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Abstract: A phenomenological study is carried out on a complex two-component diffusion-reacting
system in gel, that is, the Cd-1,3-bis(4-pyridyl)propane (Cd-bpp) coordination polymer. The latter can
exist in three solid forms, which exploit a 1:1 correspondence among the Cd/bpp ratio, the crystal
structure and the crystal morphology (1/2: bipyramids; 2/3: needles; 1/3: plates). The aim was to
clarify the role of key physicochemical variables (reactant concentrations, composition of the solvent
and density of the transport medium) in determining the chemical nature and the morphology of
the final crystallization products. The gel method was tested in a variety of different crystallization
configurations, including single and double diffusion techniques. The density of the gel primarily
affects the morphology of the synthesized crystals, with denser media favouring the needle-like 2/3
Cd-bpp species and diluted ones the 1/2 Cd-bpp bipyramidal one. However, higher densities of
the gel are generally associated to strained crystals. The solvent composition is also important, as
for example the 1/2 Cd-bpp bipyramids require at least a minimum amount of ethanol to appear.
We demonstrated that in gel the strict “equality” stoichiometric criteria for metal-to-ligand ratios can
be sometimes eluded, as non–equilibrium concentrations can be locally attained. In this respect, the
crystallization geometry was proven to act as a key tool to influence the crystallization output, as it
determines the direction and magnitude of the concentration gradients. Finally, the use of U tubes to
perform one-pot screenings of a large part of the crystallization space is discussed.
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1. Introduction

Understanding the outcome of crystallizing organic and metal-organic compounds is still a largely
unresolved mystery of synthetic chemistry [1]. Despite remarkable advances from the theoretical
front [2], the problem has no general and satisfactory solution yet, neither will it likely reach it in the
next years, due to the lack of a predictive theory for the crystalline state [3,4]. Nucleation and growth
kinetics are at least as important as thermodynamics in determining crystallization outcomes as, in fact,
is usually observed [5,6]. The main physicochemical variables (concentration, solvent composition and
density, nature of interfaces) are often strongly intertwined with each other, thus making any change in
one parameter to produce unexpected and not easily understood effects in the product mixture [7].

To investigate these factors infinite times, an exhaustive and systematic screening of crystallization
conditions represents a rational approach to study the crystallization pathway. The resulting crystal
phase diagram (CPD) [8,9] can be used to identify suitable conditions for nucleation and subsequent
crystal growth [10,11], and define the domains of existence of competing crystalline phases [12,13].
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This is especially true in the subject of crystal engineering and supramolecular chemistry. Within this
field, coordination polymers (CPs) represent a well-known class of organic–inorganic hybrid compounds
that display a variety of tuneable properties. potentially useful in several forefront research fields [14–17].
These polymeric systems consist of extended networks of metal ions (M) linked by organic multidentate
ligands (L) as bridging connectors, and are usually simply obtained by a self-assembly process of the
components induced by dissolving and mixing [18,19]. However, a tight and efficient control over the
product architectures is still out of reach. In fact, in many cases, the same ligand/metal (salt) pair, under
very slightly different reaction conditions, can afford different polymeric species characterized by
different stoichiometries and arbitrary dimensionality and topology of the extended networks [20,21].

To achieve a better control of the crystallization output, crystallization in gel can be used.
This method offers several advantages with respect to classical experiments in solution, as in gel all
the diffusion processes are slowed down and fluctuations are hampered, meaning that concentration
gradients can be finely tuned [22]. However, before this method can be extensively applied, it is
mandatory to explore its potentiality in the reproducible design of known crystal phases, and to check
its effect on the quality of the synthesized crystals.

For two components systems, like CPs, but also more simple electrolytic compounds, the ratio
between the two reactants concentrations can deeply influence the kinetics of the process and it is
responsible for the “equality range” criteria for precipitation [23]. In this case, a rational way to find
the proper conditions of crystallization and highlight the stability zones in multiphase systems is
to determine the CDP as function of [L] + [M] and L/M parameters (square brackets indicate molar
concentrations of the ligand and of the metal) under different environmental conditions [24].

