in 

para position are hydrogenated more rapid than ortho or meta, along with a shortened induction period. 

Interestingly, besides of nitro reductions also C-N couplings of amines with bromobenzene were successfully 

catalyzed by the NPs. Two years later, the same group used the same synthetic approach, replacing pectin 

with guar gum as capping agent, in order to get a material, which was catalytically active in nitroreduction 

although with a slightly lower activity.328 

In the same year, V. Singh and co-workers investigated gum acacia-silica hybrid anchored Cu NPs for the 

reduction of 4-NP in the presence of NaBH4.329 To an aqueous solution of acacia gum and CuSO4, hydrazine 

was added as reducing agent. A solution of the formed NPs was mixed with TMOS and methanol, and after 

polymerisation and drying, the final material was obtained. The average size of the NPs was about 18 nm. 

The material was active in the hydrogenation of aromatic nitro compounds. It was recycled six times, 

revealing a reaction time of 2.5 min in the first run and 28.3 min in the seventh run, in order to obtain 

complete conversion of 4-NP. 

In 2014, N. Sahiner and co-workers investigated metal loaded poly(methacrylic acid) microgels for 

degradation of organic dyes and reduction of nitroarenes.330 Copper, cobalt and nickel were investigated, 

among which copper showed superior catalytic activities in both kinds of reactions. The microgels were 

prepared by inverse suspension polymerisation, and subsequently loaded with metal chlorides in aqueous 

medium. After their isolation by centrifugation, they were washed and treated with NaBH4. Finally, they 

were washed again and used in catalytic tests. Therefore, 2-NP, 4-NP and 4-nitroaniline were hydrogenated 

by the metal loaded microgels in the presence of NaBH4. Furthermore, the degradation of the organic dyes 

Eosin Y and methyl orange was successfully catalyzed. Additionally, copper loaded microgel was able to 

hydrogenate 4-NP and Eosin Y. Eventually, recycling was studied revealing an almost constant activity of 

the loaded copper; however, a greatly decreased one for the cobalt loaded microgel during four runs. 

A number of composites were reported, in which iron was used as magnetic core, in order to obtain an easily 

separable material. R. K. Sharma and co-workers demonstrated Cu(II) on silica-coated Fe3O4 as magnetically 
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separable core-shell composite for the reduction of nitroarenes in water.331 Freshly prepared iron NPs were 

activated with 0.1 M HCl in ethanol and water, followed by the addition of 25% NH4OH and TEOS (Figure 

48). 

Figure 48 Synthesis of a magnetically separable copper-based catalyst for nitroreduction, as reported by R. K. Sharma and co-

workers. (Reproduced with permission from Ref. 331. Copyright 2014, Elsevier) 

 

After heating for 6 h at 60 °C, the material was magnetically separated, washed and dried. Then, an ethanolic 

mixture of it was treated with 3-aminopropyltriethoxysilane, to functionalize it with amino groups. Once the 

material was isolated, it was grafted covalently with Cu(acac)2 in chloroform. In the presence of NaBH4, the 

material was catalytically active for the reduction of nitroarenes within up to one hour. Several substrates 

were tested, giving high conversions and selectivities. Recyclability was shown during nine consecutive 

runs, maintaining the conversion constant. In addition, test reactions of solely Fe3O4 or Cu(acac)2, 

respectively, showed a reduced conversion, indicating the importance of the combination of all components 

for the catalytic activity. Despite the authors did not mention the possible formation of Cu NPs on Fe3O4 

during the reaction, this usually happens for this kind of systems. 

H. Eshghi and co-workers modified the silica shell around Fe3O4 differently.332 The free OH-groups of silica 

were functionalized with epibromohydrin (3-bromopropylene oxide), which itself was further reacted with 

ethylenediamine. An additional equivalent of the epoxide was added to the free NH2-moiety, and then 

converted to the diol, via reaction with NaOH. Finally, Cu(OAc)2 was added and the copper cation could be 
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complexated by the lone pairs of the NH- and OH-groups. The treatment with NaBH4 yielded in the 

formation of NPs of about 20 nm. Several substrates were rapidly hydrogenated to the corresponding 

anilines. 

Another approach for a magnetically separable Cu-catalyst was shown by U. Kurtan and co-workers one 

year later.333 Instead of silica, they used isonipecotic acid (4-piperidinecarboxylic acid) for coating of freshly 

prepared Fe3O4. The surface amine-groups were then loaded with CuSO4 and subsequently reduced with 

NaBH4, giving NPs of 21 nm size. The material was catalytically active for the reduction of 4-nitroaniline 

and 4-NP, as well as for the degradation of the dyes methylene blue and methyl orange. It was recycled three 

times, yielding in slightly decreased conversion during the cycles. 

In addition, E. Ghonchepour and co-workers treated Fe3O4 NPs with citric acid in basic medium, and loaded 

that material with CuCl2 in the presence of Na2CO3.334 The copper NPs had a mean diameter of 25-35 nm. 

By using NaBH4 as hydrogen source, several nitro compounds were reduced to the corresponding anilines 

within 5 to 120 min. The material was recycled seven times, revealing a small drop in activity. 

In 2017, the use of an Fe3O4 supported Cu-MOF was demonstrated by Z. H. Zhang, L. Wang and co-

workers.335 Here, 1,3,5-benzenetricarboxylate was used as linker for the preparation of the MOF. The 

material was active for the reduction of different aromatic and aliphatic nitro compounds within 2-3 h in an 

ethanol/water (1:3) mixture. The heterogeneity of the catalyst was demonstrated by a hot-filtration test: after 

15 min of reaction, the catalyst was removed and the filtrate was kept stirring. This resulted in termination of 

the reaction and no further product was formed. Additionally, six consecutive runs were conducted for the 

reduction of nitrobenzene giving 99% of aniline in the first and 92% in the last run. 

A. Goyal and S. Singhal coated magnetic CoFe2O4 with Ag and Cu nanoparticles in 2016.336 The core was 

treated with dopamine hydrochloride and eventually loaded with the metal, which were reduced to NPs with 

hydrazine hydrate. Silver and copper in different loadings were investigated, revealing that the copper-based 

materials were in general more efficient. For the substrate scope, the catalyst with 10% Cu was used, in the 

presence of 50 equivalents of NaBH4 in methanol. 15 Substrates were successfully hydrogenated within few 

minutes. Also for this system a hot filtration test and recycling were conducted, indicating its heterogeneity.  
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M. V. Parmekar and A. V. Salker treated a NiFe2O4 core with silica via the so-called Stöber method. Then, 

Cu(NO3)2 was deposited on it, which produced NPs by treatment with NaBH4.337 Average particle sizes of 

25-28 nm were detected by TEM. As a model substrate for reduction 4-NP was chosen. Recycling studies 

indicated a decrease of activity during five runs. Additionally, ICP-AES analysis revealed a loss of copper of 

0.03% after the first, and 0.5% after the fifth run. Ten substrates were investigated using this catalyst system 

demonstrating a reasonable substrate scope. Notably, for 4-iodonitrobenzene, a conversion of 60% and a 

yield of 59% were observed, indicating that hydrodehalogenation processes can be neglected.  

S. P. Anthony and co-workers recently demonstrated copper on coordination polymers (COPs) as reusable 

catalysts for the reduction of nitroarenes.338 Seven different materials were synthesized by complexation of 

Cu2+ with an amino acid-based reduced Schiff base ligand, followed by calcination at 330 °C for 12 h. The 

structure of the ligands only differed in one moiety from each other (Figure 49). 

Figure 49 Synthesis of Cu NPs and CuO NPs from Cu-COPs, as was demonstrated by Anthony and co-workers. (Reproduced with 

permission from Ref. 338. Copyright 2017, The Royal Society of Chemistry) 

 

Depending from the used ligand, either pure Cu NPs (Cu-COP-1 and Cu-COP-5), or CuO NPs (Cu-COP-2, 

Cu-COP-3, Cu-COP-4 and Cu-COP-7) encapsulated by carbon matrix were formed. In one example, a 

mixture of both was obtained (Cu-COP-6). CuNPs-1 was tested in the solvent-free A3-coupling of a terminal 

alkyne with an amine and an aldehyde in order to obtain propargylamines, whereas CuONPs-4 was tested in 

nitroreductions in the presence of NaBH4. A scope of 15 substrates was investigated, with yields between 
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66% and 96%. Recyclability of CuONPs-4 was demonstrated within five runs, revealing a yield from 88% to 

84%. 

T. Pal and co-workers demonstrated Cu2O and Cu(0) NPs without any support or surfactant to be active in 

nitro reductions.339 Cu(OAc)2·H2O was reduced with altering amounts of hydrazine hydrate, yielding either 

Cu2O or Cu(0). In the presence of NaBH4, both catalysts hydrogenated 4-NP to 4-AP at room temperature in 

water. The Cu2O as pre-catalyst was found to be much more active in this reaction than Cu(0). Its rate 

constant was even higher than for some noble metal catalysts. According to the authors, this high activity is 

owed to in situ formation of a ternary Cu2O-Cu-CuO nanocomposite, which can transfer electrons fast and 

acts as a better catalyst. The Cu(0) phase in this composite is responsible for the transfer of hydrides. For 

comparison, the authors produced a Cu2O-Cu-CuO composite by the reduction of Cu2O with NaBH4, 

however, the rate constant was lower. For the most active system, a small scope of substrates was 

investigated, revealing fast (3-5 min) and complete conversions.  

In the same year, also S. P. Anthony and co-workers investigated Cu2O and CuO for the reduction of 

nitroarenes.340 By hydrothermal heating of Cu(OAc)2, CuO was produced at 125 °C, Cu2O at 175 °C, and a 

mixture of both at 150 °C. Contrary, Cu(acac)2 only gave Cu2O at all three temperatures. The decomposition 

of acetate and acetylacetonate played a key role in the formation of the nano- and micro-sized oxide 

particles, as indicated by mechanistic investigations. The shape of the obtained materials was affected by the 

temperature: CuO with microsphere morphology was formed at 125 °C, whereas heating to 175 °C led to 

micro-cups of Cu2O (see Figure 50) demonstrated by field emission scanning electron microscopy (FE-

SEM). 

Figure 50 FE-SEM images of CuO (a-c) and Cu2O (d-f), produced by hydrothermal heating of Cu(OAc)2 at 125 °C and 175 °C, 

respectively. (Reproduced with permission from Ref. 340. Copyright 2016, The Royal Society of Chemistry) 
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When Cu2O was synthesized from Cu(acac)2, nanowires and elliptical cylinders were observed. Calcination 

at 500 °C yielded in crystalline CuO nano/microparticles, independently of the precursor. The latter were 

investigated for the reduction of nitro compounds, revealing that those obtained from Cu(acac)2 exhibited the 

highest activity.   

Bhattacharjee and Ahmaruzzaman reported two dimensional CuO nanoleafs as catalyst for the reduction of 

4-NP, 4-nitroaniline, and 2,4,6-trinitrophenol, most recently.341 After preparing an aqueous solution of L-

glutamic acid as capping agent and CuSO4·5H2O as metal precursor, and basifying it with a NaOH solution, 

the mixture was placed in a microwave oven. Irradiation resulted in the formation of a black precipitate, 

which was characterized as 2D CuO nanoleafs with a length of 720-800 nm and a width of 136-160 nm. 

Besides of the photocatalytic degradation of dyes, the reduction of the above mentioned nitroaromatic 

compounds was investigated. All three substrates were reduced to the corresponding amine within few 

minutes in the presence of NaBH4. 

