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STOCHASTIC EQUATIONS WITH DELAY: OPTIMAL CONTROL
VIA BSDEs AND REGULAR SOLUTIONS OF
HAMILTON–JACOBI–BELLMAN EQUATIONS∗

MARCO FUHRMAN† , FEDERICA MASIERO‡ , AND GIANMARIO TESSITORE‡

Abstract. We consider an Itô stochastic differential equation with delay, driven by Brownian
motion, whose solution, by an appropriate reformulation, defines a Markov process X with values
in a space of continuous functions C, with generator L. We then consider a backward stochastic
differential equation depending on X, with unknown processes (Y,Z), and we study properties of the
resulting system, in particular we identify the process Z as a deterministic functional of X. We next
prove that the forward-backward system provides a suitable solution to a class of parabolic partial
differential equations on the space C driven by L, and we apply this result to prove a characterization
of the fair price and the hedging strategy for a financial market with memory effects. We also
include applications to optimal stochastic control of differential equation with delay: in particular
we characterize optimal controls as feedback laws in terms of the process X.
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1. Introduction. We will consider stochastic differential equations with delay
(SDDEs) on a finite interval of the form

(1.1)

{
dyt = b(t, yt+·) dt+ σ(t, yt+·) dWt, t ∈ [0, T ],
yθ = x(θ), θ ∈ [−r, 0]

for an unknown process (yt)t∈[−r,T ] in R
n. Here r > 0 is the maximum delay taken

into account, and we use the notation yt+· = (yt+θ)θ∈[−r,0]. It is customary (see,
for instance, [14]) and convenient to introduce the space C = C([−r, 0];Rn) and the
C-valued process X = (Xt)t∈[0,T ] defined by

Xt(θ) = yt+θ, θ ∈ [−r, 0].

With this notation, b(t, ·) and σ(t, ·) are functions defined on C and the equation can
be written {

dyt = b(t,Xt) dt+ σ(t,Xt) dWt, t ∈ [0, T ],
X0 = x ∈ C.

SDDEs are a classical subject: in the standard reference book [18] (see also [19]) basic
results are established: existence and uniqueness of solutions, regular dependence on
parameters, Markov property of X as a C-valued process, characterization of its
generator. In [7] long time asymptotics are studied in detail.
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In this paper we will present new results on optimal control problems for SDDEs.
Moreover, since the Markov character of solutions allows for the application of dy-
namic programming arguments, we will also prove new results on the corresponding
Hamilton–Jacobi–Bellman equation. More generally, we will consider a class of semi-
linear versions of the parabolic Kolmogorov equation associated to the process X .
This class includes, as a very special case, some infinite-dimensional variants of the
Black–Scholes equation for the fair price of an option, of great interest in mathematical
finance and already considered in [5].

The main tool will be the use of techniques from the theory of backward stochastic
differential equations (BSDEs) in the sense of Pardoux–Peng, first considered in the
nonlinear case in the paper [24]. We refer to the monographs [8], [23] for an exposition
of the basic theory. The BSDE approach that we follow consists of addressing (1.1),
but with generic initial values t ∈ [0, T ] and x ∈ C = C([−r, 0];Rn), and then
coupling with another equation of backward type, with unknown processes (Y, Z).
More precisely, one considers the forward-backward system

(1.2)

⎧⎪⎪⎨⎪⎪⎩
dyt,xτ = b(τ,Xt,x

τ ) dτ + σ(τ,Xt,x
τ ) dWτ , τ ∈ [t, T ] ⊂ [0, T ],

Xt,x
t = x,

dY t,x
τ = ψ(τ,Xt,x

τ , Y t,x
τ , Zt,x

τ ) dτ + Zt,x
τ dWτ ,

Y t,x
T = φ(Xt,x

T ),

where ψ : [0, T ] × C × R × R
d → R and φ : C → R are given functions. One

can then define a (deterministic) function v : [0, T ] ×C → R setting v(t, x) = Y t,x
t .

Markovianity of system (1.2) immediately yields that Y t,x
τ = v(τ,Xt,x

τ ). In addition
we prove that

(1.3) Zt,x
τ = ∇0v

(
τ,Xt,x

τ

)
σ(τ,Xt,x

τ ),

where ∇0 is a differential operator defined by

(1.4) ∇0v(t, x) = ∇xv(t, x)({0}).

To explain the above expression we recall that the gradient ∇xv(t, x) at point (t, x) ∈
[0, T ]×C is an element of the dual space C∗, hence an n-tuple of finite Borel measures
on [−r, 0]. Thus, ∇0v(t, x) is a vector in R

n whose components are the masses at
point 0 of the components of ∇xv(t, x). We stress the fact that, as it is customary
when relating BSDEs and PDEs (see, for instance, [25]), the above “identification of
Z” is one of the main technical points of this paper. The proof presented in section 3
is performed by computing the joint quadratic variation of (v(τ,Xt,x

τ ))τ∈[t,T ] and
(Wτ )τ∈[t,T ], using Malliavin calculus techniques.

We are then able to prove that v is the unique solution (in a suitable mild sense)
of a semilinear parabolic equation of the form

(1.5)

⎧⎨⎩
∂v(t, x)

∂t
+ Ltv(t, x) = ψ(t, x, v(t, x),∇0v(t, x)σ(t, x)),

v(T, x) = φ(x), t ∈ [0, T ], x ∈ C,

where Lt is the generator of the Markov process (Xt,x
τ ) (see [18], [19] or our Re-

mark 2.4).
If one considers the controlled SDDE

(1.6)

{
dyus = b(s,Xu

s ) ds+ σ(s,Xu
s ) [h(s,X

u
s , us) ds+ dWs], s ∈ [t, T ],

Xt = x,
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where the solution depends on a control process u(·) taking values in a space U , and
h : [0, T ]×C× U → R

d is given, and one tries to minimize a cost functional

(1.7) J(t, x, u(·)) = E

∫ T

t

g(us) ds+ Eφ(Xu
T ),

where g : U → [0,∞), then (1.5) is the associated Hamilton–Jacobi–Bellman equation,
provided the Hamiltonian function ψ : [0, T ]×C×R

d → R is defined by the formula

ψ (t, x, z) = inf {g(u) + zh (t, x, u) : u ∈ U} , t ∈ [0, T ], x ∈ C, z ∈ R
d.

This way we eventually prove that v coincides with the value function of the control
problem and that ∇0v occurs in the construction of the optimal feedback.

Although BSDEs were known to be useful tools in the study of control problems
and nonlinear partial differential equations, applications to infinite-dimensional state
spaces are more recent and difficult; see, e.g., [11], [12] for the case of a Hilbert space,
and [17] for some related results on Banach spaces. In these papers, as well as in the
present one, the solution of (1.5) is understood in the so-called mild sense. Special
difficulties arise if the space C is used as the state space of the basic stochastic process
X . In particular, even in the deterministic case, it is not clear how to formulate the
state equation as an evolution equation in C; see [14]. The reason for choosing to
work in C is to allow for great generality on the coefficients b, σ of the SDDEs as
well as on the cost functional of the control problem. For instance, the functional φ
occurring in (1.7) could have the form

(1.8) φ(z) =

∫
[−r,0]

g(z(θ))μ(dθ), z ∈ C,

for some g ∈ C1(R) and some (finite signed) measure μ on [−r, 0]. The special case
when μ is supported on a finite number of points is of particular interest and could
be studied by direct methods, but it is included in our results. More generally, if
φ1, . . . , φn are functionals with the form (1.8) corresponding to functions g1, . . . , gn ∈
C1(R), and if h ∈ C1(Rn), then the functional φ(z) = h(φ1(z), . . . , φn(z)), can also be
treated by our methods. One could avoid the use of the space C by looking at X as a
process with values in the space L2([0, T ];Rn) instead. This was the approach taken
in [13]. However, this leads to restrictions on the applicability of the corresponding
results.

Optimal control problems for SDDEs have been thoroughly investigated in recent
years. The book [4] is a systematic exposition of the state of the existing theory
in all aspects and contains an extensive bibliography. Typically, one of the main
achievements of optimal control theory is the characterization of the value function as
the unique viscosity solution of a Hamilton–Jacobi–Bellman equation. Unfortunately,
the proof of uniqueness reported in [4] seems to contain a gap (see the inequality at the
bottom of page 175 as well as the subsequent arguments) and, therefore, we prefer not
to rely on this result. In fact, we do not prove any result in the framework of viscosity
solutions. Indeed, in our paper (see section 6) we assume stronger conditions, namely
a special form for the control system (1.6) and differentiability assumptions on the
data b, σ, φ, ψ with respect to the space variable x ∈ C. Under these assumptions we
consider a different notion of solution and are able to prove that a unique solution
exists and has further properties, in particular differentiability. We note that the
existence of the gradient of v is of special interest in optimal control theory, since
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not only does it occur in the (mild) formulation of the corresponding Hamilton–
Jacobi–Bellman equation, but it also allows us to characterize the optimal controls via
feedback laws and to prove existence of optimal controls after appropriate formulation.

Parabolic equations on the space C of the form (1.5) have also been considered for
other purposes, in particular as an infinite dimensional generalization of the Black–
Scholes equation for the fair price of an option, in case the market models or the
claim exhibit memory effects. In [4] the existence and uniqueness result for a viscosity
solution is stated but the proof has the same problems as in the case of the Hamilton–
Jacobi–Bellman equation. In [5], by a verification theorem, it is shown that if the
price of the claim is once differentiable in time and twice in space and, in addition,
for all times it belongs to the domain of the generator of the shift operator S (see
Remark 2.4), then it solves the generalized Black–Scholes equation in a classical way.
Here, see section 7, we prove that if the coefficients in the market and the claim are
differentiable, then the price is the unique mild solution of the generalized Black–
Scholes equation. Moreover, the special operator ∇0 defined in (1.4) occurs in the
construction of the hedging strategy. Although more natural than in [5], admittedly
our assumptions (in particular differentiability of the claim) are not totally satisfactory
for applications. We finally mention that in a similar spirit some formulae of Black–
Scholes type are proved in [1] for markets with delay effects.

The plan of the paper is as follows: in section 2 we introduce notation and review
some results on SDDEs, adding some precision on regularity properties of the solution,
concerning in particular their Malliavin derivative. Section 3 is devoted to proving
Theorem 3.1, which is the key to many subsequent results; here the operator ∇0 is
introduced. In section 4 we present the forward-backward system (1.2) and prove, in
particular, formula (1.3). Section 5 is devoted to the study of (1.5): it is proved that a
unique mild solution exists and is connected to the solution of the forward-backward
system (1.2) by formula (1.3). In section 6 we study the optimal control problem;
we prove in particular that the value function of the control problem is a solution (in
the mild sense) of the Hamilton–Jacobi–Bellman equation; moreover, we show that
the so-called fundamental relation holds, we give criteria for optimality of feedback
controls, and we prove existence of optimal controls in the weak sense. Finally in
section 7 it is shown how (1.5) may arise as the Black–Scholes equation in a financial
market with memory effects and we give explicit conditions for its solvability.