Here, we exploit gels as a tool to go a step further with respect to the static control of concentrations.
We extend the experimental study of CdCl2:bpp (bpp = 1,3-bis(4-pyridyl)propane, Scheme 1) CP
system [25,26] by performing a phenomenological comparative analysis of the crystallization behaviour
in both solution and gel substrate in response to a systematic variation of the crystallization conditions,
including the growth technique and the experimental set-up. We aim at clarifying the role of key
physicochemical variables in determining the chemical nature and the morphology of the final
crystallization products. Finally, we report for the first time an extensive mapping of the Cd-bpp phase
diagram, in the context of exploring the effect of gel media on the composition of the equilibrium phase
mixture, and on the morphology of the crystals. Due to the scientific and technological relevance of
CPs, we hope to add a new powerful tool to the crystal engineer or materials scientist looking for new
crystalline phases or new effective methods to produce the desired CPs with controlled morphology
and crystal quality. In this respect, gel diffusion techniques, in varied experimental configurations, can
become the method of choice due to their versatility. However, owing to the limited number of studies
appeared so far, more details must be understood about the role exerted by gels upon crystal quality
and their potential help for selecting the desired polymorphs or reticular isomers.

Crystals 2019, 9, x FOR PEER REVIEW 2 of 20 

 

and subsequent crystal growth [10,11], and define the domains of existence of competing crystalline 
phases [12,13]. This is especially true in the subject of crystal engineering and supramolecular 
chemistry. Within this field, coordination polymers (CPs) represent a well-known class of organic–
inorganic hybrid compounds that display a variety of tuneable properties. potentially useful in 
several forefront research fields [14–17]. These polymeric systems consist of extended networks of 
metal ions (M) linked by organic multidentate ligands (L) as bridging connectors, and are usually 
simply obtained by a self-assembly process of the components induced by dissolving and mixing 
[18,19]. However, a tight and efficient control over the product architectures is still out of reach. In 
fact, in many cases, the same ligand/metal (salt) pair, under very slightly different reaction conditions, 
can afford different polymeric species characterized by different stoichiometries and arbitrary 
dimensionality and topology of the extended networks [20,21]. 

To achieve a better control of the crystallization output, crystallization in gel can be used. This 
method offers several advantages with respect to classical experiments in solution, as in gel all the 
diffusion processes are slowed down and fluctuations are hampered, meaning that concentration 
gradients can be finely tuned [22]. However, before this method can be extensively applied, it is 
mandatory to explore its potentiality in the reproducible design of known crystal phases, and to check 
its effect on the quality of the synthesized crystals.  

For two components systems, like CPs, but also more simple electrolytic compounds, the ratio 
between the two reactants concentrations can deeply influence the kinetics of the process and it is 
responsible for the “equality range” criteria for precipitation [23]. In this case, a rational way to find 
the proper conditions of crystallization and highlight the stability zones in multiphase systems is to 
determine the CDP as function of [L] + [M] and L/M parameters (square brackets indicate molar 
concentrations of the ligand and of the metal) under different environmental conditions [24]. 

Here, we exploit gels as a tool to go a step further with respect to the static control of 
concentrations. We extend the experimental study of CdCl2:bpp (bpp = 1,3-bis(4-pyridyl)propane, 
Scheme 1) CP system [25,26] by performing a phenomenological comparative analysis of the 
crystallization behaviour in both solution and gel substrate in response to a systematic variation of 
the crystallization conditions, including the growth technique and the experimental set-up. We aim 
at clarifying the role of key physicochemical variables in determining the chemical nature and the 
morphology of the final crystallization products. Finally, we report for the first time an extensive 
mapping of the Cd-bpp phase diagram, in the context of exploring the effect of gel media on the 
composition of the equilibrium phase mixture, and on the morphology of the crystals. Due to the 
scientific and technological relevance of CPs, we hope to add a new powerful tool to the crystal 
engineer or materials scientist looking for new crystalline phases or new effective methods to produce 
the desired CPs with controlled morphology and crystal quality. In this respect, gel diffusion 
techniques, in varied experimental configurations, can become the method of choice due to their 
versatility. However, owing to the limited number of studies appeared so far, more details must be 
understood about the role exerted by gels upon crystal quality and their potential help for selecting 
the desired polymorphs or reticular isomers. 