Finally, L. Dou and H. Zhang prepared hierarchical nano-hybride materials CuxMg3-xAl (x = 0.5, 1.0, 1.5) 

layered double hydroxide (LDH)/reduced graphene oxide (rGO) with sheets-like structure, that efficiently 

catalyzed nitro reductions.342 After graphite oxide (GO) was exfoliated in water by sonication, a negatively 



113 
 

charged surface (-21.7 to -48.2 mV) formed as suggested by zeta potential analysis. This was due to 

ionisation of phenolic hydroxyl and carboxylic acid groups. Then, citric acid was added, followed by a 

solution of NaOH and Na2CO3 to adjust a pH of about 10 (Figure 51). 

Figure 51 Synthesis of nanoarray-like nanohybrids as reported by Dou and Zhang. (Reproduced with permission from Ref. 342. 

Copyright 2016, The Royal Society of Chemistry) 

 

This lead to deprotonation of citric acid, and to a lowering of the negative potential of GO to about -65 mV, 

indicating a higher charge density on its surface. Citric acid ions might be attached onto the nanosheets via 

hydrogen bonding. In the next step, a solution containing Cu(NO3)2·3H2O, Mg(NO3)2·6H2O, and 

Al(NO3)3·9H2O in a 1:2:1 ratio was added simultaneously with an alkaline solution. This resulted in 

coordination of the metal ions to citric acid anions adsorbed on the surface of GO. Finally, the precipitate 

was allowed to age for 4 h at 65 °C. The LDH nanoplates had dimensions of about 70 nm x 4.5 nm. The 

catalytic activity was investigated for the reduction of the model substrate 4-NP, using NaBH4 as reductant 

and water as solvent. It was found that all tested hybrids obtained a higher activity than pure Cu/LDH, 

commercial Pt/C, and other reported Cu catalysts. An explanation was the in situ reduction of Cu2+ to 

ultrafine, well-dispersed Cu2O with about 7 nm sizes. This leads to a strong interaction between LDH on 

rGO and Cu2O, which enhances the activity for the reduction. A possible synergistic effect between Cu2O 

NPs, xCu-LDH nanoplates and reduced graphite oxide layers was hypothesized to play a crucial role, along 
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with enhanced adsorption capacity via π-π-interaction and the ultrathin nanosheet array-like morphology. 

Finally, recyclability of the catalyst was demonstrated. Even after 20 cycles, the catalytic activity persisted 

high. Additionally, TEM of the recycled catalyst still showed the nanoarray-like morphology, however, with 

partially damaged LDH plates.  

6.2.2. Reductions with alcohols/bases, N2H4, HCOOH and other reductants 

In 2008, A. Saha and B. Ranu reported a highly chemoselective heterogeneous system for the reduction of 

nitroarenes, using a hydrogen transfer methodology.343 More specifically, Cu NPs of 4-6 nm size were 

reacted with 15 different nitro compounds and ammonium formate as hydrogen donor (ethylene glycol, 

120 °C, 8-12 h). Regarding functional group tolerance, it is interesting to note that even 4-iodonitrobenzene 

was hydrogenated selectively to 4-iodoaniline (85% yield). However, olefinic moieties were partially 

hydrogenated under these conditions. Mechanistic investigations were carried out by reducing 

nitrosobenzene (77% converted to aniline) and hydroxylamine (74% converted to aniline) in separate 

experiments. These findings suggested that in the reduction of nitrobenzene first nitrosobenzene is formed, 

which is then further reduced to hydroxylamine and finally to aniline (Scheme 3). A pathway via azobenzene 

and hydrazobenzene is unlikely, as both compounds were only poorly hydrogenated to aniline (13% and 

15%, respectively).  

In 2012, T. Subramanian and K. Pitchumani demonstrated Cu NPs supported on zeolite for the transfer 

hydrogenation of nitroarenes with isopropanol as hydrogen donor.344 The catalyst was prepared from copper 

exchanged Y-zeolite. At 80 °C inside an autoclave, it was able to reduce a variety of nitroarenes to the 

corresponding amines within 1-3 h. In addition, this system showed a remarkable functional group tolerance, 

including 4-iodonitrobenzene (yield for 4-iodoaniline: 96%). In analogy to the report of A. Saha and B. Ranu 

(vide supra), possible intermediates were tested for the hydrogenation, in order to get a mechanistic insight 

(Scheme 3). Again, a pathway via hydroxylamine was determined as likely, as it was reduced in high yields 

to aniline (85%), whereas the other investigated intermediates were hardly converted at much longer reaction 

times. Eventually, the system was recycled six times, revealing a drop of product yield from 98% to 79%.  

Two years later, G. Song and co-workers combined microwave and ultrasound irradiation for the reduction 

of nitroarenes with copper NPs and hydrazine hydrate as hydrogen donor.345 Copper acetate was in situ 
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reduced to NPs by 2 equivalents of hydrazine hydrate in ethylene glycol under microwave irradiation. 

Afterwards, the NPs were used for the reduction of nitrobenzene with the same agent under combined 

microwave and ultrasound irradiation. Aniline was obtained from nitrobenzene within 3.5 min in 89% yield. 

In addition, Cu(OAc)2 was used directly, and NPs were formed in situ, giving a yield of aniline of 97%. 

However, when the separated NPs were reused in a second run, the yield dropped significantly to 72%, due 

to agglomeration of the NPs. As was reported before by A. Saha and B. Ranu (vide supra), only the solvent 

ethylene glycol gave satisfying yields. In the investigated substrate scope, high yields were obtained in short 

time (maximum 6.5 min) for all eleven substrates.  

Also in 2014, van der Waals and co-workers coupled the dehydrogenation of amino boranes with the transfer 

hydrogenation of nitro groups in aqueous medium.346 First, the authors intended the ruthenium catalyzed 

coupling of nitroarenes with a nitrile to the secondary amine, in the presence of a co-catalyst for an increased 

electrophilicity of the nitrile group. However, instead of the secondary amine, the addition of Cu(OAc)2 

afforded full conversion of the nitro group, with the primary amine as major product. In following control 

experiments without ruthenium, almost all investigated copper salts converted the nitroarene to the primary 

amine in the presence of 3.3 equivalents of Me2NH·BH3 in moderate to good yields. Further optimisation 

showed that 5 mol% Cu(OTf)2 and 3 equivalents Me2NH·BH3 in water at 30 °C gave the best results. A 

small scope of nitro compounds was investigated, along with ketone-reduction to alcohols, hydrogenation of 

internal alkynes and terminal alkenes to internal alkenes and alkanes, respectively, as well as the reduction of 

imines to amines at somewhat harsher conditions. During the reactions, a black precipitate was formed, 

which is an indication for a heterogeneous character of this system. In order to proof this hypothesis, a 

mercury test for the imine hydrogenation was conducted first, showing a decrease of yield from 88% with 

just Cu(OAc)2 and 22% with added Hg. When neither catalyst nor Hg was used, the yield was also 22%. 

Kinetic investigations also revealed an induction period of the reaction, which is in agreement with the 

formation of metal particles. 

Finally, N. Singh and co-workers reported stabilised Cu NPs to be active reduction catalysts in aqueous 

medium.347 The reaction of copper perchlorate and 1-methyl-3-ethanoicacid-3-imidazolium bromide, 

followed by the addition of hydrazine hydrate and subsequent sonication resulted in the catalytically active 
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material. Ten different nitro compounds gave the corresponding amines using five equivalents of ammonium 

formate as hydrogen donor in water under reflux. Notably, olefins and alkynes were tolerated by the system. 

The catalyst was recycled four times. 

7. Multimetallic heterogeneous catalysts 

Several of the heterogeneous systems discussed above contain more than one metal. In some cases the metals 

are alloyed in the catalyst and in some others one metal is present as doping (or poisoning) agent or simply 

acts as the support. In this section, we will solely deal with systems containing at least two 3d metals, of 

which both might have an activity, independent from the other (i.e.: Mn, Fe, Co, Ni, Cu, Zn). On the 

contrary, systems in which one of the two metals is not involved in the catalytic reaction (e.g. core-shell or 

protected ferrite nanoparticles in which the iron oxide is used for magnetic recovery of the catalyst) have not 

been included, but discussed in the previous chapters. Multimetallic systems containing both noble metals 

and 3d metals are excluded. 

In general, non-noble metals have a lower catalytic activity compared to noble ones; however, the 

combination of two or more of them in an alloy can give rise to a synergistic effect that increases the 

performance of the resulting catalyst. The addition of a second metal obviously has an effect on the 

morphology of the material, on its stability and on its electronic properties. In the following part, the 

structural and electronic effects as well as the influence on the catalytic performance derived from the 

combination of two 3d metals will be discussed. 

7.1. Reduction with molecular H2 

7.1.1. Nickel and cobalt based catalysts 

As described (see chapter 5), amorphous Ni alloys, Ni-B and Ni-P, exhibited higher activities than Raney®-

nickel in selected hydrogenation reactions.348 Generally, bimetallic amorphous Ni alloy particles were 

synthesized by the reduction of an aqueous solution of nickel and another metal salt with borohydride or 

hypophosphite as reductant. The structure and the catalytic activity of the resulting materials are strongly 

dependent on the preparation and the parameters of the reduction reaction such as pH, temperature, metal 

precursors ratio and metal precursor/reductant ratio. This kind of materials has been in particular studied for 
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the reduction of chloronitrobenzenes for which Raney®-Ni is known to give dehalogenation as a side 

reaction and accumulation of hydroxylamine intermediates.220  

Yan and co-workers studied the effect of the addition of iron to Ni-P alloys.349 More specifically, the 

reduction of NiCl2 and FeCl3 in different ratios with NaH2PO2 at 70 °C in aqueous solution at pH = 11 

afforded amorphous Ni-Fe-P alloys. XPS analysis of a sample prepared with a molar ratio Fe/(Fe+Ni) of 

0.25 showed that Ni was present only in the metallic state, while iron was present both as metallic and as 

oxide (Fe2O3). XPS studies suggested an electron donation from metallic Fe to Ni, thus affording electron-

enriched nickel and electron-deficient iron species. From a physical point of view, Fe2O3 has a dispersing 

effect, stabilizing the particles against crystallization and aggregation at high temperatures. Catalytic 

hydrogenation tests of 4- and 3-chloronitrobenzene, showed that increasing amount of Fe in the Ni-P alloy 

increased the activity of the catalyst until an optimum molar ratio of 0.25, after which the active Ni sites 

were covered by less active/inactive iron. A comparison between this catalyst and Raney®-Ni showed a 

similar activity but a higher selectivity of the Fe-Ni-P alloy. The effect of additional Fe species was also 

studied in Ni-B alloys;350 however, the results are not directly comparable due to a different preparation 

method. Reduction of Ni and Fe salts by NaBH4 in 50 vol% methanol/water solution at 25 °C in the absence 

of base, afforded a series of alloys in which Ni was present both as Ni(0) and Ni(II). In contrast to the Ni-Fe-

P alloy, the metalloid in the elemental state donates partial electron density to Ni(0), while iron has a 

negligible electronic effect. The addition of iron had an effect on the boron content affecting both the total 

amount and the ratio between oxidized and elemental B. The authors demonstrated that addition of a small 

amount of iron to the Ni-B alloy led to an increased catalytic activity in the hydrogenation of 4-

chloronitrobenzene.   