2. Preliminary results on stochastic delay differential equations.

2.1. Notations. In this paper we consider a complete probability space (Ω,F ,P)
and a standard Wiener processW = (Wt)t≥0 with values in R

d. We denote by (Ft)t≥0

the natural filtration of W augmented in the usual way by the sets of P-measure 0.
For fixed r > 0, we introduce the space

C = C([−r, 0];Rn)

of continuous functions from [−r, 0] to R
n, endowed with the usual norm |f |C =

supθ∈[−r,0] |f(θ)|. We will consider C-valued stochastic processes: for T > 0 we say
that a C-valued process (Xt)t∈[0,T ] belongs to the space Sp([0, T ];C) (1 ≤ p <∞) if
its path are C-continuous P-a.s. and the norm

‖X‖pSp([0,T ];C) = E sup
t∈[0,T ]

|Xt|pC = E sup
t∈[0,T ]

sup
θ∈[−r,0]

|Xt(θ)|p

is finite. Here and in the following, if no confusion is possible, we denote the norm of
R

n, Rd and R
nd by | · |.
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We next define several classes of differentiable functions between Banach spaces,
first introduced in [11] in connection with stochastic processes, which allow us to
formulate several regularity results in a compact way.

In the following, if E and K are Banach spaces, we denote by G1(E,K) the space
of functions u : E → K such that 1) u is continuous; 2) u is Gâteaux differentiable on
E, with Gâteaux differential at point x ∈ E denoted by ∇u(x) ∈ L(E,K) (the latter
being the space of bounded linear operators from E to K, endowed with its usual
norm); and 3) for every h ∈ E, the map x→ ∇u(x)h is continuous from E to K. We
note that the map x → ∇u(x) is not required to be continuous from E to L(E,K):
if this happens, then u is also Fréchet differentiable.

We say that a function v : [0, T ]×E → K belongs to G0,1([0, T ]×E,K) if 1) v is
continuous; 2) for every t ∈ [0, T ], v(t, ·) is Gâteaux differentiable on E, with Gâteaux
differential at point x ∈ E denoted by ∇xv(t, x) ∈ L(E,K); and 3) for every h ∈ E,
the map (t, x) → ∇xv(t, x)h is continuous from [0, T ]× E to K.

Now suppose E = C([a, b];Rn), where a, b ∈ R, a < b. We recall that the dual
space of C([a, b]) is the space of finite Borel measures on [a, b], endowed with the
variation norm. Identifying E with the product space C([a, b])n in the obvious way,
we conclude that the dual space E∗ of E can be identified with the space of n-tuples
μ = (μk)

n
k=1, where each μk is a finite Borel measure on [a, b], and the value of μ at

an element g = (gk)
n
k=1 ∈ C([a, b])n, where gk ∈ C([a, b]), is denoted∫

[a,b]

g(θ) · μ(dθ) =
n∑

k=1

∫
[a,b]

gk(θ)μk(dθ).

Let v : [0, T ] × C → R be a function such that v(t, ·) is Gâteaux differentiable
on C for every t ∈ [0, T ]. Then the gradient ∇xv(t, x) at point (t, x) ∈ [0, T ] × C
is an n-tuple of finite Borel measures on [−r, 0]. We denote by |∇xv(t, x)| its total
variation norm and define

(2.1) ∇0v(t, x) = ∇xv(t, x)({0});

i.e., ∇0v(t, x) is a vector in R
n whose components ∇k

0v(t, x) (k = 1, . . . , n) are the
masses at point 0 of the components of ∇xv(t, x).

Remark 2.1. In the following, a basic role will be played by the space G0,1([0, T ]×
C,R): according to the previous definitions, it consists of real continuous functions
v on [0, T ]×C such that, for every t ∈ [0, T ], v(t, ·) is Gâteaux differentiable on C,
with Gâteaux differential at point x ∈ C denoted by ∇xv(t, x) (an n-tuple of finite
Borel measures on [−r, 0]), such that the map

(t, x) → 〈∇xv(t, x), h〉C∗,C =

∫
[−r,0]

h(θ) · ∇xv(t, x)(dθ)

is continuous on [0, T ]×C, for every h ∈ C.

2.2. Stochastic delay differential equations. We fix T > 0 and consider
the following stochastic delay differential equation for an unknown process (yt)t∈[0,T ]

taking values in R
n:

(2.2)

{
dyt = b(t, yt+·) dt+ σ(t, yt+·) dWt, t ∈ [0, T ],
yθ = x(θ), θ ∈ [−r, 0],

where yt+· denotes the past trajectory from time t − r up to time t, namely, yt+· =
(yt+θ)θ∈[−r,0], and r > 0 is the delay. b(t, ·) and σ(t, ·) are functions of the past
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trajectory of y and they are defined on the space of continuous functions, namely,
b : [0, T ]×C → R

n and σ : [0, T ]×C → R
nd, where R

nd is identified with L(Rd,Rn)
the space of linear operators from R

d to R
n. The function x ∈ C is the initial

condition. We will refer to (2.2) as the delay equation.
We make the following assumptions on the coefficients of (2.2).
Hypothesis 2.2.

1. The functions b : [0, T ]×C → R
n and σ : [0, T ]×C → R

nd are continuous
and there exists a constant K > 0 such that for all t ∈ [0, T ] and y(·) ∈ C

|b(t, y(·))|+ |σ(t, y(·))| ≤ K (1 + |y(·)|C);

2. there exists a constant L > 0 such that for all t ∈ [0, T ] and y(·), z(·) ∈ C

|b(t, y(·))− b(t, z(·))|+ |σ(t, y(·)) − σ(t, z(·))| ≤ L |y(·)− z(·)|C;

3. for all t ∈ [0, T ], we have b(t, ·) ∈ G1(C,Rn) and σ(t, ·) ∈ G1(C,Rnd).
In the following, we collect some results on the existence and uniqueness of a

solution to (2.2) and on its regular dependence on the initial condition. It turns
out that there exists a continuous solution, so we can define a C-valued process
X = (Xt)t∈[0,T ] by

(2.3) Xt(θ) = yt+θ, θ ∈ [−r, 0].

We notice that if t + θ < 0, then yt+θ = x(t + θ). We will use the notations yx, yxt ,
Xx, or Xx

t to indicate dependence on the starting point x ∈ C.
Theorem 2.3. If points 1 and 2 of Hypothesis 2.2 hold true, then there exists

a unique continuous adapted solution of the delay equation (2.2), and, moreover, the
process (Xt)t∈[0,T ] belongs to Sp([0, T ];C) for every p ≥ 2 and

‖X‖pSp([0,T ];C) = E sup
t∈[−r,T ]

|yt|p ≤ C

for some constant C > 0 depending only on K,L, T, p.
In addition, the map x → Xx is Lipschitz continuous from C to Sp([0, T ];C);

more precisely,

‖Xx1 −Xx2‖Sp([0,T ];C) =

(
E sup

t∈[−r,T ]

|yx1
t − yx2

t |p
)1/p

≤ L sup
θ∈[−r,0]

|x1(θ)− x2(θ)|

for some constant L > 0 depending only on K,L, T, p.
If we further assume that point 3 of Hypothesis 2.2 holds true, then the map

x→ Xx belongs to the space G1(C,Sp([0, T ];C)).
Proof. For the proof (in the case of p = 2), we refer to [18, Chapter II]: we refer to

Theorem 2.1 for the existence and uniqueness of the solution of (2.2), to Theorem 3.1
for the Lipschitz dependence of this solution on the initial datum, and to Theorem 3.2
for the differentiability of the solution with respect to the initial datum. See also [19,
Theorems I.1 and I.2]. The proof in the case of p > 2 can be performed in a similar
way.

Let us introduce a delay equation similar to (2.2) but with the initial condition
given at time t ∈ [0, T ]:

(2.4)

{
dyt,xτ = b(τ, yt,xτ+·) dτ + σ(τ, yt,xτ+·) dWτ , τ ∈ [t, T ],

yt,xt+θ = x(θ), θ ∈ [−r, 0].
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We introduce the C-valued process given by

(2.5) Xt,x
τ (θ) = yt,xτ+θ, θ ∈ [−r, 0].

By [18, Chapter III, Theorem 2.1], the C-valued process (Xt,x
τ )τ∈[t,T ] is a Markov pro-

cess with transition semigroup, acting on bounded and Borel measurable φ : C → R,
given by

(2.6) Pt,τ [φ](x) = Eφ(Xt,x
τ ), 0 ≤ t ≤ τ ≤ T, x ∈ C.

Remark 2.4. The transition semigroup (Pt,τ ) has been extensively studied in
the literature; see, e.g., [18] and [19]. Although our techniques essentially bypass the
difficulties related to the characterization of the generator (Pt,τ ) and of its domain,
we briefly recall a result which will appear in section 5 in the formulation of the
Kolmogorov equation. For simplicity, let us consider the autonomous case in (2.4): b
and σ do not depend on time and s = 0, so we consider the one parameter semigroup
(Pt)t∈[0,T ]. The transition semigroup (Pt) is never strongly continuous on the space
C, nevertheless it admits a weakly continuous generator L; see [18, chapter IV] and
[19, chapter II]. Let St : C → C denote the shift operator, and let S denote the weak
generator of the corresponding semigroup. To derive a formula for the generator L we
need to augment C by adding an n-dimensional direction. L will be equal to the sum
of the generator of the shift semigroup S and a second order linear partial differential
operator along this new direction. Let Fn := {v10 : v ∈ R

n} and C⊕Fn := {f + v10 :
f ∈ C, v ∈ R

n} with the norm ‖f+v10‖C⊕Fn := |f |C+|v|. Suppose that φ : C → R is
twice continuously Fréchet differentiable and let f ∈ C. Then the Fréchet derivatives
∇φ(f) and ∇2φ(f) have unique weakly continuous linear and bilinear extensions

∇φ(f) : C⊕ Fn → R, ∇2φ(f) : (C⊕ Fn)× (C⊕ Fn) → R.

Comparing with (1.4) we notice that ∇φ(f)(10) = ∇0φ(f). We are ready to introduce
L. Suppose that φ : C → R, φ ∈ D(S), and φ is sufficiently smooth (e.g., φ is
twice continuously differentiable and its derivatives are globally bounded and Lipschitz
continuous). Then φ ∈ D(L) and for all f ∈ C

(2.7) L(φ)(f) = S(φ)(f) +∇φ(f)(b(f)10) +
1

2

n∑
i=1

∇2φ(f)(σ(f)(ei)10, σ(f)(ei)10),

where {ei}ni=1 is any basis of Rn.
We conclude this remark observing that if C is replaced by L2([−r, 0];Rn), then

L takes a much simpler form; see, for instance, [13, page 314].