 
Scheme 1. bpp = 1,3-bis(4-pyridyl)propane. 

2. Materials and Methods 

All reagents (metal salt: CdCl2 2.5H2O; ligands: bpp = 1,3-bis(4-pyridyl)propane), agarose gel 
(EEO 0.09-0.13, gel point 36 °C, gel strength ≥ 1200 g/cm2 at 1% gel and solvents (ethanol) employed 
were commercially available, obtained as high-purity materials from Sigma-Aldrich S.r.l. (Milano, 
Italy) and were used as supplied without further purification. Only the bpp ligand was purified by 
sublimation. Optical micrographs were recorded using a polarizing SZX16 Olympus 

Scheme 1. bpp = 1,3-bis(4-pyridyl)propane.

2. Materials and Methods

All reagents (metal salt: CdCl2 2.5H2O; ligands: bpp = 1,3-bis(4-pyridyl)propane), agarose gel
(EEO 0.09-0.13, gel point 36 ◦C, gel strength ≥ 1200 g/cm2 at 1% gel and solvents (ethanol) employed
were commercially available, obtained as high-purity materials from Sigma-Aldrich S.r.l. (Milano,
Italy) and were used as supplied without further purification. Only the bpp ligand was purified by
sublimation. Optical micrographs were recorded using a polarizing SZX16 Olympus stereomicroscope
(Olympus Italia S.R.L., Segrate (MI), Italy) equipped with a digital camera for single shot or time
sequence images acquisition. X-ray powder diffraction patterns were collected on a Philips PW 3050
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vertical-scan diffractometer (Panalytical, Almelo, The Netherlands) X-ray single crystal data collections,
for unit cell determinations, were performed at 293 K on a Bruker SMART Apex diffractometer
equipped with a CCD detector (Bruker AXS, Madison, WI, USA).

2.1. Determination of Crystal Phase Diagram (CPD) in Solution

A broad screening of crystallization conditions in solution as a function of reactant concentrations
([M] = metal salt, CdCl2 2.5H2O; [L] = bpp ligand) and water-ethanol solvent mixture composition
(v/v%) was carried out by using batch technique [27] in order to construct the relative crystal phase
diagram [28]. Crystallization trials were rapidly set-up in a polypropylene 24-wells plate and air-tightly
sealed with a 22 mm diameter glass cover slip and vacuum grease. A set of solutions of metal salt and
bpp ligand at different concentrations were prepared in deionized water or ethanol. Crystallization
trials were performed by mixing the appropriate amount of reagent solutions and pure solvent to
reach a final volume of 2.0 mL for each fixed concentration of the components ([M], [L], EtOH %).
The samples were kept at constant temperature (T = 25 ◦C ± 0.5) in a thermostat. The concentrations
of metal salt and bpp ligand were systematically varied along the rows and the columns of the well
plate. The samples were monitored by using an optical microscope coupled to a CCD camera, until
equilibrium conditions were reached.

Two separate sets of crystallization conditions were investigated: a) total concentration of reactants
(10 mM < [L] + [M] < 60 mM) and ligand-metal molar ratio (1.0 < [L]/[M] < 4.0), keeping constant the
percentage of ethanol in the solution (50 v/v %). b) Volume content of ethanol (10 < EtOH v/v% < 50)
and ligand-metal molar ratio (1.0 < [L]/[M] < 4.0), keeping constant the overall concentration of the
reactants ([L] + [M] = 20 mM).

Powder samples were also prepared by fast precipitation from highly concentrated solutions of the
reactants, either in water or in a mixture of H2O-EtOH (50–50 v/v%) (see Supporting Information-section
S1 for details). The nature and purity of the products formed by crystallization or precipitation were
checked by single crystal diffraction or XRPD analysis by comparing the experimental patterns with
the simulated ones from the single crystal structures.