When the alloy was prepared using Co instead of Fe, the resulting Ni-Co-B alloy showed similar catalytic 

behavior to that of Ni-Fe-B.351 The authors reported that Co-B in the absence of nickel did not catalyze the 

hydrogenation of 4-chloronitrobenzene, thus concluding that in the Ni-Co-B alloy, cobalt mainly effects the 

morphology and composition. Different modifiers were employed to tune the activity of Ni-Co-B alloys 

prepared in methanol solution. Similar to Co, the addition of Mo up to a Mo/Ni ratio of 0.6 had a beneficial 

effect both on the selectivity and on the activity of the resulting alloys.352 The main effect of the 

molybdenum is an increase of the electron density on nickel by partial electron donation. Moreover, a 



118 
 

positive effect on the catalysis was noticed when W was used as dopant.226 In this case, the activity increased 

with W/Ni fraction up to a 1:1 ratio, however also a larger extent of C-Cl hydrogenolysis occurred. The 

authors attributed this behavior to the lower content of B3+ in the doped catalyst.  

Besides the electronic effect, the main role of the second metal in such amorphous alloys is the stabilization 

of the Ni NPs against aggregation. This is also true for multi-metallic systems. Indeed, for a series of M-Ni-

Co-B catalysts with a metal ratio 0.1 : 1 : 0.1 a decreasing activity for the hydrogenation of 4-

chloronitrobenzene was observed in the following order: Mo-Ni-Co-B > W-Ni-Co-B > Ni-Co-B ~ La-Ni-Co-

B > Fe-Ni-Co-B.353 However, it should be mentioned that the optimal ratio between the three metals strongly 

varied with the nature of the dopant. Thus, a direct comparison is difficult. 

As mentioned above, the preparation of the alloy has also a significant effect on the catalytic performance of 

the material. For example, a different catalytic behavior was reported for catalysts obtained from the 

reduction of nickel and cobalt nitrates with KBH4 in aqueous basic solution at 0 °C.354 Here, a comparable 

catalytic activity of monometallic Co-B,Ni-B and Ni-Co-B (Co:Ni = 1:1) was observed, while materials 

obtained with different Co:Ni ratios were less effective. The Ni-Co-B (1:1) bimetallic alloy was successfully 

employed in the hydrogenation of 2-chlorobenzene and 3,4-dichloronitrobenzene showing a lower amount of 

dehalogenated side-products compared to the two monometallic alloys.  

In addition to bulk alloys, Ni-B232 and Co-B355 alloys deposited on CNTs have been prepared by Li and co-

workers for the hydrogenation of nitrochlorobenzenes as described before. The same group studied the effect 

of metallic modifiers in Co-B/CNTs catalysts. The materials were prepared by impregnation of CNTs with 

an ethanolic solution of CoCl2 and a second metal (Fe, Sn, Cr, Cu or Zn) followed by reduction with KBH4. 

Morphological studies were done only for the Fe modified catalyst that, similar to the unsupported alloys, 

showed improved thermal stability. The binding energies of the components indicated an electron donation 

from Fe atoms to Co. The Fe dopant had also a secondary effect on the composition, increasing the amount 

of elemental Co and B in the material. Thus, the authors concluded that the addition of Fe increased the 

number of active sites and weakened the hydrogen absorption at the surface, allowing for an easier surface-

flow of the H-species. As a result, Fe–Co–B/CNTs had a higher catalytic activity and selectivity for the 

hydrogenation of 3-chloronitrobenzene. The order of activity of the modified Co-B catalysts was Fe-Co-

B/CNTs > Sn-Co-B/CNTs > Co-B/CNTs > Cr-Co-B/CNTs > Zn-Co-B/CNTs > Cu-Co-B/CNTs. 
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Besides the amorphous metal-metalloid alloys, other more structured catalysts have been reported. Recently, 

Corma and co-workers studied the catalytic properties of mono- and bimetallic nanoparticles coated by thin 

carbon layers.180 Metal oxide NPs were treated with glucose under hydrothermal conditions and the obtained 

metal hydroxide/carbon composites were thermally annealed affording the M@C catalysts. The role of the 

carbon coating is to protect catalytically active metal species. Anyway, in Co@C catalyst, CoOx was present 

on the particles due to re-oxidation after exposure to air. In comparison with the fully alloyed structure of a 

Co-Ni@C catalyst (Co/Ni = 77/23), the amount of metal oxides patches was lower due to a stabilization of 

metallic cobalt by nickel. The latter was found to promote the reducibility of CoOx by dihydrogen. The 

activity of mono- and bimetallic Co and Ni catalysts was studied in the H2-D2 exchange reaction and in the 

hydrogenation of 3-nitrostyrene. Here, an activity order of Co@C < Co-Ni@C < Ni@C was found. 

However, the higher activity of Ni@C catalyst was accompanied by a lower selectivity (~80%) to 3-

aminostyrene at high 3-nitrostyrene conversions, while Co-Ni@C retained the high selectivity exhibited by 

the Co@C catalyst (>97%). The results clearly indicate a synergistic effect between Ni and Co that was 

maintained even after several recyclings of the catalyst. The Co-Ni@C system had a broad scope at mild 

conditions (7-10 bar H2 at 120 °C), tolerating keto, ester and amido groups, as well as 4-chloro-, 4-bromo-, 

and 3-iodonitrobenzenes. Notably, triple bonds in the respective substrates were also not reduced. 

Interestingly, the Co-Ni@C catalyst outperformed the noble metal catalyst Au/TiO2 developed by the same 

authors,356 thus showing that non-noble bimetallic nanoparticles have a potential to replace precious metal 

catalysts.  

In contrast to previous reports, Corma and co-workers argued that the presence of nitrogen as dopant in the 

carbon coating for Co and Co-Ni NPs is not necessarily beneficial to the activity of the system. This study 

highlights the question of the actual role of nitrogen in metal-based N-doped carbonaceous catalytic 

materials. Since the effect of nitrogen on the activity of a catalyst was demonstrated to be also dependent on 

the used precursors and the synthetic procedures, general conclusions on this aspect cannot be drawn at the 

moment and more comparative studies are needed. In the same year, a study on the use of NixCo1-x alloys 

encapsulated in nitrogen doped carbon in different hydrogenation reactions was published by Zhang, Ma and 

co-workers.357 The catalysts were prepared by thermal decomposition of NixCo1-x-EDTA complexes and the 

authors noticed a synergistic effect between Co and Ni analogous to that reported by Corma. Ni@NC 
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showed lower catalytic activity in the hydrogenation of 4-chlorostyrene than Co@NC, while all the NixCo1-

x@NC were more active. Ni0.5Co0.5@NC was employed for the reduction of substituted nitroarenes 

exhibiting an activity comparable to the catalyst reported by Corma and co-workers under similar conditions 

(20 bar H2 at 80 °C). Although the hydrogenation of nitroarenes containing double and triple bonds were not 

reported it can be argued that this catalyst may not be selective towards NO2 reduction in this case since it 

was initially developed for olefin hydrogenation. Interestingly, selectivities around 90% were reported for 

the challenging substrates 4-iodonitrobenzene and 4-nitrobenzaldehyde.  

In addition to the more disordered heterobimetallic systems described above, Co-Ni nanocrystals with a 

defined topology were used as catalysts for the hydrogenation of nitrobenzene, too.358 Zhu and co-workers 

synthesized different nanostructures by solvothermal growth with stearic acid as capping agent and ethylene 

glycol as reductant. The shape of the crystals was strongly dependent from the reaction conditions and for Ni 

loading <10% singular needle-like nanostructures with a hexagonal cap were obtained. The catalytic activity 

of the nanocrystals was higher compared to unprotected Co-Ni NPs, presumably due to both a stronger 

influence of Ni on the electronic properties in the Co-Ni nanowire, as suggested by Co and Ni binding 

energies, and a lower tendency to aggregation. 

7.1.2. Copper-nickel based catalysts 

Few copper-based catalysts have been developed for the reduction of nitroarenes with molecular hydrogen. 

In general, the activity is lower compared to Co- or Ni-based catalysts. However, some interesting 

chemoselectivities have been observed in hydrogenation reactions. As an example, in 2009 Reddy and co-

workers reported a study on the use of bimetallic nanocomposite oxides deposited on CeO2–SiO2 in the gas-

phase hydrogenation of 3-chloronitrobenzene.359 CuO/CeO2–SiO2 (10 wt.% CuO), CuO–CoO/CeO2–SiO2 

and CuO–NiO/CeO2–SiO2 (5 wt% each) catalysts were prepared by aqueous-impregnation of CeO2–SiO2 

with the Cu, Co and Ni nitrate salts followed by calcination at 500 °C. The XPRD diffraction pattern 

indicated a high dispersion of the CoO particles on the support even in the monometallic catalyst. However, 

the addition of Co and Ni to the CuO/CeO2–SiO2 increased the dispersion degree, preventing aggregation. 

Furthermore, the presence of the second metal was noticed to favor the reduction of copper oxide to the 

metallic state. Comparing the catalysts in the hydrogenation of 3-chloronitrobenzene in a flow reactor under 

1 bar of H2 at 310 °C, the monometallic system showed an higher initial activity than the bimetallic ones, but 
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also a fast deactivation due to sintering. The bimetallic samples exhibited stability up to 10 h with the 

following order of activity: CuO–NiO/ CeO2–SiO2 > CuO–CoO/ CeO2–SiO2. 

Furthermore, the selective hydrogenation of 4-chloronitrobenzene was reported using Cu-containing 

hydrotalcites prepared by co-precipitation of metal nitrates with NaOH and Na2CO3 followed by 

calcination.360 The resulting Cu, Cu-Al and Cu-Fe catalysts showed a complete selectivity towards 4-

chloroaniline with an order of activity Cu-Al > Cu-Fe > Cu attributed to an increasing copper dispersion. The 

addition of Ni as dopant (Ni:Cu = 1:11) in the Cu-Al catalyst further increased the activity of the catalyst 

maintaining the intrinsically high selectivity of the Cu system. The better performances were attributed to a 

facilitated copper oxide reduction and to increased surface hydrogen availability. The stability of the material 

was lower than the above described CuO–NiO/CeO2–SiO2, since it showed deactivation over the time on 

stream. More recently the use of copper-based catalysts was also reported for the liquid phase hydrogenation 

of 1,4-dinitrobenzene to 1,4-phenylenediamine.361,362 For this transformation, a series of silica supported 

multimetallic Cu-Zn-Mn, Cu-Zn, and monometallic Cu catalysts were compared.362 A negative effect of the 

Mn on the selectivity was noticed, however comparable results were obtained for some of the monometallic 

and bimetallic Cu-Zn materials. Later on, studies on bimetallic Fe-Cu/SiO2 catalysts showed poorer 

performances of this class of catalysts with respect to the Cu-Zn and Cu based ones.361 

 

7.2. Transfer hydrogenations 

7.2.1.  Reductions with alcohols, N2H4 and ammonia-boranes 

Only few studies have been reported on the use of multimetallic 3d catalysts for the transfer hydrogenation 

of nitroarenes. In this respect, Chaubal and Sawant compared the catalytic performances of co-precipitated 

NiO, CoO, and NiCo2O4 for the reduction of 4-chloronitrobenzene using different alcohols as H-donor.363 

The bimetallic catalyst exhibited a higher activity compared to monometallic ones using 2-propanol in 

combination with NaOH as promoter. The effect was partially attributed to a higher surface area of the 

bimetallic material. A tentative mechanism was proposed in which electron-deficient sites in the catalyst are 

responsible for the initial absorption of the NO2 group, while 2-propanol interacts with electron-rich sites. 