2.3. Differentiability in the Malliavin sense. Our aim now is to compute
the Malliavin derivative of the solution of the delay equation. We start by recalling
some basic definitions from the Malliavin calculus. We refer the reader to the book [21]
for a detailed exposition.

We consider again a standard Wiener process W = (Wt)t≥0 in R
d and the

Hilbert space L2([0, T ];Rd) of Borel measurable, square summable functions on [0, T ]
with values in R

d, with its natural inner product. This can be identified with
the product space (L2([0, T ]))d or with the space L2(T ), where the measure space
T := [0, T ] × {1, . . . , d} is endowed with the product of the Lebesgue measure on
[0, T ] and the counting measure on {1, . . . , d}. Elements h ∈ L2([0, T ];Rd) may be
denoted {hj(s), s ∈ [0, T ], j = 1, . . . , d} or {hj}, where hj ∈ L2([0, T ]).
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For every h ∈ L2([0, T ];Rd) we denote

W (h) =

∫ T

0

h(s) · dWs =

d∑
j=1

∫ T

0

hj(s) dW j
s .

W is an isometry of L2([0, T ];Rd) onto a Gaussian subspace of L2(Ω), called the
first Wiener chaos. Given a Hilbert space K, let SK be the set of K-valued random
variables F of the form

F =

m∑
r=1

fr(W (h1), . . . ,W (hn)) kr,

where h1, . . . , hn ∈ L2([0, T ];Rd), {kr} is a basis of K, and f1, . . . , fm are infinitely
differentiable functions R

n → R bounded together with all their derivatives. The
Malliavin derivative DF of F ∈ SK is defined as the process {Dj

sF ; s ∈ [0, T ],
j ∈ {1, . . . , d}} given by

Dj
sF =

m∑
r=1

n∑
k=1

∂kfr(W (h1), . . . ,W (hn))h
j
k(s) kr,

with values in K; by ∂k we denote the partial derivatives with respect to the kth vari-
able. It is known that the operator D : SK ⊂ L2(Ω;K) → L2(Ω× [0, T ]× {1, . . . , d};
K) = L2(Ω× T ;K) is closable. We denote by D

1,2(K) the domain of its closure, en-
dowed with the graph norm, and we use the same letter to denote D and its closure:

D : D1,2(K) ⊂ L2(Ω;K) → L2(Ω× T ;K).

The adjoint operator of D,

δ : dom (δ) ⊂ L2(Ω× T ;K) → L2(Ω;K),

is called Skorohod integral. For a process u = {ujs; s ∈ [0, T ], j ∈ {1, . . . , d}} ∈
dom(δ) we will also use the notations

δ(u) =

∫ T

0

us d̂Ws =

d∑
j=1

∫ T

0

ujs d̂W
j
s .

It is known that dom(δ) contains every (Ft)-predictable process in L2(Ω × T ;K)
and for such processes the Skorohod integral coincides with the Itô integral; dom(δ)
also contains the class L

1,2(K), the latter being defined as the space of processes
u ∈ L2(Ω × T ;K) such that ujt ∈ D

1,2(K) for a.e. t ∈ [0, T ] and every j, and there
exists a measurable version of Di

su
j
t satisfying

‖u‖2
L1,2(K) = ‖u‖2L2(Ω×T ;K) + E

d∑
i,j=1

∫ T

0

∫ T

0

‖Di
su

j
t‖2K dt ds <∞.

Moreover, ‖δ(u)‖2L2(Ω;K) ≤ ‖u‖2
L1,2(K). We note that the space L1,2(K) is isometrically

isomorphic to L2(T ;D1,2(K)).
Finally, we recall that if F ∈ D

1,2(K) is measurable with respect to Ft, then
DjF = 0 a.s. on Ω× (t, T ] for every j.
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If K = R or K = R
n, we write D

1,2 and L
1,2 instead of D1,2(K) and L

1,2(K),
respectively.

We now introduce the Malliavin derivative for a functional of a stochastic process.
In the remainder of this section we set E = C([−r, T ];Rn). If f ∈ G1(E,Rn), then,
according to the notation introduced above,

〈∇f(x), g〉E∗,E =

∫
[−r,T ]

g(θ) · ∇f(x)(dθ), x, g ∈ E.

If y is a continuous stochastic process with time parameter [−r, T ], then f(y.) is a
random variable. We wish to state a chain rule for the Malliavin derivative of f(y.).
We will restrict ourselves to the case when y is adapted; more precisely, its restriction
to [0, T ] is adapted to (Ft)t∈[0,T ] and its restriction to [−r, 0] is deterministic. Clearly,
Dyt = 0 for t ∈ [−r, 0]. Following [15, Lemma 2.6], we have the following basic result
(we note that in [15] derivatives are understood in the sense of Fréchet, but the same
arguments apply to the present situation).

Lemma 2.5. For E = C([−r, T ];Rn), let f ∈ G1(E,R) be a Lipschitz continuous
function. Assume that y = (yt)t∈[−r,T ] is a process in R

n satisfying the following
conditions:

1. y is a continuous adapted process and E supt∈[−r,T ] |yt|2 <∞;

2. y ∈ L2([−r, T ],D1,2) and the process {Dsyt, 0 ≤ s ≤ t ≤ T } admits a version
such that, for every s ∈ [0, T ], {Dsyt, t ∈ [s, T ]} is a continuous process and

E

∫ T

0

sup
t∈[s,T ]

|Dsyt|2ds <∞.

Then f(y.) ∈ D
1,2 and its Malliavin derivative is given by the formula: for j = 1, . . . , d

and a.e. s ∈ [0, T ] we have, P-a.s.,

(2.8) Dj
s(f(y·)) = 〈∇f(y.), Dj

sy·〉E∗,E =

∫
[−r,T ]

Dj
syθ · ∇f(y.)(dθ).

Next, we establish when the solution of the delay equation is Malliavin differen-
tiable; moreover, we write a stochastic (functional) differential equation satisfied by
the Malliavin derivative. We substantially follow [15, Theorem 4.1].

Theorem 2.6. Let Hypothesis 2.2 be satisfied. Then the solution (yt)t∈[−r,T ]

satisfies conditions 1 and 2 in Lemma 2.5. Moreover, yt ∈ D
1,2 for every t ∈ [0, T ]

and the following equation holds: for j = 1, . . . , d and every s ∈ [0, T ] we have, P-a.s.,

(2.9)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Dj

syt = σ(s, ys+·) +

∫ t

s

∫
[−r,0]

Dj
syt+θ · ∇xb(t, yt+·)(dθ) dt

+

∫ t

s

∫
[−r,0]

Dj
syt+θ · ∇xσ(t, yt+·)(dθ) dWt, t ∈ [s, T ],

Dj
syt = 0, t ∈ [−r, s).

Finally, for every p ∈ [2,∞) and s ∈ [0, T ] we have

(2.10) E

∫ T

0

sup
t∈[s,T ]

|Dsyt|pds <∞.
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Proof. Except for the final statement, the proof can be achieved with techniques
similar to the ones indicated in the proof of Theorem 4.1 in [15]. The only minor
difference is that we consider a general delay differential equation, while in [15] the
coefficients depend on the past behavior of the solution only after time 0. However,
the same arguments apply.

The proof of the final statement follows by standard estimates on (2.10), taking
into account that ∇xb and ∇xσ are bounded in the total variation norm.

Corollary 2.7. Suppose that the assumptions of Theorem 2.6 hold true, let
C = C([−r, 0];Rn) and (Xt)t∈[0,T ] be the C-valued process defined by (2.3). Suppose
that f ∈ G1(C;R) satisfies

|∇f(x)| ≤ C(1 + |x|C)m, x ∈ C,

for some C > 0 and m ≥ 0.
Then for every t ∈ [0, T ], f(Xt) = f(yt+·) belongs to D

1,2, and for j = 1, . . . , d
we have, for a.e. s ∈ [0, T ], P-a.s.,

(2.11) Dj
s(f(Xt)) = 〈∇f(Xt), D

j
syt+·〉C∗,C =

∫
[−r,0]

Dj
syt+θ · ∇f(Xt)(dθ).

Proof. The conclusion follows immediately from Lemma 2.5 and Theorem 2.6 if
f is a Lipschitz function. The general case can be proved by approximating f by a
sequence of Lipschitz functions obtained by a standard truncation procedure.

Remark 2.8. The first result on Malliavin differentiability of the solution of a
functional stochastic differential equations was proved in [16]. In that paper the aim
was to prove that yt belongs to the domain of the generator of the Ornstein–Uhlenbeck
semigroup of the Malliavin calculus; therefore, more restrictive assumptions were
assumed on the coefficients of (2.2). In particular, they were required to be twice
differentiable.

3. A result on joint quadratic variations. The aim of this section is to state
and prove a technical result, Theorem 3.1, which will be used in the rest of this paper.
To state this theorem we need to recall some definitions concerning joint quadratic
variations of stochastic processes and to introduce a differential operator, denoted ∇0,
which will also play a basic role in what follows.

We say that a pair of real stochastic processes (Xt, Yt), t ≥ 0, admits a joint
quadratic variation on the interval [0, T ] if setting

Cε
[0,T ](X,Y ) =

1

ε

∫ T

0

(Xt+ε −Xt)(Yt+ε − Yt) dt, ε > 0,

the limit limε→0 C
ε
[0,T ](X,Y ) exists in probability. The limit will be denoted 〈X,Y 〉[0,T ].

This definition is taken from [27], except that we do not require that the conver-
gence in probability holds uniformly with respect to time. In [27] the process 〈X,Y 〉
is called generalized covariation process; several properties are investigated in [28],
[29], often in connection with the stochastic calculus introduced in [26]. With re-
spect to the classical definition, the present one has some technical advantages that
are useful when dealing with convergence issues (compare, for instance, the proof of
Theorem 3.1).

In the following, we will consider joint quadratic variations over different intervals,
which is defined by obvious modifications.

It is easy to show that if X has paths with finite variation and Y has continuous
paths, then 〈X,Y 〉[0,T ] = 0.
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If X and Y are stochastic integrals with respect to the Wiener process, then the
joint quadratic variation as defined above coincides with the classical one. A similar
conclusion holds for general semimartingales; see [27, Proposition 1.1].