2.2. Crystallization Screening in Gel (Single Diffusion Technique)

A broad crystallization screening in gel for the binary CdCl2-bpp system was accomplished using
the single gel diffusion technique [24,29]. Agarose was used as gelifying agent to avoid changes in pH
or ionic strength and the presence of extraneous substances related to the gel-forming process. All the
crystallization trials were performed in a glass tube (Ø 5 mm and 130 mm long).

2.2.1. Two-Layers Method (Water-Ethanol Solvent System)

A solution of cadmium chloride hydrate (CdCl2 2.5H2O) of desired molarity in double distilled
water was mixed to an appropriate amount of agarose powder and heated up to boiling point, under
stirring, until agar was dissolved. The hot solution was poured in a test tube (half test-tube, about
3.5 mL) and left to cool to ambient temperature. Gelation took place when the temperature fell below
the gelling temperature (Tg = 36 ◦C). After gel setting, an ethanolic solution of specific molarity of
bpp ligand (half test-tube, about 3.5 mL) was poured over the gel medium. The samples were kept at
constant temperature (T = 25 ◦C ± 0.5) in a thermostat. A designed set of crystallization trials was
carried out to screen a large variety of crystallization conditions. The ranges of parameters explored
were as follows: gel concentration (0.1%, 0.5%, 1%, 3% w/v), initial total concentration of reactants
(10 mM < [L]+[M] < 60 mM), ligand-metal molar ratio (1.0 < [L]/[M] < 3.0), with ligand and metal
concentrations ([L], [M]) ranged from 5 to 30 mM.

A visual monitoring and scoring of crystallization trials were performed by optical microscopy at
least once weekly for five weeks and, thereafter, occasionally until no changes were detected in the
system. For each test condition, the following features were examined: phases and their approximate
amount, spatial distribution along the tube, size and morphologies of the crystals.
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Phases assignments were verified also by using X-ray diffraction techniques checking the nature
of any observed morphology by comparison of the experimental data with the lattice parameters
of the known crystallographic structures. Batch of crystals or crystals aggregates of each selected
sample were extracted from gel and subjected to diffractometric analysis, either in single crystal or
polycrystalline powdered form.

2.2.2. Three-Layers Method (Water-Ethanol Solvent System)

Crystallization trials were performed by using the same procedure described above (Section 2.2.1)
except for a layer of pure gel sandwiched between the two layers of reactants. After gelation of the
aqueous solution containing the metal salt (CdCl2·2.5H2O) and the agarose powder (about 3.0 mL),
a second layer of pure gel was created by adding about 1 cm of pure gel solution on the top of the
CdCl2-gel column. The buffer of pure gel was prepared at the same concentration of the first layer
and cooled below 60 ◦C before the pouring. After the neutral gel layer was set, an ethanolic solution
of specific molarity of bpp ligand (about 3.0 mL) was added carefully without disturbing the gel
surface. The samples were kept at constant temperature (T = 25 ◦C ± 0.5) in a thermostat. A designed
set of crystallization trials was carried out to screen a selected parameter space of crystallization
conditions. The ranges of parameters explored were as follows: gel concentration (0.1%, 0.5%, 1%, 3%
w/v), initial total concentration of reactants (20 mM < [L] + [M] < 40 mM), ligand-metal molar ratio
(1.0 < [L]/[M] < 3.0), with ligand and metal concentrations ([L], [M]) ranged from 10 to 30 mM.

The monitoring of the crystallization trials over time and the identification of the crystal phases
were performed as described above for the analogous screening (see Section 2.2.1).