Although characterization of the electronic features of the surface was lacking, presumably the nickel sites 
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are more electron-rich while the cobalt ones electron-poor, thus explaining the better performance of the 

bimetallic catalysts. The reaction was insensitive to the presence of EDG or EWG on the nitroarene. Notably, 

Cl- and -CHO groups were tolerated, but hydrogenolysis of C-X bond was detected for Br- and I- substituted 

nitroarenes. 

Two other Ni-based systems were later reported using glycerol as the hydrogen source. In the first case, 

Gawande and co-workers selectively hydrogenated various substituted nitroarenes with Ni-Fe3O4 NPs.364 The 

catalyst was prepared by deposition of Ni on the ferrite NPs surface by wet impregnation followed by 

chemical reduction. Although a positive effect of the ferrite on the activity cannot be excluded, it is more 

probable that it acts only as a magnetic support allowing an easy recovery of the catalyst, which indeed was 

effectively recycled several times. Unfortunately, a comparison with unsupported Ni NPs was lacking. The 

system was tolerant to various functional groups including halogens (Cl and Br) and nitriles. Interestingly, 

the selective reduction of the nitro group in 4-nitroacetophenone was attained although the catalyst is also 

able to reduce some acetophenones under similar reaction conditions. A series of CuNiAlOx was later 

prepared by Shi and co-workers by co-precipitation method and employed in the reduction of different nitro 

compounds with a stoichiometric amount of glycerol.365 The catalysts were prepared with variable amounts 

of the three components, calcined at temperatures ranging from 350 to 650 °C and then reduced under H2 

flow. The resulting materials contained Ni in a crystalline form, while Cu and Al were present in amorphous 

state. The best catalytic performances were obtained with Cu1Ni4Al0.5Ox calcined at 450 °C. The ratios of the 

three metals had a strong effect on the reaction outcome. Higher nickel contents decreased the activity but 

improved the selectivity, while an increase of the copper or aluminum content resulted in a drop of the 

activity and selectivity of the system (azo- and azoxybenzene were given as major side products). A similar 

effect was observed in the absence of Al.  

Apart from alcohols, hydrazine was used as H-donor for nitro reductions using bi- or multimetallic catalysts. 

In this context, an iron-nickel catalyst obtained by thermal decomposition of a hydrotalcite-like precursor 

was described in 2007.366 The system was active in the reduction of differently substituted nitroarenes, 

although no challenging substrates bearing easily reducible groups were employed. Interestingly, several 

thioether-containing nitro compounds were reduced affording high yields of the corresponding products. In 

comparison, related nickel-aluminum and nickel-magnesium-aluminum materials did not show any activity. 
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Almost ten years later Cai and co-workers screened a series of nickel-based bimetallic NPs, containing Fe, 

Co, Zn or Cu in 1:1 ratio with respect to Ni, in the reduction of 4-nitrotoluene with hydrazine.367 The NPs 

were prepared by reduction of metal salts with NaBH4 using PVP as stabilizer. Ni0.5Co0.5 NPs showed better 

selectivity towards 4-methylaniline than the two monometallic catalysts and gave improved yields compared 

to the Fe, Cu and Zn containing Ni-NPs. Remarkably, when the catalyst loading was low azo- and 

azoxyarenes accumulated, thus suggesting their formation as intermediates (Scheme 3, condensation route). 

The bimetallic NPs had a smaller size than the monometallic ones and a higher content of Ni than Co on the 

surface influencing the catalytic activity. In addition, the authors proposed that electron transfer from Co to 

active Ni sites facilitates the reduction of the absorbed nitroarenes on the surface. The catalyst showed 

tolerance for chloro- and bromo-substituted nitroarenes and good activity for substrates bearing either 

electron-donating or -withdrawing groups. Noteworthy, double and triple bonds as well as nitriles were 

tolerated, while aldehydes were reduced, too. Upon recycling, the catalyst showed poor activity due to 

aggregation and oxidation. 

Also a magnetically recoverable catalyst with the composition Co0.2Fe2.8O4 has been studied in the reduction 

of chloronitrobenzenes with hydrazine.368 The mixed oxides NPs had higher activity than Fe3O4. In these 

nanocrystals the addition of Co transforms the inverse spinel-type structure of Fe3O4 to the normal spinel 

structure of CoFe2O4. Thus, adding a small amount of Co to Fe3O4 increased the number of defects in the 

spinel structure modifying the absorption of the reactants on the surface during the reaction. Contrary to the 

above-mentioned Ni-Co system, the latter catalyst is air stable.  

In recent years, ammonia borane attracted interest as a convenient hydrogen source in addition to the more 

commonly used transfer reagents. Two Ni-Cu bimetallic catalysts have been reported for NH3BH3 

dehydrogenation-nitroarene hydrogenation reaction sequence: Cu0.36Ni0.64 NPs of an average diameter of 

16 nm assembled over graphene369 and CuNi NPs of ca. 3 nm obtained by co-precipitation of Ni and Cu salts 

inside the pore of MOF MIL-101 with the chemical formula Cr3F(H2O)2O(BDC)3∙nH2O (BDC = benzene-

1,4-dicarboxylate).370 In the first case, an improved catalytic activity of the bimetallic NPs with respect to the 

monometallic Ni and Cu NPs in the hydrogen release by NH3BH3 methanolysis was demonstrated. However, 

in both cases a lack of direct comparison with monometallic catalysts in the hydrogenation of nitroarenes 

does not allow to make any speculation on a possible synergistic effect of the two metals. Both the catalysts 
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showed good activity and recyclability in the reduction of some nitroarenes, although the catalytic 

performances were in general lower than those obtained by catalysts containing Pd under similar reaction 

conditions.371-374 

7.2.2.  Reductions with NaBH4 

As for the monometallic heterogeneous catalysts, the reduction of nitrophenols has been used as a general 

probe to test the catalytic behavior of different materials.375 As said before (see chapter 2) due to the high 

catalyst loading - commonly the total weight of the catalyst exceeded that of the substrate by 10 to >100 

times - it is difficult to evaluate the real catalytic potential of a material.  

7.2.2.1. Bimetallic alloy nanoparticles 

From 2011 on, several reports concerned the use of Ni-Co nanocatalysts. The materials were generally 

prepared by reduction of Ni and Co salts with hydrazine in basic conditions in the presence of a capping 

reagent or a support. Chain-like nanostructures could be obtained using polymers as additives376,377 and 

dendritic and flower-like microstructures using surfactants.378,379 When the reduction was performed in the 

presence of GO, nanoparticles uniformly grown on rGO sheets were obtained.380 Ni-Co NPs supported on 

CeO2 nanorods have been reported recently, too.381 The mixed metals nanostructures contained mainly Co 

and Ni in the elemental state and in most cases could be magnetically separated from the reaction mixture 

thus facilitating the recovery procedure. Varying the relative content of the two metals, the magnetic and the 

catalytic properties of the catalyst changed. In general, the overall magnetization was higher for extended 

nanostructures and increased with the cobalt loading. On the other hand, the best Co/Ni ratio strongly 

depended on the synthetic procedure and on the morphology of the catalyst. However, monometallic Co 

systems, when studied, usually showed a higher activity than Ni measured in the same conditions. For the 

alloys in some cases higher nickel content was beneficial,376,377 in other cases cobalt.380,381 In addition, the 

dependence of the catalytic activity from the composition is often not clear, even within a series of catalysts 

prepared in the same way. Instead, a better activity-composition relation is observed for Fe-Co alloyed 

nanoparticles supported on rGO obtained by reduction with hydrazine.382 All the bimetallic Fe-Co catalysts 

showed higher activity compared to the monometallic rGO/Co and rGO/Fe due to a synergistic effect. 

Generally, the activity increased with the content of cobalt.  
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Ni-Fe NPs obtained by solvothermal reduction of the metal salts with hydrazine have been also studied.383 

The dimension and the shape of the particles were strongly dependent from the employed capping agent, the 

concentration of base, the solvent, the temperature and the ratio between metals. A series of these Ni-Fe NPs 

of different sizes with a Fe:Ni ratio of 1:2 were used as catalyst for the reduction of 4-NP. A Decrease of the 

particle size led to an increase of activity. In general, the iron containing systems showed a lower activity 

compared to the Ni-Co catalysts in the reduction of 4-NP. 

A more synthetically focused study on the application of Fe-Ni NPs was reported by Chikate and co-

workers.384 Their catalyst was obtained by treatment of a 1:1 molar mixture of the salts of the two metals in 

water with NaBH4. Using nitrobenzene as model substrate with a metal loading of 10 mol%, the Fe-Ni NPs 

catalyzed the complete reduction of the nitro group in 35 min, while monometallic Fe(0) and Ni(0) NPs 

afforded 50% and no conversion, respectively. This surprising result indicates that the most catalytically 

active metal in this specific alloy was Fe rather than Ni, opposite to what was noticed for Fe-Ni-P349 and Fe-

Ni-B350 alloys used for catalytic reduction of nitroarenes with H2. The authors proposed that the Ni in the 

alloy acted as an electron-shuttle between Fe and the nitro group. The reduction of selected substituted 

nitroarenes was accomplished with high selectivities, although substrates bearing easily reducible groups 

were lacking in the reaction scope.  

Wen and co-workers introduced a further improvement in the Fe-Ni alloy system by preparing a 

nanostructure in which an oxidic Fe3O4 phase was embedded in an active Fe-Ni amorphous phase.385 

Compared to Fe3O4, Fe-Ni, Fe and Ni NPs, the Fe3O4/Fe-Ni nanostructure showed higher activity in the 

reduction of nitrophenol. In contrast to what reported by Chikate and co-workers384 Ni NPs had higher 

activity than both Fe and Fe3O4 NPs, indicating Ni as the most catalytically active site. Despite its low 

activity, the Fe3O4 phase had the important double role of helping the absorption of the reactant on the 

surface of the catalyst and separating the active sites of the amorphous alloy. 

Recently, copper-based alloys have been reported to efficiently catalyze the reduction of nitro compounds 

with NaBH4. Hence, in 2014 Christensen and co-workers systematically examined the effect of small 

amounts of other transition metals on copper catalysts.386 They identified copper-cobalt in a 10:1 ratio as the 

best combination for the in situ generation of active Cu-Co-B particles. The reduction of substituted 

nitroarenes at room temperature was complete in less than 30 min for most of the substrates using only 
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3.3 mol% of metal loading. The limited number of nitroarenes reduced does not allow to appreciate the 

chemoselectivity of the catalyst. In this respect, halogens were tolerated, although the formation of small 

amounts of dehalogenated products was noticed for 4-bromo- and 4-iodo-substituted nitroarenes. 

Unfortunately, due to the synthetic focus of the paper, structural information on the obtained heterogeneous 

catalyst and comparison of the bimetallic with the monometallic systems were not presented. 

Several studies have been performed on the synthesis of Ni-Cu alloys and their use in the reduction of 4-

nitrophenol. Although those reports are interesting for a better understanding of the synergy between Ni and 

Cu in alloys/nanocomposites, the very small scale on which the catalytic reactions were performed, and the 

low catalytic ratios employed make it difficult to evaluate the real potential of the materials. As an example, 

Borah and Bharali synthesized Cu-Ni nanocrystals of ~10 nm with different Ni/Cu ratios by treatment of 

aqueous solution of the precursors with hydrazine.387 The lowest catalytic activity was obtained with 

monometallic Ni and Cu NPs while Cu3Ni2 NPs the highest one. A physical mixing of 3:2 mixture of Cu and 

Ni NPs afforded worse results, thus the increased catalytic activity of the bimetallic catalyst was attributed 

both to a synergistic effect between Cu and Ni and to the increased surface area of the mixed metals alloys. 