We set C = C([−r, 0];Rn) and, for every t ∈ [0, T ] and x ∈ C, we let {Xt,x
s ,

s ∈ [t, T ]} denote the process defined by the equality (2.5), obtained as a solution to
(2.4). In particular, it is a C-valued process with continuous paths and adapted to
the filtration {F[t,s], s ∈ [t, T ]}. Xt,x

s (ω) is measurable in (ω, s, t, x).
Let u : [0, T ]×C → R be a function such that u(t, ·) is Gâteaux differentiable on

C for every t ∈ [0, T ]. Then the gradient ∇xu(t, x) at point (t, x) ∈ [0, T ]×C is an
n-tuple of finite Borel measures on [−r, 0]. We denote by |∇xu(t, x)| its total variation
norm and we denote ∇0u(t, x) = ∇xu(t, x)({0}); compare (2.1). Thus, ∇0u(t, x) is a
vector in R

n whose components ∇k
0u(t, x) (k = 1, . . . , n) are the masses at point 0 of

the components of ∇xu(t, x).
We denote by W i (i = 1, . . . , d), the ith component of the Wiener process W , by

σi the ith column of the n× d matrix σ, and by σi
k (k = 1, . . . , n), its components.

Theorem 3.1. Assume that u : [0, T ]× C → R is a Borel measurable function
such that u(t, ·) ∈ G1(C,R) for every t ∈ [0, T ] and

(3.1) |u(t, x)|+ |∇xu(t, x)| ≤ C(1 + |x|)m

for some C > 0, m ≥ 0, and for every t ∈ [0, T ], x ∈ C.
Then for every x ∈ C, i = 1, . . . , d, and 0 ≤ t ≤ T ′ < T , the processes {u(s,Xt,x

s ),
s ∈ [t, T ]} and W i admit a joint quadratic variation on the interval [t, T ′], given by
the formula

〈u(·, Xt,x
· ),W i〉[t,T ′] =

∫ T ′

t

σi(s,Xt,x
s ) · ∇0u(s,X

t,x
s ) ds

=

n∑
k=1

∫ T ′

t

σi
k(s,X

t,x
s ) · ∇k

0u(s,X
t,x
s ) ds.

Proof. For the sake of simplicity we write the proof in the case t = 0, the general
case being deduced by the same arguments.

We fix x ∈ C, T ′ ∈ (0, T ), and we denote X0,x by X for simplicity. Thus,
Xt = y(t+ ·), t ∈ [0, T ], satisfies

dy(t) = b(t,Xt) dt+ σ(t,Xt) dWt, X0 = x.

We will use the results on the Malliavin derivatives stated in Theorem 2.6, and, in
particular, formula (2.9) that, in view of (2.11), can be written in the form

(3.2) Dsy(t) = σ(s,Xs) +

∫ t

s

Ds[b(r,Xr)] dr +

∫ t

s

Ds[σ(r,Xr)] dWr

for 0 ≤ t ≤ s ≤ T . Noting that ∇xb(t, x) and ∇xσ(t, x) are bounded by the Lipschitz
constant L of b(t, ·) and σ(t, ·), it follows from (2.11) that for every r ∈ [0, T ]

‖D·[b(r,Xr)]‖2 ≤ L2

∫ T

0

sup
t∈[s,T ]

|Dsy(t)|2 ds,

‖D·[σ(r,Xr)]‖2 ≤ L2

∫ T

0

sup
t∈[s,T ]

|Dsy(t)|2 ds,

(3.3)

where ‖ · ‖ denotes the norm in L2([0, T ];Rd).
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We have to prove that

Cε := Cε
[0,T ′](u(·, X·),W

i) =
1

ε

∫ T ′

0

(u(t+ ε,Xt+ε)− u(t,Xt))(W
i
t+ε −W i

t ) dt

→
∫ T ′

0

σi(t,Xt) · ∇0u(t,Xt) dt

in probability, as ε→ 0.

We need to rewrite Cε in an appropriate way, fixing ε > 0 so small that T ′+ε ≤ T .
We first explain our argument by writing down some informal passages: by the rules
of Malliavin calculus we have, for a.a. t ∈ [0, T ′],

(u(t+ ε,Xt+ε)− u(t,Xt))(W
i
t+ε −W i

t ) = (u(t+ ε,Xt+ε)− u(t,Xt))e
∗
i

∫ t+ε

t

dWs

=

∫ t+ε

t

Di
s(u(t+ ε,Xt+ε)− u(t,Xt)) ds+

∫ t+ε

t

(u(t+ ε,Xt+ε)− u(t,Xt))e
∗
i d̂Ws,

(3.4)

where the symbol d̂W denotes the Skorohod integral, and by ei we denote the ith com-
ponent of the canonical basis of Rd and by e∗i its transpose (row) vector. Integrating
over [0, T ′] with respect to t and interchanging integrals gives

(3.5)

ε Cε =

∫ T ′

0

∫ t+ε

t

Di
s(u(t+ ε,Xt+ε)− u(t,Xt)) ds dt

+

∫ T ′+ε

0

∫ s∧T ′

(s−ε)+
(u(t+ ε,Xt+ε)− u(t,Xt)) dt e

∗
i d̂Ws.

To justify (3.4) and (3.5) rigorously we proceed as follows. To shorten notation we
define

vt = (u(t+ ε,Xt+ε)− u(t,Xt)) 1[0,T ′](t), t ∈ [0, T ],

Aε = {(t, s) ∈ [0, T ]× [0, T ] : 0 ≤ t ≤ T ′, t ≤ s ≤ t+ ε}.

Using Corollary 2.7 and formula (2.10), it is easy to show that, for all t, vt belongs to
D

1,2 and the process vt 1Aε(t, ·) belongs to L2(Ω × [0, T ]). By [22, Theorem 3.2] (see
also [21, section 1.3.1, equation (1.49)]) we conclude that vt 1Aε(t, ·) e∗i is Skorohod
integrable and the formula

(3.6)

∫ T

0

vt 1Aε(t, s) e∗i d̂Ws = vt

∫ T

0

1Aε(t, s) e∗i d̂Ws −
∫ T

0

Di
svt 1Aε(t, s) ds =: zt

holds provided zt belongs to L2(Ω). Since
∫ T

0
1Aε(t, s) d̂Ws coincides with the Itô

integral
∫ T

0
1Aε(t, s) dWs = (Wt+ε −Wt)1[t,T ′](t), it is in fact easy to verify that we

even have z ∈ L2(Ω × [0, T ]); thus (3.6) holds for a.a. t, and (3.6) yields (3.4) for
a.a. t ∈ [0, T ′].

Next we wish to show that the process
∫ T

0
vt1Aε(t, ·) dt ei is Skorohod integrable

and to compute its integral, which occurs in the right-hand side of (3.5). For arbitrary
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G ∈ D
1,2, by the definition of the Skorohod integral and by (3.6),

E

∫ T

0

〈∫ T

0

vt1Aε(t, s) dt ei, DsG

〉
Rd

ds =

∫ T

0

E

∫ T

0

〈vt1Aε(t, s) ei, DsG〉Rd ds dt

=

∫ T

0

E

[
G

∫ T

0

vt1Aε(t, s) e∗i d̂Ws

]
dt

= E

[
G

∫ T

0

zt dt

]
.

This shows, by definition, that
∫ T

0
vt1Aε(t, ·) dt ei is Skorohod integrable and∫ T

0

∫ T

0

vt1Aε(t, s) dt e∗i d̂Ws =

∫ T

0

zt dt =

∫ T

0

∫ T

0

vt1Aε(t, s) e∗i d̂Ws dt.

Recalling (3.6) we obtain∫ T

0

∫ T

0

vt1Aε(t, s) dt e∗i d̂Ws

=

∫ T

0

vt(W
i
t+ε −W i

t ) 1[t,T ′](t) dt−
∫ T

0

∫ T

0

Di
svt ei 1Aε(t, s) ds dt,

and (3.5) is proved.
Recalling that Ds(u(t,Xt)) = 0 for s > t by adaptedness, and using the chain

rule (2.11) for the Malliavin derivative, we have, for a.a. s, t with s ∈ [t, t+ ε],

Ds(u(t+ ε,Xt+ε)− u(t,Xt)) = Ds(u(t+ ε,Xt+ε))

=

∫
[−r,0]

Dsy(t+ ε+ θ) · ∇xu(t+ ε,Xt+ε)(dθ),

and from (3.5) we deduce

Cε =
1

ε

∫ T ′

0

∫ t+ε

t

∫
[−r,0]

Di
sy(t+ ε+ θ) · ∇xu(t+ ε,Xt+ε)(dθ) ds dt

+
1

ε

∫ T ′+ε

0

∫ s∧T ′

(s−ε)+
(u(t+ ε,Xt+ε)− u(t,Xt)) dt e

∗
i d̂Ws

=: Iε1 + Iε2.

Now we let ε→ 0, and we first claim that Iε2 → 0 in probability. To prove this, it

is enough to show that the process 1
ε

∫ T

0 (u(t+ε,Xt+ε)−u(t,Xt)) 1Aε(t, ·) dt converges
to 0 in L

1,2. Indeed, since the Skorohod integral is a bounded linear operator from
L
1,2 to L2(Ω), this implies that

Iε2 =

∫ T

0

1

ε

∫ T

0

(u(t+ ε,Xt+ε)− u(t,Xt))1Aε(t, s) dt e∗i d̂Ws → 0

in L2(Ω). We prove, more generally, that for an arbitrary element y ∈ L
1,2(R), if we

set

T ε(y)s =
1

ε

∫ T

0

(yt+ε − yt) 1Aε(t, s) dt =
1

ε

∫ s∧T ′

(s−ε)∨t

(yt+ε − yt) dt, s ∈ [0, T ],
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then the process T ε(y) converges to 0 in L
1,2(R). Recall that L

1,2(R) is isomor-
phic to L2([0, T ];D1,2(R)). It is clear that T ε(y) → 0 in L

1,2(R) if y belongs to
C([0, T ];D1,2(R)), which is a dense subspace of L2([0, T ];D1,2(R)). So to prove the
claim it is enough to show that the norm of T ε, as an operator on L

1,2(R), is bounded
uniformly with respect to ε. We have

|T ε(y)s|2D1,2(R) ≤
1

ε2

∫ T

0

1Aε(t, s) dt

∫ T

0

|yt+ε − yt|2D1,2(R) 1Aε(t, s) dt

≤ 1

ε

∫ T

0

|yt+ε − yt|2D1,2(R) 1Aε(t, s) dt,

|T ε(y)|2
L1,2(R) =

∫ T

0

|T ε(y)s|2D1,2(R) ds

≤ 1

ε

∫ T

0

|yt+ε − yt|2D1,2(R)

∫ T

0

1Aε(t, s) ds dt

≤
∫ T ′

0

|yt+ε − yt|2D1,2(R) dt

≤ 2|y|2
L1,2(R).

This shows the required bound and completes the proof that Iε2 → 0 as ε→ 0.
Now we proceed to compute the limit of Iε1. We note that, by adaptedness,

Dsy(t+ ε+ θ) = 0 for s > t+ ε + θ, so that

Iε1 =
1

ε

∫ T ′

0

∫ t+ε

t

∫
[s−t−ε,0]

Di
sy(t+ ε+ θ) · ∇xu(t+ ε,Xt+ε)(dθ) ds dt.