2.2.3. Two-Layers Method (Water-Water Solvent System)

Gel was prepared by heating an aqueous solution of bpp ligand and the gelling agent (agarose
powder) at the desired molarity up to boiling point under stirring until a clear solution was obtained.
The hot solution was poured in a test tube (half test-tube, about 3.5 mL) and left to cool. The gelation
process took place upon cooling to ambient temperature (gelling point, Tg = 36 ◦C). After gel setting, a
solution of specific molarity of cadmium chloride hydrate (CdCl2 2.5H2O) in double distilled water
(half test-tube, about 3.5 mL) was poured over the gel medium. The system were allowed to evolve
at constant temperature in a thermostat until equilibration (T = 25 ◦C ± 0.5). A designed set of
crystallization trials was carried out to screen a large variety of crystallization conditions. The ranges
of parameters explored were as follows: gel concentration (0.1%, 0.5%, 1%, 3% w/v), initial total
concentration of reactants (10 mM < [L] + [M] < 60 mM), ligand-metal molar ratio (1.0 < [L]/[M] < 3.0),
with ligand and metal concentrations ([L], [M]) ranged from 5 to 30 mM.

The monitoring of the crystallization trials over time and the identification of the crystal phases
were performed as described above for the analogous screening (see Section 2.2.1).

2.3. Crystallization Screening in Gel (Double Diffusion Technique)

A high throughput crystallization screening in gel for the binary CdCl2-bpp system was performed
by double diffusion gel technique [22,24]. The crystallization experiments were carried out by using
U-shaped tubes (Ø 4 mm and 100 mm long with two identical arms of 30 mm length) filled up with
agarose gel. Gel solution was prepared by adding agarose powder to the H2O-EtOH binary solvents
system at the desired concentration and then heating the mixture until boiling. The hot solution
(∼2.8 mL) was poured in the U-tubes until the horizontal arm was filled and then the gel was allowed
to set. After cooling, solutions of the reagents (∼0.8 mL) of the appropriate concentrations were layered
above the gel on the opposite arms of the tubes. To demonstrate the reproducibility of the results, some
experiments were repeated two times. All samples were kept at constant temperature (T = 25 ◦C ± 0.5)
in a thermostat and constantly monitored by using an optical microscope coupled to a CCD camera,
until equilibrium conditions were reached.
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A series of crystallization screenings were performed by fixing some boundary conditions (metal
to ligand molar ration, U-tube size, total volume) and examining some specific parameters (total
concentration, % ethanol, gel density). Values and range of the parameters used in this study: initial total
concentration of reactants (25 mM < [L] + [M] < 90 mM), ligand-metal molar ratio (0.5 < [L]/[M] < 1.5),
EtOH v% in the water-ethanol mixture (44%, 30%, 22%, 15% v/v%), gel concentration (0.1%, 0.5%, 1%,
3% w/v). The reactants concentrations were calculated by assigning half of the total volume of the tube
to each components.

The monitoring of the crystallization trials over time and the identification of the crystal phases
were performed as described above for the screening in test tubes (see Section 2.2.1).

2.4. Kinetic Growth Study

The kinetic experiments were performed by using a home-made optical cell consisting of two
2.6 × 7.6 cm2 glass plates separated by a U-shaped rubber film 0.15 mm thick and 0.6 mm wide.
The cell was half-filled with a warm ligand (bpp) aqueous solution containing agarose. Once the
gel was cooled and set, an aqueous solution of metal salt (CdCl2·2.5H2O) was added until the cell
was filled. After closing the upper edge of the cell with an adhesive tape, the sample was placed
under a stereoscopic microscope (Olympus SZX16) equipped with a CCD camera (Lumenera Infinity
1-3C) (Teledyne Lumenera, Ottawa, Canada) and a time-lapse video recorder. The images were
acquired with a decreasing temporal sampling rate over time and analysed using the Infinity Analyze
software (version 6.0.0). Linear variations of the crystals size over time were measured on the video
and converted to the real value by using a previously determined calibration factor. Two growth
experiments were accomplished by using the same configuration and crystallization conditions except
for gel density: [L] = 20.0 mM, [M] = 10.0 mM, [L]/[M] = 2, agarose gel 1.0% (Video S1), 0.1% (Video S2).