A following study by the same group showed that supporting the Cu-Ni alloy nanoparticle on Co3O4 led to a 

dramatic enhancement of the catalytic performance both in the reduction of 4-NP and other 4-substituted 

nitroarenes.388 Based on the very low activity of Co3O4 alone, the authors suggested that cobalt oxide had the 

main role of stabilizing the active components (Cu and Ni) by preventing NPs agglomeration and increasing 

the catalyst surface area. A stabilization effect of the support was detected also in Cu-Ni/GO nanocomposites 

prepared with different protocols.389,390 The material was synthesized by Shen and co-workers by reduction 

of the metals salts with hydrazine in ethylene glycol in the presence of GO.389 Hollow Cu-Ni NPs of ~35 nm 

supported on GO nanosheets were obtained. The catalyst was more active than bare Ni-Cu NPs and 

monometallic Ni/GO in the reduction of 4-nitrophenol. In addition to the stabilization features, GO was 

found to increase the catalytic activity of the NPs by facilitating the absorption of the nitroarene and the 

transfer of electrons. An improved activity and stability of the system was achieved by Wen and co-workers 

by modifying the synthetic method.390 Very small Cu-Ni NPs (~2 nm) were prepared by electrostatic-

adsorption of the metal precursors on GO followed by simultaneous reduction at 180 °C in-situ with ethylene 

glycol acting both as solvent and reductant. A screening of different Cu/Ni ratios showed that the 4-NP 
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reduction rate increased from a minimum using the NPs of the pure metals up to a maximum with a Cu/Ni 

ratio of 61:39. High selectivities were obtained in the reduction of 4-substituted nitroarenes containing 

amino, keto, aldehydic and ether groups. 

In addition to the above described alloy system, recently, also Co-Cu391 and Zn-Co392 NPs embedded in 

nitrogen doped porous carbon, derived by pyrolysis of nitrogen containing MOF, and quaternary CuZnFeS 

nanocrystals393 have been used as catalysts in the reduction of 4-nitrophenol. 

7.2.2.2. Ferrite-based nanoparticles 

Ferrite nanoparticles have been extensively used as support for the synthesis of magnetically recoverable 

catalysts.394 In previous sections (see chapter 3 and 6), systems were described in which ferrite was the active 

species itself in the absence of a second 3d metal or it was used only as a support, not participating in the 

catalytic event. In this latter cases Fe species were separated from the active 3d metal nanoparticle by an 

organic or inorganic layer. In the following, ferrite-based catalysts in which another metal is either embedded 

in the lattice of the spinel ferrite or attached to the surface of the magnetic nanoparticle are summarized.  

Ferrites MFe2O4 (M = Mn, Co, Ni, Cu, or Zn) have spinel structure based on a close packed oxygen lattice, in 

which tetrahedral and octahedral sites are occupied by metal cations. The divalent M2+ ions occupy either the 

tetrahedral or the octahedral sites of the spinel lattice. However, since the octahedral sites are mainly those 

exposed on the surface of the spinel, the catalytic activity is mostly related to the metal present at those 

sites.395 

Specifically using cobalt-ferrites, the group of Singhal thoroughly studied the effect of different dopants. The 

parent CoFe2O4 itself was found to be inactive for the reduction of 4-nitrophenol with NaBH4.396 

Interestingly, the addition of Ni as dopant, in a series of NixCo1-xFe2O4 (x = 0.2, 0.4, 0.6, 0.8) catalysts 

prepared by reverse micellar method, resulted in catalytic activity of the NPs. The authors attribute the 

catalytic performance as a result of the presence of active Ni2+ on the cobalt-ferrite surface (octahedral sites) 

and its effect on the NPs size and surface area. Ni0.6Co0.4Fe2O4 and NiFe2O4 showed the best activity. The 

same group studied also a series of related catalysts, prepared by sol-gel method, with the composition 

CoM0.2Fe1.8O4 (M = Mn, Ni, Cu or Zn).397 Here, the Cu-doped material revealed good catalytic activity, 

although lower than that of Ni0.6Co0.4Fe2O4 and NiFe2O4. Notably, the best activity was obtained with the 

Mn-doped catalyst. The study of a series of catalysts with the composition CoMnxFe2−xO4,398 showed that 
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cobalt-ferrite (x = 0) is activated by the addition of a small amount of manganese ions (x = 0.2). Owing to 

the low catalytic activity of Mn itself, the increased reactivity was attributed to a synergistic effect between 

Co-Mn and Fe-Mn. In the reduction of nitroanilines and halogen-substituted nitroarenes, CoMn0.2Fe0.8O4 
399 

was two to three times more active than CoCu0.20.8O4
397 and also showed improved chemoselectivity. Singhal 

and co-workers also reported a comparison between CuFe2O4, NiFeO4 and ZnFe2O4, synthesized by sol-gel 

method, for the reduction of nitrophenols. The study made clear that copper-ferrite has the highest activity 

while zinc-ferrite is completely inactive.400 Indeed, the first copper-ferrite catalyst for the reduction of 

nitrophenols with NaBH4 was reported in 2013 by C. Wang and co-workers.401 This catalyst, synthesized by 

a hydrothermal method, was composed by spherical clusters (~160 nm) of smaller CuFe2O4 NPs (~5 nm). In 

contrast, monometallic Fe2O3 and Fe3O4 NPs were ineffective for the same reaction. Although the active 

catalyst could be separated magnetically, the structure of CuFe2O4 NP was partially destroyed by NaBH4, 

mainly due to reduction of Cu2+ to metallic copper. The addition of a carbon-based support stabilized the 

copper-ferrite NPs.402-404 More specifically, bubbling O2 in an acetone/cetylamine suspension of the copper-

ferrite NPs followed by thermal treatment at 400 °C under N2, afforded CuFe2O4 NPs embedded in a three-

dimensional porous carbon cage.404 The stability of the catalytic system for the reduction of 4-NP was higher 

than that of bare NPs, although a low catalyst/substrate ratio was employed. A good recyclability and a 

broader substrate scope was realized using a CuFe2O4 catalyst containing 25 wt% of graphene.402 The 

graphene in the nanocomposites enhanced the catalytic activity with respect to the bare NP and avoided fast 

deterioration of CuFe2O4. Faster reaction rates for the reduction of EWG- and EDG-substituted nitroarenes 

were achieved upon addition of a small amount of Co (Cu/Co = 6:1) to the copper-ferrite graphene 

catalyst.403 The Cu-Co synergistic effect was ascribed to the overlapping of the 3d bands of the transition 

metal ions.  

Recently, Gengan and co-workers capped CuFe2O4 NPs with a tri-cationic phosphonate ionic liquid (TCPIL) 

and supported them on partially oxidized modified boron nitride nanosheets (BNONS) (Figure 52).405 The 

TCPIL/CuFe2O4/BNONS catalyst was used in the reduction of different nitroanilines and could be recycled 

several times. The authors proposed that the TCPIL phase enhances the electron transitions between 

CuFe2O4 NPs, on which NaBH4 is activated, and BNONS, on which nitroanilines are absorbed. The 

formation of p-n junctions between CuFe2O4 NPs and BNO layers facilitated the reduction. This, in addition 
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to the good dispersion of the NPs on the BNONS, was suggested to be the reason for the good activity of the 

system. TCPIL/CuFe2O4/BNONS and CuFe2O4-graphene composites402,403 were able to catalyze the 

reduction of 4-nitroaniline in comparable reaction times, although the metal loading for the former was 

lower. Despite the good catalytic activity, the complex synthetic procedure for the preparation of the 

BNONS supported catalyst constitutes a drawback with respect to the graphene-based system. 

Figure 52 Preparation of TCPIL/CuFe2O4/BNONS nanocomposite. (Reproduced with permission from Ref. 405. Copyright 2018, 

Elsevier) 

 

In addition to the Cu-containing catalysts with the metal ions included in the spinel structure of the ferrite, 

two other systems have been reported in which metallic Cu was supported on Fe3O4
406

 and NiFe2O4.
407 In 

these cases, the ferrite mainly acts as dispersing agent and as magnetic support allowing the recovery and 

recycling of the catalyst. As for most of the metal-based systems the reduction of substituted nitroarenes with 

NaBH4 was accomplished in short reaction time, however carbonyl groups including ketones and aldehydes 

were also reduced. 

7.2.2.3. Manganese-containing composites 

So far no Mn-based heterogenous catalysts without the addition of other metals have been reported for the 

reduction of nitroarenes. However, owing to the low cost and absorptive abilities, manganese oxides have 

been used as versatile supports and as modifiers of a number of nano-scaled catalysts with unique structural 

features. The first report of such systems by Pal and co-workers described the use of CuO-MnO2 composites, 

which were prepared by treating cubic, octahedral and spherical-shaped Cu2O nanoparticles with KMnO4 

under modified hydrothermal conditions (MHT).408 Depending on the reaction time, porous structures with 
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retained size and shape of the parental NPs or smaller spherical porous particles could be attained (Figure 

53).  

Figure 53 Synthesis of CuO-MnO2 nanocomposites. (Reproduced with permission from Ref. 408. Copyright 2014, American 

Chemical Society) 

 

Interestingly, the catalytic performances of these materials in the reduction of 4-NP is directly related to their 

surface area. An improved catalytic activity was observed applying Cu@MnO2 core–shell nanowires 

prepared by reduction of Cu2+ with hydrazine in a NaOH/EDTA aqueous solution followed by hydrothermal 

treatment with KMnO4 solution.409 Here, the obtained material was composed by an internal Cu core whose 

surface area, and thus the capability of absorbing the reagents, was increased by a porous MnO2 shell. In 

spite of the apparently delicate structures, both the CuO-MnO2 NPs408 and Cu@MnO2 nanowires409 retained 

their morphological and catalytic features even after several recycling experiments. Due to the negligible 

catalytic activity of MnO2 alone,408 the role of manganese in such copper-MnO2 catalysts is limited to 

morphological modifications (i.e. increased porosity) during the synthesis and to structural stabilization 

effects. Nevertheless, as in several other bimetallic systems it is not possible to exclude a synergistic effect 

between copper and MnO2.  

In addition to Cu, two different catalysts have been reported on the use of manganese oxides in combination 

with Ni, again for the reduction of nitro compounds with NaBH4. In the first case, Lee and co-workers 

studied single Ni(0) particles confined in the hollow cavities of a manganese-silicate nanoshell.410 The 

material exhibits a high surface area and a pore size of the external shell sufficient to allow the reagents to 

reach the interior cavity. Interestingly the hollow NPs catalyzed the reduction of nitroarenes substituted with 

amino-, methoxy- and aldehyde-groups but not nitrophenols. This peculiar selectivity was attributed to the 

repulsion of the phenolate anion by the negatively charged manganese-silicate shell. Later, Bharali and co-

workers reported the use of zero-valent Ni NPs (~2-3 nm) supported on -Mn2O3 for the reduction of 4-
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NP.411 This composite had a lower catalytic activity than the bare Ni NPs, although the manganese oxide 

support had a stabilization effect allowing a slightly improved recyclability of the bimetallic catalyst with 

respect to the monometallic one. Finally, Co-Mn oxide catalysts should be mentioned here, which have been 

prepared by treatment of in situ synthesized cobalt nanoparticles with aqueous KMnO4 at 120 °C. They 

catalyzed the reduction of nitroarenes with NaBH4 or hydrazine.412 Co and Mn in the catalytic material were 

mainly present in the oxidation states +2 and +4, thus affording the composition Co2Mn3O8. The authors 

compared the activity of the catalyst in the reduction of 4-NP with that of MnO2 and Co3O4 NPs, prepared 

with the same procedure, noticing a higher activity. Although a cooperativity of the two metals was claimed 

on the base of these results, no other evidences were provided. In fact, the higher reduction rate of the 

heterobimetallic material could also be due to morphological features. Using Co2Mn3O8 as catalyst, a 

comparison between NaBH4 and hydrazine for the reduction of substituted nitrobenzenes was done. Faster 

reaction rate and higher selectivities were reported for the sodium borohydride system. Interestingly, it was 

shown that when NaBH4 was employed as the H-source, 4-nitrostyrene could be effectively reduced to the 

unsaturated aniline, while using hydrazine the double bond was also hydrogenated. Co2Mn3O8 had also a 

good stability allowing recycling it up to ten times without any activity drops and structural changes 

(detected by XPRD and XPS), however a progressive depletion of the content of the two metals was noticed. 