For fixed t, let us exchange integrals with respect to ds and ∇xu(t + ε,Xt+ε)(dθ)
obtaining

Iε1 =
1

ε

∫ T ′

0

∫
[−ε,0]

∫ t+ε+θ

t

Di
sy(t+ ε+ θ) ds · ∇xu(t+ ε,Xt+ε)(dθ) dt.

Next, we replace Dsy(t+ ε + θ) by the expression given by (3.2) and obtain

Iε1 =
1

ε

∫ T ′

0

∫
[−ε,0]

∫ t+ε+θ

t

σi(s,Xs) ds · ∇xu(t+ ε,Xt+ε)(dθ) dt

+
1

ε

∫ T ′

0

∫
[−ε,0]

∫ t+ε+θ

t

∫ t+ε+θ

s

Di
s[b(r,Xr)] dr ds · ∇xu(t+ ε,Xt+ε)(dθ) dt

+
1

ε

∫ T ′

0

∫
[−ε,0]

∫ t+ε+θ

t

∫ t+ε+θ

s

Di
s[σ(r,Xr)] dWr ds · ∇xu(t+ ε,Xt+ε)(dθ) dt

=: Jε
1 + Jε

2 + Jε
3 .

We first show that Jε
3 → 0 in L1(Ω). Since, by (3.1),

|∇xu(t+ ε,Xt+ε)| ≤ C
(
1 + sup

t∈[0,T ]

|Xt|C
)m

,
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then, using the notation |∇xu(t+ε,Xt+ε)|(dθ) to indicate the total variation measure,
we have

|Jε
3| ≤

1

ε

∫ T ′

0

∫
[−ε,0]

∫ t+ε+θ

t

∣∣∣∣∣
∫ t+ε+θ

s

Di
s[σ(r,Xr)] dWr

∣∣∣∣∣ ds |∇xu(t+ ε,Xt+ε)|(dθ) dt

≤ C
(
1 + sup

t∈[0,T ]

|Xt|C
)m 1

ε

∫ T ′

0

sup
θ∈[−ε,0]

∫ t+ε+θ

t

∣∣∣∣∣
∫ t+ε+θ

s

Di
s[σ(r,Xr)] dWr

∣∣∣∣∣ ds dt

≤ C
(
1 + sup

t∈[0,T ]

|Xt|C
)m 1

ε

∫ T ′

0

∫ t+ε

t

sup
θ∈[−ε,0]

∣∣∣∣∣
∫ t+ε+θ

s

Di
s[σ(r,Xr)] dWr

∣∣∣∣∣ ds dt.

Taking the L1(Ω) norm of both sides and using the Hölder and the Doob maximal
inequality, we have

‖Jε
3‖L1(Ω)

≤ C‖
(
1+ sup

t∈[0,T ]

|Xt|C
)m

‖L2(Ω)
1

ε

∫ T ′

0

∫ t+ε

t

∥∥∥∥∥ sup
θ∈[−ε,0]

∣∣∣∣∣
∫ t+ε+θ

s

Di
s[σ(r,Xr)] dWr

∣∣∣∣∣
∥∥∥∥∥
L2(Ω)

ds dt

≤ C

ε

∫ T ′

0

∫ t+ε

t

∥∥∥∥∫ t+ε

s

Di
s[σ(r,Xr)] dWr

∥∥∥∥
L2(Ω)

ds dt

=
C

ε

∫ T ′

0

∫ t+ε

t

(∫ t+ε

s

E
∣∣Di

s[σ(r,Xr)]
∣∣2 dr)1/2

ds dt.

Denoting for simplicity h(s, r) = E
∣∣Di

s[σ(r,Xr)]
∣∣2, we obtain

‖Jε
3‖L1(Ω) ≤

C

ε

∫ T ′

0

∫ t+ε

t

(∫ t+ε

t

h(s, r) dr

)1/2

ds dt

=
C√
ε

∫ T ′

0

(∫ t+ε

t

∫ t+ε

t

h(s, r) dr ds

)1/2

dt

≤ C
√
T ′

(∫ T ′

0

[
1

ε

∫ t+ε

t

∫ t+ε

t

h(s, r) dr ds

]
dt

)1/2

.

Let us note that h ∈ L1([0, T ]2), since by (3.3) we have∫ T

0

∫ T

0

h(s, r) dr ds ≤ E

∫ T

0

‖D·[σ(r,Xr)]‖2dr ≤ L2T

∫ T

0

E sup
t∈[s,T ]

|Dsy(t)|2ds <∞.

Let us define the operator Aε : L
1([0, T ]2) → L1([0, T ]) by

(Aεk)(t) =
1

ε

∫ (t+ε)∧T

t

∫ (t+ε)∧T

t

k(s, r) dr ds, k ∈ L1([0, T ]2).

Then we have ‖Jε
3‖L1(Ω) ≤ C

√
T ′‖Aεh‖1/2L1([0,T ]), so to prove that Jε

3 → 0 in L1(Ω) it is

enough to show that Aεk → 0 in L1([0, T ]) for every k ∈ L1([0, T ]2). This is obvious
if k is in the space of bounded functions on [0, T ]2, a dense subspace of L1([0, T ]2).
So it is enough to show that ‖Aεk‖L1([0,T ]) ≤ C‖k‖L1([0,T ]2) for some constant C and
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for every k ∈ L1([0, T ]2). This follows from the inequalities∫ T

0

|Aεk(t)| dt ≤
1

ε

∫ T

0

∫ T

0

∫ T

0

|k(s, r)|1t<s<(t+ε)∧T 1t<r<(t+ε)∧Tdr ds dt

=
1

ε

∫ T

0

∫ T

0

|k(s, r)|
[∫ T

0

1(s−ε)+<t<s1(r−ε)+<t<sdt

]
ds dr ≤

∫ T

0

∫ T

0

|k(s, r)| ds dr,

since the term in square brackets is less than or equal to ε.
This finishes the proof that Jε

3 → 0 in L1(Ω), hence in probability. In a similar
and simpler way one proves that Jε

2 → 0 in probability.
To finish the proof of the proposition it remains to compute the limit of Jε

1 .
Exchanging integrals with respect to ds and ∇xu(t + ε,Xt+ε)(dθ), and then using
another change of variable, we have

Jε
1 =

1

ε

∫ T ′

0

∫
[−ε,0]

∫ t+ε+θ

t

σi(s,Xs) ds · ∇xu(t+ ε,Xt+ε)(dθ) dt

=
1

ε

∫ T ′

0

∫ t+ε

t

∫
[s−t−ε,0]

σi(s,Xs) · ∇xu(t+ ε,Xt+ε)(dθ) ds dt

=
1

ε

∫ T ′

0

∫ t+ε

t

σi(s,Xs) · ∇xu(t+ ε,Xt+ε)([s− t− ε, 0]) ds dt

=
1

ε

∫ T ′+ε

ε

∫ t

t−ε

σi(s,Xs) · ∇xu(t,Xt)([s− t, 0]) ds dt

=
1

ε

∫ T ′+ε

ε

∫ t

t−ε

σi(t,Xt) · ∇xu(t,Xt)([s− t, 0]) ds dt

+
1

ε

∫ T ′+ε

ε

∫ t

t−ε

{σi(s,Xs)− σi(t,Xt)} · ∇xu(t,Xt)([s− t, 0]) ds dt

=: Hε
1 +Hε

2.

Next, we show that Hε
2 → 0, P-a.s. Since

|∇xu(t+ ε,Xt+ε)| ≤ C
(
1 + sup

t∈[0,T ]

|Xt|C
)m

,

we have

|Hε
2| ≤ C

(
1 + sup

t∈[0,T ]

|Xt|C
)m 1

ε

∫ T ′+ε

ε

∫ t

t−ε

|σi(s,Xs)− σi(t,Xt)| ds dt

≤ C
(
1 + sup

t∈[0,T ]

|Xt|C
)m ∫ T

0

1

ε

∫ t

(t−ε)+
|σi(s,Xs)− σi(t,Xt)| ds dt.

Let us fix ω ∈ Ω and note that P-a.s., σi(·, X·) ∈ L1([0, T ]). Let us define the operator
Bε : L

1([0, T ]) → L1([0, T ]) as

(Bεk)(t) =
1

ε

∫ t

(t−ε)+
|k(s)− k(t)| ds, k ∈ L1([0, T ]).
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Then we have |Hε
2| ≤ C(1+supt∈[0,T ] |Xt|C)m‖Bεσ

i(·, X·)‖L1([0,T ]), P-a.s., so to prove

that Hε
2 → 0 in probability it is enough to show that Bεk → 0 in L1([0, T ]) for

every k ∈ L1([0, T ]). This is obvious if k is in the space of continuous functions on
[0, T ], a dense subspace of L1([0, T ]). So it is enough to show that ‖Bεk‖L1([0,T ]) ≤
C‖k‖L1([0,T ]) for some constant C and for every k ∈ L1([0, T ]). This follows from the
inequality

|(Bεk)(t)| ≤
1

ε

∫ t

(t−ε)+
|k(s)| ds+ |k(t)|,

which implies∫ T

0

|(Bεk)(t)| dt ≤ ‖k‖L1([0,T ]) +
1

ε

∫ T

0

∫ t

(t−ε)+
|k(s)| ds dt

= ‖k‖L1([0,T ]) +
1

ε

∫ T

0

∫ (s+ε)∧T

s

|k(s)| dt ds

≤ ‖k‖L1([0,T ]) +

∫ T

0

|k(s)| ds = 2‖k‖L1([0,T ]).

This finishes the proof that Hε
2 → 0 P-a.s., hence in probability.

It remains to consider the term

Hε
1 =

1

ε

∫ T ′+ε

ε

σi(t,Xt) ·
∫ t

t−ε

∇xu(t,Xt)([s− t, 0]) ds dt

=
1

ε

∫ T ′+ε

ε

σi(t,Xt) ·
∫ t

t−ε

∫
[s−t,0]

∇xu(t,Xt)(dθ) ds dt

=
1

ε

∫ T ′+ε

ε

σi(t,Xt) ·
∫
[−ε,0]

∫ t+θ

t−ε

ds∇xu(t,Xt)(dθ) dt

=
1

ε

∫ T ′+ε

ε

σi(t,Xt) ·
∫
[−ε,0]

(θ + ε) ∇xu(t,Xt)(dθ) dt

=

∫ T ′+ε

ε

σi(t,Xt) ·
∫
[−r,0]

(
1 +

θ

ε

)+

∇xu(t,Xt)(dθ) dt.