3. Results and Discussion

The present study focuses on a simple metal-ligand system, namely CdCl2·2H2O-bpp (hereinafter
Cd-bpp, bpp = 1,3-bis(4-pyridyl)propane), that was well characterized some years ago by some of us
with X-ray crystallography [26,30]. In particular, we investigated the crystal structure of the polymeric
products obtained in different solvents (water, water/MeOH and water/EtOH) and reported some
preliminary results of gel effect on the equilibrium composition, the morphological features of the
crystals and the growth kinetics.

Despite small changes in the crystallization conditions, three different Cd-bpp solid forms can
be obtained, all neutral but featuring different stoichiometries, topologies and crystal morphologies
(see Table 1). Thanks to their peculiar crystal habits, such phases can be easily identified by visual
inspection or optical microscopy. However, it remains to be understood what factors are determinant
to produce a given phase composition at equilibrium.

Table 1. Cd-bpp coordination networks studied in this work. See also [26,30,31].

Label Formula CCDC
Number DimensionAlity Topology Morphology

3D-dia [Cd(bpp)2Cl2]·solv 761818
CUPLIJ 3D, 4-fold dia (66) bipyramid
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REMMIG [31] 
3D, 2-fold sra (42.63.8) 

needle 
(aggregate)  
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761814 

CUPKOO 1D zig-zag chain plate 
 

Despite small changes in the crystallization conditions, three different Cd-bpp solid forms can 
be obtained, all neutral but featuring different stoichiometries, topologies and crystal morphologies 
(see Table 1). Thanks to their peculiar crystal habits, such phases can be easily identified by visual 
inspection or optical microscopy. However, it remains to be understood what factors are determinant 
to produce a given phase composition at equilibrium. 

3.1. Crystallization in Solution 
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3.1. Crystallization in Solution

We first performed batch crystallization experiments (Figures 1 and 2) to check the behaviour
of the system under conditions of high and constant supersaturation and in the absence of relevant
concentration gradients. In a batch experiment, the supersaturation is achieved immediately upon
mixing of the reactants. Thus, the kinetics of precipitation and equilibration are both very fast.
The equilibrium or crystal phase diagram (CPD) in 50 % v/v aqueous EtOH solution (Figure 1) shows
a wide field of coexistence of the dia and sra phases, with an increasing dominance of the first one as
the [L]/[M] molar ratio increases. The dia network is the unique stable phase over a compositional
range that largely depends on the total concentration of the reactants ([L]/[M] > 3.5 for 25 mM < [M] +

[L] < 40 mM and [L]/[M] > 2.25 for [M] + [L] = 10 mM). On the contrary, crystalline sra can be isolated
only in a narrow compositional range, i.e., at both very low total concentration and low molar ratio
of the reactants. These results clearly reflect the chemical composition of the two polymeric systems
characterized by a slightly different ligand content (sra: [L]/[M] = 1.5; dia: [L]/[M] = 2). Under these
conditions, crystal morphologies are essentially unaffected by composition. The 3D-sra phase usually
appears as powder, clusters of thin needles or spherulites, while the dia system invariably exhibits a
well-formed bipyramidal crystal habit.
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Figure 1. Equilibrium phase diagram for aqueous EtOH solutions (50 vol%) of the CdCl2-bpp system,
with indication of the stability regions for 3D-sra and 3D-dia polymers as a function of [L] + [M] total
concentration and [L]/[M] molar ratio (M = Cd2+, L = bpp).

On the contrary, when the solvent composition was allowed to vary, the picture changed.
We systematically modified the volume content of EtOH at different metal-ligand molar
ratios (1.0 < [L]/[M] < 4.0), while keeping constant the overall concentration of the reactants
([L] + [M] = 20 mM). The phase diagram (Figure 2) clearly shows how a minimum amount of
ethanol is required to observe the formation of the dia phase (>10%). Conversely, the 1D polymer cha
can only be obtained in pure water or in EtOH/H2O mixtures at quite low ethanol concentration (lower
than ~20%). As expected, the stability regions of the different species correlate with their stoichiometric
composition, showing the dominance of sra phase at low [L]/[M] ratio, although the phase boundaries
are well defined only for the 1D-cha:3D-(sra or dia) transition. Actually, competition and coexistence
between the 1D-cha and 3D-sra phases have been observed in more concentrated aqueous mixtures
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of the reactants ([L] + [M] > 30 mM). To prepare pure powder samples of the two products by using
water as single solvent, a stoichiometric excess of one component is invariably required, namely an
excess of ligand for the 1D-cha polymer and an excess of metal salt for the 3D-sra species (see Materials
and Methods, Section 2.1 and Supporting Information S1).Crystals 2019, 9, x FOR PEER REVIEW 7 of 20 