8. Homogeneous catalysts 

To the best of our knowledge, all industrially applied catalytic nitro reductions to amines make use of 

heterogeneous catalysts. Hence, it is not surprising that the vast majority of recent studies in this area deal 

with the use of new solid catalysts. However, parallel to their development, several homogeneous catalytic 

systems have been also studied especially for structurally more diverse substrates. In general, the structure, 

properties and catalytic performance of a molecular complex, in particular regarding selectivity, can be more 

easily tuned by changing the structure of the ligand and, of course, modifying the nature of the metal. 

Although a number of successful homogenous catalysts have been reported, it is clear that none of these 

complexes can compete so far with the heterogeneous ones for existing large scale continuous processes. 

Nevertheless, such systems might find applications in the synthesis of specialty chemicals and/or 

pharmaceuticals. For these products, the cost of the catalyst itself might not be the most relevant point 

considering the value of the final product. Here, excellent selectivity and low toxicity of the catalyst system 



132 
 

itself are important, too. In this respect, homogenous or heterogenized homogenous catalysts for nitro 

reduction employing first row transition metals are gaining increasing interest.  

8.1. Iron-based catalysts 

8.1.1.  Reduction with gaseous reductants 

Before 2000, very few catalytic systems employing soluble iron complexes have been reported for the 

reduction of nitroarenes. Among those, the most studied systems were based on the use of iron carbonyls as 

catalytic precursors, carbon monoxide as the reductant and water or alcohol as hydrogen sources. The 

advantages of these methods are the selectivity and the low cost of carbon monoxide, in addition to the low 

cost of iron. In most cases however, considering the number of electrons that can be provided by carbon 

monoxide ligands coordinated to iron, the reduction was stoichiometric and, when a real catalytic reaction 

was involved, the turnover numbers were low.413 In spite of the potential industrial interest of the reaction, it 

was less studied in recent years.  

An alternative to CO/H2O mixtures is the use of molecular hydrogen. Pioneering studies by Knifton in 1976, 

reported the use of Fe(CO)3(PPh3)2 and Fe(CO)3(AsPh3)2 as catalysts for the reduction of nitrobenzene.414 

Knifton reported a higher activity and selectivity of bis(triphenylarsine)tricarbonyliron(0) compared to the 

PPh3 containing one, but also a lower stability. Although the reaction required relatively harsh conditions, 80 

bar H2 at 125 °C, and was performed with a low catalytic ratio, the results were encouraging. However, the 

studies on other iron-based catalysts were abandoned in favor of the more active noble metals-based ones. 

Almost 30 years later, Chaudhari and co-workers tested different iron salts and complexes in the catalytic 

hydrogenation of nitrobenzene.415 As the reduction of the nitro group with hydrogen is accompanied by the 

formation of two equivalents of water, a water-tolerant catalyst is required for achieving high TON. Working 

in this direction the group of Chaudhari found good activity (TOF up to 1300) and high selectivity towards 

aniline (>98%) using either iron nitrate, iron sulfate or iron acetylacetonate at relatively low hydrogen 

pressure (about 28 bar) at 150 °C. The highest activities were obtained using iron sulfate either in toluene, 

alcohol or water. Based on these results they developed an organic phase/water biphasic system that allowed 

an easy separation of the product from the catalyst. Either toluene or the neat nitroarene could be used as the 

organic solvent, but in both cases ethylenediaminetetraacetic acid disodium salt (EDTANa2) had to be added 

as ligand to avoid massive leaching of the metal to the organic phase. The biphasic nature of the system and 
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the addition of the ligand resulted in a reduced catalytic activity, however, the system showed robustness. 

The aqueous phase containing the catalyst was recycled 5 times without significant loss of activity and a 

cumulative TON above 6000 was obtained. Although the reaction temperature was rather high, nitriles, 

carboxylic acids and keto groups were not reduced. Also, dehalogenation did not occur when a chloride 

substituent was present on the substrate. More sensitive groups such as bromide, iodide and double bonds 

were not tested. In the case of the reduction of 4-nitrobenzoic acid, 4-nitrobenzyl nitrile and 2-nitroanisole 

the formation of azo- and diazo-derivatives lowered the selectivity to the corresponding aniline. These side-

products resulted from the reaction of nitrosobenzene thus indicating its accumulation during the reaction 

(Scheme 3, direct pathway). 

A rare example of iron-catalyzed hydrogenations of nitroarenes, that makes use of defined 

iron/tetraphosphines complexes, was reported by the group of Beller almost 10 years later.416 Both the pre-

formed and in-situ generated iron complex (using Fe(BF4)2·6H2O) of tris[(2-

diphenylphosphino)phenyl]phosphine (L1, Scheme 36) showed higher catalytic activity towards reduction of 

nitrobenzene than complexes of the commercially available tris[2-(diphenylphosphino)ethyl]phosphine (L2, 

Scheme 39). Under optimized conditions (120 °C at 20 bar H2 in tert-amylalcohol) the catalyst required one 

equivalent of trifluoroacetic acid with respect to the substrate to get significant hydrogenation activity. Based 

on NMR studies of the complex [FeF(L1)][BF4] under the reaction conditions, the authors presented a 

mechanistic proposal. Already at room temperature and under 20 bar of H2, the preformed complex was 

partially converted to the diamagnetic iron hydride complex [FeH(H2)(L1)][BF4] in the absence of 

nitroarenes. Thus, it was proposed that the coordinated fluoride in the initial precursor readily forms an 

[FeH(L1)]+ species. This activates H2 to give [FeH(H2)(L1)]+, which is responsible for the hydrogenation of 

the nitro group (Scheme 36). No accumulation of intermediates such as hydroxylamine, azo- and azoxy-

compound was detected during the reaction. Nevertheless, no reduction pathway was suggested because the 

system is able to reduce N-phenylhydroxylamine and diazobenzene with a similar rate (Scheme 3). From a 

synthetic point of view the system is very selective towards the nitro reduction and even double bonds were 

tolerated. Dehalogenation was not detected for 3- and 4-halide-substituted nitroarenes. 

 

Scheme 36 Proposed mechanism for the reduction of nitroarenes with H2 catalyzed by Fe-L1 complexes. 
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8.1.2.  Transfer hydrogenations  

Iron complexes have been also reported to catalyze transfer hydrogenations of nitroarenes. The first example 

of such reactions employed 1,1-dimethyl-hydrazine as the hydrogen source and FeCl3·6H2O as catalyst in the 

presence of charcoal.417 Although the metallic precursor is completely soluble, it is not possible to exclude 

the formation of a heterogeneous catalytic system during the reaction. Later on, the simple FeSO4·7H2O salt 

was reported to quantitatively catalyze the reduction of 4-nitrobenzonitrile to 4-aminobenzonitrile in a 

H2O/EtOH 1:1 mixture using hydrazine hydrate as the hydrogen source. However, the catalyst was not 

effective when formic acid, formates, NaBH4 and NH4Cl were used.418 Other simple iron salts have been 

tested in combination with NaBH4. A conversion was noticed with most of them, but selectivity was not 

always good. FeCl3
419,420

 and Fe(OTf)3
420

 afforded good selectivities towards the amine. Comparing the two 

salts under the same conditions Thomas and co-workers noticed a better performance of the latter.420 Using 

10 mol% of Fe(OTf)3, the reduction of nitrobenzene took place at room temperature in 4 h, although 20 

equivalents of reductant were needed. The catalyst well tolerated ortho-substitutents, electron-donating and 

electron-withdrawing groups including esters and amides; however, ketones were reduced to the 

corresponding alcohols and a partial dehalogenation was noticed for 4-bromonitrobenzene. 

A catalytic system for the hydrogenation of nitroaromatics with hydrazine showing a good tolerance towards 

sensitive groups and selectivity in the mono-reduction of dinitroarenes was obtained by Bhanage and co-

workers using a 1-alkyl-3-methylimidazolium-iron complex immobilized over silica, ImmFe-IL, (Scheme 

37).421 From EXAFS analysis of the freshly prepared heterogeneous material, in the ImmFe-IL iron was 
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uniformly distributed in the form of one [FeCl3]- for each imidazolium cation, thus resembling the 

homogeneous complex [Bmim]2FeCl4 (Bmim = 1-butyl-3-methylimidazolium). Although the catalyst could 

be recycled, loss of activity was detected already after the third cycle. 

Scheme 37 Synthesis of immobilized iron complex ImmFe-IL. (Reproduced with permission from Ref. 421. Copyright 2015, 

American Chemical Society) 

 

In all the above mentioned systems the formation of nanoparticles cannot be excluded, however, at least for 

Fe(OTf)3 the absence of an induction period suggested against it.420 In addition, FePc is a versatile catalyst, 

which was used successfully in combination of N2H4·H2O,418,419 NaBH4
419,422

 and silanes.419 For example, N. 

Kumar, B. Singh and co-workers compared FeSO4·7H2O, FePc or a 1:1 combination of them using 

hydrazine hydrate as the reductant.418 A wide range of nitroaromatics were reduced showing that the method 

tolerates a large number of functional groups. However, it is difficult to state the superiority of one of the 

three systems owing to the different conditions used. In most cases selectivities were 99% with the best pre-

catalyst and the optimal solvent depending on the substrate. Worth noting the FePc is able to selectively 

reduce only one nitro group in meta-, ortho-, and para-dinitrobenzene, while FeSO4·7H2O yielded the 

corresponding phenylenediamine. In 2001, phthalocyanine-iron complexes PcFe(II) and PcFe(III)Cl were 

used for the first time for the reduction of a nitro group in combination with NaBH4. More specifically, an 

intermediate in the total synthesis of (R,R)-formoterol was prepared (Scheme 38).422  

 

Scheme 38 Selective reduction of a pharmaceutical relevant intermediate with iron-phthalocyanine catalyst. 
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In comparison with the more expensive and less-stable tetraphenylporphyrinatoiron(III) chloride 