We clearly have, P-a.s.,∫
[−r,0]

(
1 +

θ

ε

)+

∇xu(t,Xt)(dθ) →
∫
[−r,0]

1{0}(θ) ∇xu(t,Xt)(dθ)

= ∇xu(t,Xt)({0}) = ∇0u(t,Xt),

and by dominated convergence, P-a.s.,

Hε
1 →

∫ T ′

0

σi(t,Xt) · ∇0u(t,Xt) dt.

This shows that Cε converges in probability and its limit is

〈u(·, X·),W
i〉[0,T ′] =

∫ T ′

0

σi(t,Xt) · ∇0u(t,Xt) dt.
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4. The forward-backward system with delay. In this section we will discuss
existence, uniqueness, and regular dependence on the initial data of the following
forward-backward system: for given t ∈ [0, T ] and x ∈ C = C([−r, 0];Rn),

(4.1)

⎧⎪⎪⎨⎪⎪⎩
dyτ = b(τ,Xτ ) dτ + σ(τ,Xτ ) dWτ , τ ∈ [t, T ] ⊂ [0, T ],
Xt = x,
dYτ = ψ(τ,Xτ , Yτ , Zτ ) dτ + Zτ dWτ ,
YT = φ(XT ).

Here we use the notation Xτ (θ) = yτ+θ, θ ∈ [−r, 0], as before, so the first equation in
(4.1) is the same as (2.4). We extend the definition of X setting Xs = x for 0 ≤ s ≤ t.
The second equation in (4.1), namely,

(4.2)

{
dYτ = ψ(τ,Xτ , Yτ , Zτ ) dτ + Zτ dWτ , τ ∈ [0, T ],
YT = φ(XT ),

is of backward type. Under suitable assumptions on the coefficients ψ : [0, T ]×C×R×
R

d → R and φ : C → R, we will look for a solution consisting of a pair of predictable
processes, taking values in R× R

d, such that Y has continuous paths and

‖ (Y, Z) ‖2
Kcont

:= E sup
τ∈[0,T ]

|Yτ |2 + E

∫ T

0

|Zτ |2 dτ <∞;

see, e.g., [24]. In the following, we denote by Kcont ([0, T ]) the space of such processes.
The solution of (4.1) will be denoted by (Xτ , Yτ , Zτ )τ∈[0,T ], or, to stress the

dependence on the initial time t and on the initial datum x, by (Xt,x
τ , Y t,x

τ , Zt,x
τ )τ∈[0,T ].

Hypothesis 4.1. The maps ψ : [0, T ] × C × R × R
d → R and φ : C → R are

Borel measurable and satisfy the following assumptions:
1. there exists L > 0 such that

|ψ (t, x, y, z1)− ψ (t, x, y, z2)| ≤ L |z1 − z2| ,
|ψ (t, x, y1, z)− ψ (t, x, y2, z)| ≤ L |y1 − y2|

for every t ∈ [0, T ], x ∈ C, y, y1, y2 ∈ R, and z, z1, z2 ∈ R
d;

2. ψ(t, ·, ·, ·) ∈ G1
(
C× R× R

d,R
)
for every t ∈ [0, T ];

3. there exist K > 0 and m ≥ 0 such that

|∇xψ (t, x, y, z)| ≤ K (1 + |x|C + |y|)m (1 + |z|)

for every t ∈ [0, T ], x ∈ C, y ∈ R, and z ∈ R
d;

4. φ ∈ G1 (C,R) and there exist K > 0 and m ≥ 0 such that

|∇φ(x)| ≤ K (1 + |x|C)
m
, x ∈ C.

Under these assumptions we can state a result on existence and uniqueness of a
solution of the forward-backward system (4.1) and on its regular dependence on x.

Proposition 4.2. Assume that Hypotheses 2.2 and 4.1 hold true. Then the
forward-backward system (4.1) admits a unique solution (Xt,x, Y t,x, Zt,x) ∈ Sp([0, T ];C)
×Kcont ([0, T ]) for every (t, x) ∈ [0, T ]×C. Moreover, the map (t, x) �→ (Xt,x, Y t,x, Zt,x)
belongs to the space G1 ([0, T ]×C, Sp([0, T ];C)×Kcont ([0, T ])). Finally, the following
estimate holds true: for every p ≥ 2 there exists C > 0 such that[

E sup
τ∈[0,T ]

∣∣∇xY
t,x
τ

∣∣p]1/p ≤ C
(
1 + |x|(m+1)2

C

)
, t ∈ [0, T ], x ∈ C.



4642 M. FUHRMAN, F. MASIERO, AND G. TESSITORE

Proof. We give only a sketch of the proof. The forward equation has a unique
solution by Theorem 2.3. Existence and uniqueness of the solution of the backward
equation follows from the classical result [24].

In Theorem 2.3 we have shown that the map x �→ Xt,x belongs to G1 (C,Sp ([0, T ] ;
C)) for every 2 ≤ p < ∞. Then the proof of continuity and differentiability of
(t, x) �→ (Xt,x, Y t,x, Zt,x) in the appropriate norms, as well as the final estimate on
∇xY

t,x
τ , can be achieved as in Proposition 5.2 in [11]. The only difference is that

in [11] the process Xt,x takes values in a Hilbert space, while in our context it takes
values in the Banach space C; nevertheless, the same arguments apply (see also [17]
for a similar result in Banach spaces).

Corollary 4.3. Assume that Hypotheses 2.2 and 4.1 hold true. Then the
function v : [0, T ]×C → R defined by

(4.3) v(t, x) = Y t,x
t , t ∈ [0, T ], x ∈ C,

belongs to G0,1 ([0, T ]×C;R). Moreover, there exists C > 0 such that

|∇xv (t, x)| ≤ C
(
1 + |x|(m+1)2

C

)
, t ∈ [0, T ] , x ∈ C.

Finally, for every t ∈ [0, T ] and x ∈ C, we have, P-a.s,

Y t,x
s = v

(
s,Xt,x

s

)
for every s ∈ [t, T ],(4.4)

Zt,x
s = ∇0v

(
s,Xt,x

s

)
σ(s,Xt,x

s ) for a.e. s ∈ [t, T ].(4.5)

Proof. It is well known that v(t, x) is deterministic, and its properties are, there-
fore, a direct consequence of Proposition 4.2. Equality (4.4) is also a standard conse-
quence of uniqueness of the solution of the backward equation.

To prove (4.5) we consider the joint quadratic variation of Y t,x and the Wiener
process W i on an interval [t, T ′], with T ′ < T . Taking into account the backward
equation we obtain

〈Y t,x,W i〉[t,T ′] =

∫ T ′

t

Zi
s ds.

By Theorem 3.1 we have

〈v
(
·, Xt,x

·
)
,W i〉[t,T ′] =

∫ T ′

t

σi(s,Xt,x
s ) · ∇0v(s,X

t,x
s ) ds,

so that (4.4) implies (4.5).
Remark 4.4. If we strengthen slightly the regularity assumptions and require

that, for all t ∈ [0, T ], the functions b(t, ·), σ(t, ·), φ are continuously Fréchet differen-
tiable on C and ψ(t, ·, ·, ·) is continuously Fréchet differentiable on C×R×R

d, then we
can prove, with only minor changes in the proofs, that the function v defined in (4.3)
is Fréchet differentiable with respect to x and the Fréchet derivative is a continuous
function from [0, T ]×C to the dual space C∗ with respect to the usual norm (i.e., the
variation norm).

Remark 4.5. In the context of Proposition 4.2, the law of the solution (Xt,x, Y t,x,
Zt,x) is uniquely determined by x and the coefficients b, σ, ψ, φ. Since v(t, x) is deter-
ministic, hence determined by its law, we conclude that the function v is a functional
of the coefficients b, σ, ψ, φ and does not depend on the particular choice of the prob-
ability space (Ω,F ,P) nor on the Wiener process W .

5. Nonlinear parabolic equations. Let us consider again the Markov process
{Xt,x

τ , 0 ≤ t ≤ τ ≤ T, x ∈ C}, defined by the formula (2.5), starting from the
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family of solutions to (2.4). Let us denote by (Lt)t∈[0,T ] the corresponding generator.
Thus, each Lt is a second order differential operator acting on a suitable domain
consisting of real functions defined on C. In the autonomous case, a description of
the generator, denoted by L, was given in section 2, Remark 2.4. In this section
we treat semilinear parabolic equations driven by (Lt), which are generalizations of
the Kolmogorov equations. We will introduce a concept of solution, called the mild
solution, that does not require a description of the generators. In what follows the
notation Lt will be used only in a formal way.

The parabolic equations that we study have the following form:

(5.1)

⎧⎨⎩
∂v(t, x)

∂t
+ Ltv(t, x) = ψ(t, x, v(t, x),∇0v(t, x)σ(t, x)),

v(T, x) = φ(x), t ∈ [0, T ], x ∈ C,

with unknown function v : [0, T ]×C → R and given coefficients ψ : [0, T ]×C×R×
R

d → R and φ : C → R. We recall the notation ∇0v(t, x) introduced in (2.1). We
note, in particular, that ∇0v(t, x) is a vector in R

n whose components are denoted
∇k

0v(t, x) (k = 1, . . . , n). If we denote by σi
k(t, x) (k = 1, . . . , n, i = 1, . . . , d) the

components of the matrix σ(t, x), then ∇0v(t, x)σ(t, x) denotes the vector in R
d

whose components are
∑n

k=1 ∇k
0v(t, x)σ

i
k(t, x), (i = 1, . . . , d).

Recalling the definition of the transition semigroup Pt,τ given in (2.6), and writing
the variation of constants formula for a solution to (5.1), we formally obtain
(5.2)

v(t, x) = Pt,T [φ](x)−
∫ T

t

Pt,τ

[
ψ(·, v(τ, ·),∇0v(τ, ·)σ(τ, ·))

]
(x) dτ, t ∈ [0, T ], x ∈ C.

We notice that this formula is meaningful if ∇0v is well defined and provided φ and ψ
satisfy some growth and measurability conditions. This way we arrive at the following
definition of a mild solution of the semilinear Kolmogorov equation (5.1).

Definition 5.1. A function v : [0, T ]×C → R is a mild solution of the semilinear
Kolmogorov equation (5.1) if v ∈ G1 ([0, T ]×C;R), there exist C > 0, q ≥ 0 such that

(5.3) |v(t, x)| + |∇xv(t, x)| ≤ C(1 + |x|)q, t ∈ [0, T ], x ∈ C,

and the equality (5.2) holds.
The space G1 ([0, T ]×C;R) was described in Remark 2.1. |∇xv(t, x)| denotes the

total variation norm of the R
n-valued finite Borel measure ∇xv(t, x) on [−r, 0].

Theorem 5.2. Assume that Hypotheses 2.2 and 4.1 hold true. Then there exists
a unique mild solution v of (5.1). The function v coincides with the one introduced
in Corollary 4.3.

Proof. The proof is similar to the proof of Theorem 6.2 in [11] and Theorem 6.1
in [12]; nevertheless, we give a sketch below.

At first we prove existence. For fixed t ∈ [0, T ] and x ∈ C, let (Xt,x
τ , Y t,x

τ , Zt,x
τ )τ∈[0,T ]

denote the solution of the forward-backward system (4.1), and let v(t, x) be defined
by equality (4.3). The required regularity and growth conditions of the function v
were proved in Corollary 4.3, so it remains to prove that v satisfies equality (5.2).
Since the pair (Y t,x, Zt,x) is a solution to the backward equation (4.2), we have

Y t,x
t +

∫ T

t

Zt,x
τ dWτ = φ

(
Xt,x

T

)
+

∫ T

t

ψ
(
τ,Xt,x

τ , Y t,x
τ , Zt,x

τ

)
dτ.

Taking expectation and applying formulae (4.4) and (4.5), we get the equality (5.2).
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It remains to prove uniqueness. Let v be a mild solution to (5.1), so that for every
s ∈ [t, T ] ⊂ [0, T ],

v (s, x) = Eφ (Xs,x
T ) + E

∫ T

s

ψ (τ,Xs,x
τ , v(τ,Xs,x

τ ),∇0v (τ,X
s,x
τ )σ(τ,Xs,x

τ )) dτ.

By the Markov property of Xs,x
τ it follows that

v
(
s,Xt,x

s

)
= E

Fsη − E
Fs

∫ s

t

ψ
(
τ,Xt,x

τ , v(τ,Xt,x
τ ),∇0v

(
τ,Xt,x

τ

)
σ
(
τ,Xt,x

τ

))
dτ,

where we have defined η = φ
(
Xt,x

T

)
+
∫ T

t ψ (τ,Xt,x
τ , v(τ,Xt,x

τ ),∇0v (τ,X
t,x
τ )σ(τ,Xt,x

τ )) dτ .
By the representation theorem of martingales (see, e.g., [6, Theorem 8.2]), there exists

a predictable process Z̃ ∈ L2
(
Ω× [0, T ] ,Rd

)
, such that EFsη =

∫ s

t
Z̃τdWτ + v (t, x),

s ∈ [t, T ]. So
(5.4)

v
(
s,Xt,x

s

)
= v (t, x)+

∫ s

t

Z̃τdWτ−
∫ s

t

ψ
(
τ,Xt,x

τ , v(τ,Xt,x
τ ),∇0v

(
τ,Xt,x

τ

)
σ(τ,Xt,x

τ )
)
dτ.

Now we compute the joint quadratic variation with W i of the processes occurring
at both sides of this equality, on an interval [t, T ′] ⊂ [t, T ). Considering the right-

hand side we obtain
∫ T ′

t
Z̃i
τdτ by the rules of stochastic calculus. By Theorem 3.1

we have 〈v(·, Xt,x
· ),W i〉[t,T ′] =

∫ T ′

t
σi(τ,Xt,x

τ )∇0v(τ,X
t,x
τ ) dτ . Therefore, we have

Z̃τ = σ(τ,Xt,x
τ )∇0v(τ,X

t,x
τ ) and substituting in (5.4) we get

v(s,Xt,x
s ) = φ

(
Xt,x

T

)
−
∫ T

s

∇0v
(
τ,Xt,x

τ

)
σ(τ,Xt,x

τ )dWτ

+

∫ T

s

ψ
(
τ,Xt,x

τ , v(τ,Xt,x
τ ),∇0v

(
τ,Xt,x

τ

)
σ(τ,Xt,x

τ )
)
dτ.

By comparing with the backward equation in (4.1) we see that the pairs of processes
(Y t,x

s , Zt,x
s ) and (v(s,Xt,x

s ),∇0v(s,X
t,x
s )σ(s,Xt,x

s )), s ∈ [t, T ], solve the same equa-
tion. By uniqueness of the solution we have Y t,x

s = v(s,Xt,x
s ), s ∈ [t, T ], and for s = t

we get Y t,x
t = v (t, x).

Remark 5.3. The proof of uniqueness is based on an application of Theorem 3.1.
Inspection of the proof shows that uniqueness holds in a larger class of functions.
Namely, if a Borel measurable function v : [0, T ]×C → R satisfies v(t, ·) ∈ G1(C,R)
for every t ∈ [0, T ], and the inequality

|v(t, x)|+ |∇xv(t, x)| ≤ C(1 + |x|)q, t ∈ [0, T ], x ∈ C,

holds for some C > 0, q ≥ 0, and (5.2) holds, then v coincides with the solution
constructed in Theorem 3.1.

6. Application to stochastic optimal control. Let (Ω,F , (Ft)t≥0 ,P) be a
filtered probability space, satisfying the usual conditions, and let W be an R

d-valued
standard Wiener process with respect to (Ft) and P. We consider the following
controlled functional stochastic equation on an interval [t, T ] ⊂ [0, T ]:

(6.1)

{
dyus = b(s, yus+·) ds+ σ(s, yus+·) [h(s, y

u
s+·, us) ds+ dWs],

yut+θ = x(θ), θ ∈ [−r, 0].



STOCHASTIC DELAY EQUATIONS: CONTROL VIA BSDEs 4645

The coefficients b and σ satisfy the previous assumptions. u(·) denotes the control
and yu the corresponding solution. We assume that the controls are (Ft)-predictable
processes with values in a given measurable space (U,U). The function h : [0, T ] ×
C× U → R

d is measurable and bounded. We introduce again the process

(6.2) Xu
s = yus+· = {yus+θ, θ ∈ [−r, 0]}, s ∈ [t, T ],

which now depends on the control and takes values in C = C([−r, 0];Rn), so that
(6.1) can be rewritten as

(6.3)

{
dyus = b(s,Xu

s ) ds+ σ(s,Xu
s ) [h(s,X

u
s , us) ds+ dWs], s ∈ [t, T ],

Xt = x.

We introduce the cost functional to minimize

(6.4) J(t, x, u(·)) = E

∫ T

t

g(us) ds+ Eφ(yuT+·) = E

∫ T

t

g(us) ds+ Eφ(Xu
T ),

where g : U → [0,∞) and φ : C → R are given functions.
Remark 6.1. Without any substantial change, we could consider more general

cost functionals of the form

(6.5) J(t, x, u(·)) = E

∫ T

t

[�(yus ) + g(us)] ds+ Eφ(yuT+·),

where � : Rn → R. In fact, this kind of cost can be put in the form (6.4) as follows:
first note that in (6.1) we can assume r ≥ T , possibly extending the functions b and
σ in the obvious way; next, we define, for x ∈ C,

φ0(x) =

∫ 0

t−T

�(x(s)) ds,

so that φ0(X
u
T ) =

∫ T

t
�(yus ) ds, and we conclude that

J(t, x, u(·)) = E

∫ T

t

g(us) ds+ E[(φ0 + φ)(Xu
T )],

which has the required form. In a similar way, under suitable assumptions, one could
consider even more general costs of the form

J(t, x, u(·)) = E

∫ T

t

�(s, yus , us) ds+ Eφ(yuT+·).

However, we limit ourselves to cost functionals with the structure of (6.4).
To proceed further we need to introduce the Hamiltonian function ψ : [0, T ] ×

C× R
d → R defined, for t ∈ [0, T ], x ∈ C, z ∈ R

d, by the formula

(6.6) ψ (t, x, z) = inf {g(u) + zh (t, x, u) : u ∈ U}

and the corresponding, possibly empty, set of minimizers

(6.7) Γ (t, x, z) = {u ∈ U, g(u) + zh (t, x, u) = ψ (t, x, z)} .
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Remark 6.2. By the Filippov Theorem (see, e.g., [2, Theorem 8.2.10, p. 316]), if
U is a complete metric space equipped with its Borel σ-algebra, g is continuous, h is
measurable bounded, with u �→ h(t, x, u) continuous on U , and if Γ takes nonempty
values (as is always the case if U is compact), then Γ admits a measurable selec-
tion; i.e., there exists a Borel measurable map Γ0 : [0, T ] × C × R

d → U such that
Γ0 (t, x, z) ∈ Γ (t, x, z) for t ∈ [0, T ], x ∈ E, z ∈ R

d.
We are now ready to formulate the assumptions we need.
Hypothesis 6.3.

1. (U,U) is a measurable space, g : U → [0,∞) is measurable, h : [0, T ]×C×U →
R

d is measurable and bounded.
2. The Hamiltonian ψ defined in (6.6) satisfies the requirements of points 2

and 3 of Hypothesis 4.1.
3. The function φ : C → R satisfies the requirements of point 4 in Hypothe-

sis 4.1, namely, it belongs to G1 (C,R) and there exist K > 0 and m ≥ 0
such that

|∇φ(x)| ≤ K (1 + |x|C)
m
, x ∈ C.

Remark 6.4.

1. Hypothesis 6.3 is stronger than Hypothesis 4.1. Indeed, point 1 of Hypoth-
esis 4.1 is a straightforward consequence of the fact that h is assumed to be
bounded.

2. In the case U ⊂ R
k, h(t, x, u) = u, the previous assumptions require, in par-

ticular, that the set U where control processes take values should be bounded.
3. The assumptions on the Hamiltonian function ψ can be easily verified in

specific cases. For instance, if h(t, x, u) = u as before, U is a closed ball of Rk

centered at the origin, and g(u) = g0(|u|p) for some p > 1 and some convex
function g0 : [0,∞) → [0,∞) such that g ∈ C1([0,∞)) and g′ (0) > 0, then
the Hamiltonian is differentiable with respect to z and ψ satisfies points 2
and 3 of Hypothesis 4.1.

Now let us consider a probability space (Ω̃, F̃ , P̃), a standard Wiener process W̃
in R

d, and the following forward-backward system:

(6.8)

⎧⎪⎪⎨⎪⎪⎩
dyτ = b(τ,Xτ ) dτ + σ(τ,Xτ ) dW̃τ , τ ∈ [t, T ] ⊂ [0, T ],
Xt = x,

dYτ = ψ(Xτ , Zτ ) dτ + Zτ dW̃τ ,
YT = φ(XT ).

By Remark 4.5, the function v : [0, T ]×C → R defined by the equality

(6.9) v (t, x) = Y t,x
t

is a functional of the coefficients b, σ, ψ, φ and does not depend on the particular choice
of (Ω̃, F̃ , P̃) nor on the Wiener process W̃ .

In the following proposition we show that the function v, defined in this way
by means of an appropriate forward-backward stochastic differential system, plays a
basic role in the control problem.

To begin we notice that if ψ is the Hamiltonian defined in (6.6) and φ is the final
cost in functional (6.4), then (5.1) is the Hamilton–Jacobi–Bellman equation related
to the the present stochastic optimal control problem. In particular, Theorem (5.2)
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implies that v defined in (6.9) is the unique mild solution of Hamilton–Jacobi–Bellman
equation (5.1).