((TPP)FeCl), both Pc complexes showed a higher activity, while CoCl2 or Fe(acac)3 were ineffective, 

yielding mainly debrominated side products. PcFe(II) and PcFe(III)Cl pre-catalysts gave similar results since 

the same active Fe(II) species were formed prior to the addition of the nitroarene. The authors noticed that 

addition of one equivalent of HBr with respect to the substrate substantially accelerated the reduction and 

decreased dehalogenation side reactions. This effect was explained by a faster in-situ generation of 

hydrogen. Using 2-bromoethanol to generate HBr in a more controlled way in the presence of PcFe(II) in 

diglyme at room temperature allowed the authors to extend the substrate scope. Hence, in this protocol 

benzyl ether, benzyl carbamate as well as halogen groups were well tolerated and also for the sensitive 4-

iodobenzene a good yield was obtained. Although the authors demonstrated the superiority of FePc 

compared to (TPP)FeCl in the reduction of the specific intermediate of formoterol, it should be noted that 

reduction of simpler substrates (i.e. nitrobenzene and 4-chloronitrobenzene) with (TPP)FeCl were previously 

reported to occur with higher TON and TOF.423 

Based on their iron-catalyzed hydrogenations of nitroarenes,416 a related molecular-defined iron complex 

employing a tetradentate phosphine as the ligand was reported by Beller and co-workers for the reduction of 

nitroarenes using formic acid.424 Here, the commercial so-called tetraphos ligand L2 gave good results, while 

it was not effective in the former case. The active catalyst prepared in-situ from Fe(BF4)2·6H2O was able to 

reduce nitro aromatics with formic acid already at 40 °C in the absence of any base. This feature is quite rare 

since most of the hydrogen transfer reactions require the presence of at least stoichiometric amounts of a 

base. By testing a series of defined iron-L2 complexes the authors noticed that a fluoride coordinated to the 

metal is necessary to ensure good catalytic performance. This is opposite to what was found for the catalytic 

hydrogenation of nitroarenes, in which the initially coordinated fluoride, in the precursor [FeF(L1)]+, was 
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readily displaced under H2 pressure. Thus, the active species in the two systems seems to be different. Indeed 

the authors found that [FeX(L2)][BPh4] complexes (X= H or Cl) were inactive for the reduction of the nitro 

group using formic acid as H-donor in the absence of added fluoride salts. The proposed reaction mechanism 

is shown in Scheme 39. It is worth mentioning, that this system was not able to effectively hydrogenate 

azobenzene to aniline. Owing to the mild conditions and the nature of the H-source, the procedure tolerates a 

large number of functional groups, including ketones, double bonds and halide substituents. 

 

Scheme 39 Proposed mechanism for the reduction of nitroarenes with HCOOH catalyzed by Fe-L2 complexes. 

 

8.1.3. Reductions with hydrosilanes 

The first example of iron assisted reductions of nitroarenes using hydrosilanes as H-donors is rather recent. 

In 2009, Nagashima and co-workers observed an unexpected selective reduction of the nitro group while 

investigating the carbonyl reduction of N,N-dimethyl-4-nitrobenzamide with 1,1,3,3-tetramethyldisiloxane in 

the presence of 10 mol% [Fe3(CO)12].425 Remarkably, the catalytic behavior of the simple triiron 

dodecacarbonyl cluster was orthogonal to that shown by ruthenium and platinum426 complexes, which 

selectively reduced the carbonyl group (Scheme 40). Hence, the same system was employed for the 

reduction of 4-halo nitrobenzenes affording the corresponding anilines in very good to excellent yields. 

Scheme 40 Orthogonal selectivity of noble metals and Fe3(CO)12 in the reduction of N,N-dimethyl-4-nitrobenzamide. 
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An extensive study on nitro reductions with silanes was done by Beller and co-workers.427 A large number of 

iron precursors formed active catalysts in the presence of tricyclohexyl phosphine (PCy3) for the reduction of 

4-bromonitrobenzene with phenylsilane in toluene at 110 °C. Best results were obtained with simple FeBr2 

and PPh3 as the ligand. In the absence of ligands only poor yields were achieved. The protocol could be 

applied to nitroarenes containing halogen in ortho-, meta-, or para- position, affording only small amounts of 

dehalogenated by-products. Nitro compounds bearing double bonds, hydroxo, cyano, carbonyl and 

carboxylic groups as well as aromatic ethers and thioethers were reduced to the corresponding anilines in 

good to high yields. In addition, the hydrogenation of 1,4-dinitrobenzene to 4-nitroaniline was attained 

chemoselectively. Around the same time, the group of Lemaire optimized a catalytic system based on 

Fe(acac)2 or Fe(acac)3 and TMDS as hydrogen source affording product yields comparable to those reported 

by Beller.428,429 The reductions were performed at slightly lower temperature (60 °C), although longer 

reaction times were needed.  

More recently, also Fe(II)Pc has been employed as catalyst for similar transformations using diphenylsilane 

(DPH) as the reductant. Using this complex, high yields of the corresponding anilines were achieved for 

most of the employed nitroarenes using only 1 mol% catalyst loading. Mono- and diaminobenzenes could be 

selectively obtained from di-nitroarenes upon variation of the silane amount. In agreement with the work of 

Lemaire and co-workers,429 the authors noticed a faster reduction of aldehydes and double bonds compared 

to the nitro groups. 

Scheme 41 Fe(III) amine-bis(phenolate) catalyzed reduction of 4-nitrobenzamide with silanes: ligand effect. 
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A fast and active catalyst based on iron(III)-amine-bis(phenolate) complexes was reported by Shaver and 

Thomas.430 Performing the reduction of 4-nitroacetophenone the authors noticed a marked effect of the donor 

group Y bound to the amino moiety (Scheme 41). When a weakly coordinating tetrahydro-2-furanyl group 

was present instead of a strongly coordinating dimethylamino group, the reaction was faster and reduction of 

the carbonyl group was suppressed. Optimization of the reaction conditions allowed the selective reduction 

of a considerable number of nitroarenes bearing esters, thioesters, thioethers, nitriles, bromo and chloro 

substituents. Despite the relatively low temperature (80 °C) and catalyst loading (2 mol%), aniline yields 

>80% were generally attained in less than 8 hours while most of the other reported iron-based systems 

required longer reaction times for the reduction of nitroarenes with hydrosilanes. Interestingly, exploiting the 

feature of the complex to catalyze radical and reduction reactions, the authors envisaged the possibility of 

coupling the reductive transformation of nitroarenes with radical hydrogen-atom transfer to an alkene.430,431 

The formal hydroamination took place at room temperature in less than two hours with only 2 mol% of 

catalyst. N-Alkylated hydroxylamine and N,O-alkylated adducts were formed as intermediates. While the 

former intermediate could be reduced by Fe catalyst/hydrosilane, the latter required reduction by Zn/HCl to 

afford the hydroamination products in good yields (Scheme 42). It should be mentioned that this general 

synthetic strategy was previously reported by the group of Baran using 30 mol% of Fe(acac)3 as catalyst.432  

 

Scheme 42 Iron catalyzed hydroamination of olefins with nitroarenes. 
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8.2. Cobalt-based catalysts: Transfer hydrogenations 

In contrast to ligand-free iron systems, simple CoCl2 was ineffective as catalyst for nitroarene reduction both 

using hydrazine433 and NaBH4
419. However, cobalt(II) phthalocyanine was shown to be effective for the 

reduction of a wide range of nitroaromatics in combination with 2 equivalents of hydrazine hydrate in 

ethylene glycol.433 In these reactions CoPc showed a comparable chemoselectivity to the FePc catalyst.418 In 

general, this catalyst tolerated the presence of halide substituents, keto, nitrile, ester groups and heterocyclic 

rings. In addition, polycyclic nitroarenes afforded the corresponding anilines in high yields, while for such 

substrates FePc gave only poor conversions. Interestingly, also 4-iodonitrobenzene was selectively reduced 

without dehalogenation. Mechanistic insights of the reaction evidenced a direct reduction of the nitro as the 

main pathway under the used conditions (Scheme 3). The authors observed a fast reduction of the Co(II) to 

Co(I) upon addition of hydrazine to the Co(II)Pc solution. They proposed that a partial electron transfer from 

the ligand to the metal promotes the coordination of the nitroarene, which is then reduced to the amine by H2 

generated in-situ from the CoPc catalyzed decomposition of hydrazine. Due to the robustness of the catalyst, 

it was possible to recycle it four times by simple extraction from the ethylene glycol phase. A more efficient 

recycling system was later reported by Chao and Bergbreiter using a polyisobutylene-bound phthalocyanine 

cobalt complex.434 Running the reaction in a partially thermomorphic heptane/ethylene glycol solvent system 

allowed to recycle the catalyst up to ten times, although longer reaction time were required to get full 

conversions. 

Very recently, Gupta and co-workers synthesized two sets of cobalt complexes using tetradentate 

pyrrolecarboxamido ligands (L3)435 and amino-amido based macrocycles (L4, Scheme 43).436 Best results 
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for nitro reductions were obtained when the cobalt in the catalytic pre-cursor was in oxidation state +3 and 

when electron-withdrawing –Cl groups were present on the aromatic scaffold of the ligands. Cobalt 

complexes of both L3 and L4 were able to reduce a wide range of nitroaromatics in 6 h using 2 equivalents 

of hydrazine at 60 °C. Only little conversion was attained using Co-L3 complexes when ortho-disubstituted 

nitroarenes were employed. Other dinitroaromatics were fully reduced to dianilines with both systems. 

 

Scheme 43 Tetradentate nitrogen ligands employed in the Co catalyzed reduction of nitroarenes with hydrazine. 

 

 

These complexes were not able to reduce styrene or stilbene; however, when 3-nitrostyrene or 1-nitro-4-(2-

nitrovinyl)benzene were employed as substrates, the double bond was partially reduced. The authors ascribed 

this behavior to an activation of the olefin group towards hydrogenation as a result of the initial reduction of 

the nitro group to the aniline. In addition, both systems were able to catalyze the reduction of secondary and 

tertiary nitroalkanes. The same group also described the use of trinuclear [Co2+–Co3+–Co2+] and [Co2+–Fe3+–

Co2+] complexes (Scheme 44) as active catalysts for the reduction of nitro compounds with hydrazine.437  

Scheme 44 Anionic part of trinuclear [Co2+–Co3+–Co2+] and [Co2+–Fe3+–Co2+] complexes used as catalysts in the reduction of 

nitroarenes with hydrazine. 

 

However, using the trinuclear complexes a large excess (6 equivalents) of reductant is required to reach 

complete conversion. Noteworthy, 4-iodonitrobenzene was reduced to the amine in 99% yield. From a 

mechanistic point of view, the authors suggested that the peripheral Co(II) are reduced to Co(I) upon 
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addition of hydrazine, thus involving different oxidation states of the cobalt respect to the above described 

tetradentate ligands.435,436 On the other hand, the central metal atom is not reduced by hydrazine thus 

indicating a marginal role in the redox process. This is in line with the very similar results obtained using 

[Co2+–Co3+–Co2+] and [Co2+–Fe3+–Co2+]. Poor catalytic results were obtained when a [(Neoc)Co(II)Cl2] 

complex was employed as the catalyst to mimic the peripheral active sites.  

8.3. Nickel-based catalysts: Reductions with hydrosilanes 

Despite the importance of Ni-based heterogeneous materials for hydrogenation reactions, the number of 

homogeneous Ni complexes for the reduction of nitro compounds reported so far is very limited. In 

particular, only hydrosilane-based reductions are known. However, simple nickel halides did not show any 

activity to reduce nitrobenzene even in the presence of PPh3 using PMHS. Instead, Ni(acac)2 was found to be 

active in the absence of any additional ligand.438 Compared to the to the FeBr2/PR3
427 or the ligand-free 

iron428,429 catalysts described above, Ni(acac)2 required shorter reaction time (3-5 h instead of 16-48 h) at 

comparable reaction temperatures and catalyst loading (10 mol%). Although the reported product yields 

were mainly between 60% and 85%, the authors stated that only reduction of the nitro group was noticed for 

carbonyl-, Cl- and Br-containing substrates. Main differences with the iron-based hydrosilylation catalysts 

were the high selectivity towards the nitro group reduction in 4-nitrobenzaldehyde and in olefin-containing 

substrates. In addition, no detrimental steric ortho-effect was noticed as it was reported for Fe(acac)2.429  

A faster reduction of a number of nitroarenes was obtained using either an abnormal N-heterocyclic carbene 

based nickel complex, NiCl2(aNHC)2, (aNHC = 1,3-bis(2,6-diisopropylphenyl)-2,4-diphenyl-2,3-dihydro-

1H-imidazole) 439 or a half-sandwich Ni–NHC complexes (Scheme 45).440  

 

Scheme 45 Half-sandwich Ni-NHC (left)440 and abnormal NHC-Ni complex (right)439 for the reduction of nitroarenes with silanes. 
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The catalysts were able to reduce a number of nitroarenes substituted with electron-withdrawing and 

electron-donating groups in less than 3 h using PhSiH3 as the hydrogen source. For example, nitrile and 

iodine containing nitroarenes were reduced to the corresponding anilines in high yields. Between the two 

catalysts a different behavior towards substrates bearing double bonds was noticed: NiCl2(aNHC)2 did not 

reduce olefin groups, while the half-sandwich Ni–NHC complex yielded a mixture of products. From a 

mechanistic point of view both complexes did not directly react with the nitroarene in the absence of silanes. 

In an attempt to identify the active species by reacting the complexes with PhSiH3, the authors were unable 

to detect any Ni-H species by 1H NMR. However, at least for complex NiCl2(aNHC)2, signals related to Si-H 

in 1H NMR and 29Si NMR suggested the formation of a Ni-silyl intermediate. 

8.4. Other metals  

The importance of phthalocyanines as ligands in the catalytic reduction of nitroarenes was furthermore 

demonstrated using CuPc433 and ZnPc complexes.441 For both metals, the sulfate, chloride and bromide salts 

in the absence of any ligands afforded far lower yields when hydrazine was used as the reductant. It is 

interesting to note that ZnCl2 alone catalyzed the reduction of nitro groups in up to 89% yield. This fairly 

good result is surprising, since only in two other catalytic systems Zn was used as the (heterogeneous) active 

metal in which the reduction of nitrophenol was accomplished with high catalyst loadings.442,443  

The CuPc catalyst showed very similar catalytic performances to the CoPc described above.433 Indeed in 

both cases hydrazine was identified as the best reductant in ethylene glycol, although some reduction 

occurred using formate salts. For most substrates, the reaction rates and yields were comparable in the 

presence of CuPc and CoPc. In line with these results the ZnPc441 showed also a comparable activity and 

selective reduction of substituted nitroarenes with hydrazine was accomplished in PEG-400 at 100 °C. 

Dinitroarenes were converted to the corresponding nitroaniline, although for 1,2-dinitrobenzene phenyl 

hydrazine had to be used since 1H-benzotriazole was obtained as the main product using N2H4. Furthermore, 
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the authors reported that changing the hydride source from hydrazine to NaBH4 selective reduction of 

ketones at room temperature was accomplished on substrates containing nitro groups. 

 

9. Conclusions and outlook 

In the last two decades an enormous interest aroused using non-noble metal catalysts for the synthesis of 

amines from nitroarenes. Although this classic reduction is a well-established process – first reported in 1842 

– it continues to attract scientific and economic interest. On the one hand, both substrates and products 

constitute highly important intermediates in academic organic synthesis, but also represent valuable 

industrial intermediates. In fact, aniline and the majority of substituted anilines are produced on large scale 

by this transformation, which experienced a renaissance period recently. Hence, the majority of the catalytic 

systems reviewed in this paper were published after 2010.  

In general, apart from dihydrogen, most of the (more reactive) reducing agents described above are able to 

convert nitroarenes to amines in the presence of even very simple metal precursors or oxides as catalysts. 

The synthesis of tailor-made catalytic materials, however, offers the possibility of gaining higher activities 

and selectivities. Instead, for the activation of dihydrogen, usually more specific systems have to be used. In 

this regard, for long time the use of non-noble metals for nitroarenes hydrogenation was mainly limited to 

nickel-based catalysts, especially Raney®-Ni. In recent years, a plethora of catalysts based on Fe, Co, Ni and 

Cu have been investigated. Concerning the identity of the metal, the lower cost and toxicity of iron compared 

to other 3d-metals (i.e. Co, Ni, Cu) makes it the “perfect” candidate for sustainable applications, although 

reaching a industrially sufficient activity continues to be highly challenging. In addition, due to its 

comparably low price and toxicity, manganese is a promising candidate for new catalysts design. However, 

the application of Mn in catalytic systems for nitro reduction is still underdeveloped.  

Even though the price of the metal is an important parameter, the most relevant factors for a suitable catalyst 

for practical applications are activity and stability under operative conditions. However, owing to the 

conservative attitude of industry towards innovation, the ideal catalyst for an actual application should 

exhibit its best performance in an already existing plant. 

A promising broad class of active catalysts makes use of metal/metal oxide NPs supported onto 

carbonaceous materials. Worth of note is the high selectivity that can be achieved in particular for 
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transformations involving functional groups. Especially, nitrogen-doping in carbon matrixes became a 

crucial aspect to exert the activity and tuning the selectivity of many catalysts. However, the role of nitrogen 

in these materials is rarely well understood and it remains unclear if the doping is important for a specific 

catalytic event (e.g. dihydrogen activation) or just be a crucial component in the growing process of the NPs. 

Notably, nitrogen-free carbonaceous materials have been reported to act as catalysts in nitro reductions, too 

and the carbon layer is claimed to act as protective shell with respect to the NPs.  

Both the amount and the type of nitrogen atoms present in the carbon network seem to have an impact on the 

activity.68 In more detail, the metal-nitrogen specific configuration suggested in some cases a heterolytic 

activation of dihydrogen. The hypothesis was also suggested when CO/H2O191 or formic acid187,189 were used 

as reductants indicating a common activation pathway as described in Figure 54. 

Figure 54. Proposed common intermediate for the activation of CO/H2O (A), formic acid (B) and dihydrogen (C) using metal-

containing nitrogen-doped carbon materials. 

 

On the other hand, active catalysts based onto undoped carbon supports have been also reported. In this case, 

the activation of dihydrogen was proposed to occur on the surface of the metal nanoparticle.174,179,180 

Anyhow, despite the high selectivities gained with tailor-made monometallic 3d systems, the activities often 

remain lower than those obtained with noble-metal based catalysts. Another strategy towards high efficiency 

makes use of bimetallic catalytic systems. Through the careful preparation of the catalyst, metal-metal 

synergies and specific morphologies can be achieved with a remarkable impact on the activity.  

Compared to the heterogeneous systems, few homogeneous catalysts were proposed. Most of them display 

lower activity and only few examples were reported using dihydrogen as the reductant. In addition, in some 

of the reports the homogeneous nature of the system was not fully examined, especially for ligand-free ones. 

Owing to the excellent activity and selectivity as well as the recyclability shown by many heterogeneous 

catalysts described above, the use of a 3d-metal based homogeneous system for an industrial application to 

date seems unlikely. Nevertheless, homogeneous catalysts might offer the possibility for coupling the nitro 
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reduction with other transformations. In addition, the properties of molecular complexes can be often tuned 

and studied more easily and thus continue to be interesting for academic research. 

Besides the strong interest in conversion of nitro compounds to primary amines, also selective reductions of 

nitroarenes to the corresponding N-arylhydroxylamines, azo- or azoxyarenes are valuable for industry. In this 

regard, most of the known catalysts rely on noble metals, especially Pd and Pt (hydrogen) or Ru (CO/H2O). 

Therefore, this topic offers multiple opportunities for the development of novel 3d-metal catalyst systems. 

Additionally, other valuable products could be obtained by effecting the reduction of the nitro moiety to 

other reactive intermediates (such as amino-, nitroso-, hydroxylamino- or azo compounds) in the presence of 

another molecule that could react in a domino type process. Selected examples are shown in Scheme 46.  

Scheme 46. Examples of possible direct use of nitro compounds in domino processes. 

 

In recent years, many groups are gaining interest in these types of reactions. For example, as mentioned in 

chapter 8.1.3, the groups of Baran432 and Thomas430,431 already reported on the selective homogeneous Fe-

catalyzed hydroamination of olefins with nitroarenes. In addition, the groups of Hu,444,445 Wu,446 Driver447 

and Beller448 contributed to the field. However, the reduction of the nitro moiety is either stoichiometric or 

catalyzed by Pd-based systems. Although these transformations would be of high interest regardless to the 

nature of the employed metal, the use of non-noble based catalysts would be preferable. 

To finally conclude, there are some questions that the chemical community should consider: Do specific 

reductants (borohydrides, silanes, etc.), which are more costly and generate wastes, have an actual chance to 

be applied? How relevant are investigations of the reductions under batch liquid-phase conditions for 

addressing the need of industry for new base-metal catalysts? What are the economically feasible conditions 

for an industrial application? How many of the synthetic procedures described for the catalysts could be 

scaled up (complexity, reproducibility, availability of starting materials, etc.)? Besides these questions, the 
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field of nitroreductions offers still interesting possibilities for innovation with respect to catalysts and 

methodologies. We invite you to contribute.      
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11. Abbreviations 

AC activated carbon 

Acac acetylacetonate 

BET Brunauer-Emmett-Teller theory for surface area determination 

Boc tert-butyloxycarbonyl 

CMC carboxy methylcellulose  

CNTs carbon nanotubes 

Co-N-C general abbreviation indicating materials composed by Co onto N-doped carbons 

CTAB Cetyltrimethylammonium bromide  

DABCO 1,4-Diazabicyclo[2.2.2]octane 

DANTA Diacetylene-nitrilotriacetic acid amphiphiles  

DFT Density functional therory 

dmgH dimethylglyoximate monoanion 

dmgH2 dimethylglyoxime 

EDG electron donating group/s 

EDTA ethylendiaminotetraacetic acid 

EDX energy-dispersive X-ray analysis 

EWG electron-withdrawing group/s 

GO graphene oxide 

HAAEMA (2-acetoacetoxy)ethyl methacrylate 

(HR)TEM (high resolution) transmission electron microscopy 
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IL Ionic liquid 

LDH layered double hydroxide  

MEK mitogen-activated protein kinase kinase 

MIm 1-methylimidazole 

MOF metal-organic frameworks 

MW microwave irradiation 

MWCNTs multi-walled carbon nanotubes 

N-CNTs nitrogen-doped carbon nanotubes 

nacnac anion of N,N´-diphenylpentane-2,4-diimine 

NC nitrogen-doped carbon 

Neoc neocuproine (2,9-dimethyl-1,10-phenanthroline) 

NP Nitrophenol  

NPs nanoparticles 

NT nanotube  

NW nanowire 

Pc phthalocyanine 

PDADMAC poly(diallyldimethylammonium chloride)  

PEG polyethylene glycol 

Phen 1,10-phenanthroline 

PNP poly N-vinyl pyrrolidone 

PVDF polyvinylidene fluoride  
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PVP polyvinyl pyrrolidone  

r-GO reduced graphene oxide 

R-Ni = Raney®-Nickel 

SiCN silicon carbonitride 

TEMPO 2,2,6,6-tetramethylpiperidin-1-yl)oxyl 

TEOS tetraethyl orthosilicate 

TMOS tetramethyl orthosilicate 

TMDS 1,1,3,3-tetramethyldisiloxane 

TPR temperature-programmed reduction 

US ultrasound 

XAS X-ray adsorption spectroscopy 

XPRD X-ray powder diffraction 

XPS X-ray photoelectron spectroscopy 

ZIF zeolitic imidazolate frameworks 
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