Then we obtain, by a customary Girsanov transform argument (see [9]), a version
of the so-called fundamental relation.

Proposition 6.5. Assume that Hypotheses 2.2 and 6.3 hold true, and that the
cost functional is given in (6.4). Let v be defined in (6.9). Then for every t ∈ [0, T ]
and x ∈ C and for every admissible control u(·), we have

(6.10) v (t, x) = J (t, x, u(·)) + E

∫ T

t

[ψ (s,Xu
s , Z

u
s )− Zu

s h (s,X
u
s , us)− g(us)] ds.

In particular, v (t, x) ≤ J (t, x, u(·)).
Proof. The proof follows from the same arguments used in the proof of Theo-

rem 7.2 in [11] and is, therefore, omitted.
The equality (6.10) immediately gives the following consequences.
Proposition 6.6. Let t ∈ [0, T ] and x ∈ C be fixed. Assume that the set-valued

map Γ has nonempty values and assume that Γ0 : [0, T ]×C×R
d → U is a measurable

selection. Moreover, suppose that a control u(·) satisfies

(6.11) uτ = Γ0 (τ,X
u
τ , Z

u
τ ) , P-a.s. for a.e. τ ∈ [t, T ] .

Then J (t, x, u(·)) = v (t, x) (thus u(·) is optimal), and the optimal pair (u(·), Xu)
satisfies the feedback law

(6.12) uτ = Γ0 (τ,X
u
τ ,∇0v(τ,X

u
τ )σ(τ,X

u
τ )) , P-a.s. for a.e. τ ∈ [t, T ] .

We note that (6.12) follows from (6.11) and (4.5).
However, we cannot prove the existence of an optimal control satisfying (6.11)

(and hence (6.12)). Such a control can be shown to exist if there exists a solution to
the so-called closed-loop equation
(6.13)⎧⎨⎩
dyτ = b (τ,Xτ ) dτ + σ(τ,Xτ )[h(τ,Xτ ,Γ0 (τ,Xτ ,∇0v (τ,Xτ )σ (τ,Xτ )))dτ + dWτ ],

τ ∈ [t, T ] ,
Xt(θ) = x(θ), θ ∈ [−r, 0],

since in this case one can define an optimal control setting

uτ = Γ0 (τ,Xτ ,∇0v(τ,Xτ )σ(τ,Xτ )) .

However, under the present assumptions, we cannot guarantee that the closed-loop
equation has a solution in the usual strong sense. To circumvent this difficulty we will
revert to a weak formulation of the optimal control problem.

6.1. Weak formulation of the optimal control problem. We formulate
the optimal control problem in the weak sense following the approach of [10, see,
e.g., Chapter III]. The main advantage is that we will be able to solve the closed loop
equation in a weak sense, and hence to find an optimal control, even if the feedback
law is nonsmooth.

Initially, we are given the set U and the functions b, σ, h, g, φ. By an admissible
control system we mean

(Ω,F , (Ft)t≥0 ,P,W, u(·), Xu),
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where (Ω,F , (Ft)t≥0 ,P) is a filtered probability space satisfying the usual conditions,
W is an R

d-valued standard Wiener process with respect to (Ft) and P, u is an (Ft)-
predictable process with values in U , Xu satisfies (6.2)–(6.3). An admissible control
system will be briefly denoted by (W,u,Xu) in the following. Our aim is now to
minimize the cost functional

(6.14) J (t, x, (W,u,Xu)) = E

∫ T

t

g(us) ds+ Eφ(Xu
T )

over all the admissible control systems (W,u,Xu). We can prove the following results.
Theorem 6.7. Assume that Hypotheses 2.2 and 6.3 hold true, and that the cost

functional is given in (6.14). Let v be defined in (6.9). Then for every t ∈ [0, T ] and
x ∈ C and for all admissible control system (W,u,Xu), we have

J (t, x, (W,u,Xu)) ≥ v (t, x)

and the equality holds if and only if

uτ ∈ Γ(τ,Xu
τ ,∇0v(τ,X

u
τ )σ(τ,X

u
τ )), P-a.s. for a.a. τ ∈ [t, T ] .

Moreover, assume that the set-valued map Γ has nonempty values and it admits
a measurable selection Γ0 : [0, T ]×C× R

d → U . Then an admissible control system
(W,u,Xu) satisfying the feedback law

uτ = Γ0(X
u
τ ,∇0v(τ,X

u
τ )σ(τ,X

u
τ )), P-a.s. for a.a. τ ∈ [t, T ]

is optimal.
Finally, the closed loop equation (6.13) admits a weak solution (Ω,F , (Ft)t≥0,

P,W,X) which is unique in law and setting

uτ = Γ0 (τ,Xτ ,∇0v(τ,Xτ )σ(τ,Xτ )) ,

we obtain an optimal admissible control system (W,u,X).
Proof. The proof follows from the fundamental relation (6.10) and the same

arguments leading to Proposition 6.6 and the remarks following it. The only difference
here is the solvability of the closed loop equation in a weak sense, which is, however,
a standard application of a Girsanov change of measure.

7. Application to pricing. We consider a financial market, of Black and
Scholes type, with one risky asset, whose price at time t is denoted by St, and one
non-risky asset, whose price is denoted by Bt. We assume the following prices evolu-
tion:

(7.1)

⎧⎪⎪⎨⎪⎪⎩
dSt = μ(t, St+·) St dt + σ(t, St+·) St dWt, t ∈ [0, T ],
Sθ = sθ, θ ∈ [−r, 0],
dBt = ρBt dt, t ∈ [0, T ],
B0 = 1,

where ρ > 0, r > 0, and s ∈ C = C([−r, 0],R). We notice that the coefficients μ
and σ depend on the past trajectory: St+· stands for the past trajectory of length r,
i.e., St+· = (St+θ)θ∈[−r,0]. Moreover, we consider a contingent claim of the form

φ(ST+·),
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where φ : C → R. If r > T , then the claim depends on the whole evolution in time
of the prices of the shares; see [3], [20], or [30] and the references within for a general
discussion on such kinds of options, usually referred to as path-dependent.

We denote by πt the value of the investor’s portfolio invested in the risky asset
at time t. π is called a trading strategy; we will consider only predictable trading

strategies which are square-integrable, i.e., E
∫ T

0
|πt|2dt < ∞. We notice that the

value Vt of the corresponding self-financing portfolio satisfies

(7.2) dVt = ρVt dt+ πt σ(t, St+·) θ(t, St+·) dt+ πt σ(t, St+·) dWt,

where

(7.3) θ(t, St+·) =
μ(t, St+·)− ρ

σ(t, St+·)

is called the risk premium.
At time T the investor has to pay a contingent claim of the form φ(ST+·), where

φ : C → R is some given function. The pricing problem is to find and characterize
pairs (π, V0) consisting of a strategy π and an initial capital V0 ∈ R such that

VT = φ(ST+·).

π is then called a hedging strategy and V0 is called the fair price of the claim at time
t = 0.

Throughout this section we assume the following.
Hypothesis 7.1.

1. (Wt)t≥0 is a real Wiener process defined in a complete probability space (Ω,F ,P)
and (Ft)t≥0 is the filtration generated by W augmented with null sets.

2. μ : [0, T ]×C → R is Borel measurable and bounded, and there exists L > 0
such that

(7.4) |μ(t, f1)f1(0)− μ(t, f2)f2(0)| ≤ L|f1 − f2|C

for all t ∈ [0, T ], f1, f2 ∈ C; moreover, μ(t, ·) ∈ G1(C,R) for all t ∈ [0, T ].
3. σ : [0, T ]×C → R is Borel measurable and there exists c > 0 such that

(7.5) |σ(t, f)| ≥ c,

for every f ∈ C, so that the risk premium in (7.3) is well defined and bounded;
moreover,

(7.6) |σ(t, f1)f1(0)− σ(t, f2)f2(0)| ≤ L|f1 − f2|C

for a suitable L > 0 and for all t ∈ [0, T ], f1, f2 ∈ C; finally, σ(t, ·) ∈
G1(C,R) for all t ∈ [0, T ]

4. φ ∈ G1(C,R) satisfies |∇φ(x)| ≤ C(1+ |x|C)m for all x ∈ C and some C > 0
and m ≥ 0.

By the Girsanov theorem there exists a probability measure, called risk-neutral
probability, for which

W t =

∫ t

0

θ(τ, Sτ+·) dτ +Wt, t ∈ [0, T ],
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is a Wiener process. Then

dSt = ρ St dt+ σ(t, St+·)St dW t, dVt = ρVt dt+ πtσ(t, St+·) dW t.

The existence of a hedging strategy can be established as follows: using the results
of section 4 we first find a solution to the following forward-backward stochastic
differential system:

(7.7)

⎧⎪⎪⎨⎪⎪⎩
dSt = ρ St dt+ σ (t, St+·) St dW t, t ∈ [0, T ],
S0+· = s,

dVt = ρVt dt+ Zt dW t,
VT = φ(ST+·).

Next, recalling (7.5), we note that the required hedging strategy can be recovered
from the process Z setting πt = Zt/σ(t, St+·).

However, a better characterization of the hedging strategy and the fair price of
the claim can be obtained. We first consider, for arbitrary t ∈ [0, T ] and s ∈ C, the
following forward-backward system, which generalizes (7.7):⎧⎪⎪⎨⎪⎪⎩

dSt,s
τ = ρ St,s

τ dt+ σ (τ, St,s
τ+·) S

t,s
τ dW τ , τ ∈ [t, T ],

St,s
t+· = s,
dV t,s

τ = ρV t,s
τ dτ + Zt,s

τ dW τ ,

V t,s
T = φ(St,s

T+·),

with unknown triple (St,s
τ , V t,s

τ , Zt,s
τ ). Setting Xt,s

τ = St,s
τ+·, then X is a Markov

process in C with generator L. We finally define

v(t, s) = V t,s
t , t ∈ [0, T ], s ∈ C.

It follows from Corollary 4.5 that Zt,s
τ = ∇0v(τ,X

t,x
τ ) σ(τ,Xt,x

τ ). We conclude that
the fair price and the hedging strategy are uniquely determined as

V0 = v(0, s), πt =
Z0,s
t

σ(t,X0,s
t )

= ∇0v(t,X
0,s
t ) = ∇0v(t, St+·).

Moreover, see Theorem 5.2, v(t, s) is characterized as the unique mild solution of the
equation

(7.8)

⎧⎨⎩
∂v(t, x)

∂t
+ Lv(t, x) = ρ v(t, x),

u(T, x) = φ(x), t ∈ [0, T ], x ∈ C,

which can be considered as a generalization of the Black–Scholes equation to the
present setting.
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