 

 
Figure 2. Equilibrium phase diagram for aqueous EtOH solutions of CdCl2-bpp system at a 20 mM 
total concentration of the reactants, with indication of the stability regions for 3D-sra, 3D-dia and 1D-
cha species as a function of [L]/[M] molar ratio and the solvent composition (M = Cd2+, L = bpp). 

On the contrary, when the solvent composition was allowed to vary, the picture changed. We 
systematically modified the volume content of EtOH at different metal-ligand molar ratios (1.0 < 
[L]/[M] < 4.0), while keeping constant the overall concentration of the reactants ([L] + [M] = 20 mM). 
The phase diagram (Figure 2) clearly shows how a minimum amount of ethanol is required to observe 
the formation of the dia phase (>10%). Conversely, the 1D polymer cha can only be obtained in pure 
water or in EtOH/H2O mixtures at quite low ethanol concentration (lower than ~20%). As expected, 
the stability regions of the different species correlate with their stoichiometric composition, showing 
the dominance of sra phase at low [L]/[M] ratio, although the phase boundaries are well defined only 
for the 1D-cha:3D-(sra or dia) transition. Actually, competition and coexistence between the 1D-cha 
and 3D-sra phases have been observed in more concentrated aqueous mixtures of the reactants ([L] + 
[M] > 30 mM). To prepare pure powder samples of the two products by using water as single solvent, 
a stoichiometric excess of one component is invariably required, namely an excess of ligand for the 
1D-cha polymer and an excess of metal salt for the 3D-sra species (see Materials and Methods, Section 
2.1 and Supporting Information S1). 

3.2. Crystallization in Gel 

When kinetic effects come into play, i.e., when the equilibration rate is relatively slow, the 
formed crystals might exploit different phase compositions and morphologies compared to those 
obtained from batch/solution experiments. In this respect, gel-based crystallization techniques can 
improve size, quality and mechanical stability of crystals of coordination polymers, as well as induce 
structural alterations in the macro and micro morphologies of these materials [32,33]. The capability 
of gel media to promote selective crystallization of polymorphs or to stabilize metastable phases 
[34,35] by acting on the nucleation kinetics is also well known. This makes it possible to consider the 
gel method as a general and useful way to modify the relative stability of correlated crystal forms or 
generate new crystalline solids. 

To explore further the crystallization kinetics of Cd-bpp systems, we transferred some batch 
trials to diffusion conditions, by using the reaction single diffusion technique to perform a 
comprehensive screening. We have chosen agarose gel media as diffusive dispersion matrix in order 
to avoid changes in pH or ionic strength and the presence of extraneous substances connected to the 
gel-forming process (see Materials and Methods, section 2.2). 

3.2.1. Crystallization in Water-Ethanol Solvent System 

Figure 2. Equilibrium phase diagram for aqueous EtOH solutions of CdCl2-bpp system at a 20 mM
total concentration of the reactants, with indication of the stability regions for 3D-sra, 3D-dia and 1D-cha
species as a function of [L]/[M] molar ratio and the solvent composition (M = Cd2+, L = bpp).

3.2. Crystallization in Gel

When kinetic effects come into play, i.e., when the equilibration rate is relatively slow, the formed
crystals might exploit different phase compositions and morphologies compared to those obtained
from batch/solution experiments. In this respect, gel-based crystallization techniques can improve
size, quality and mechanical stability of crystals of coordination polymers, as well as induce structural
alterations in the macro and micro morphologies of these materials [32,33]. The capability of gel media
to promote selective crystallization of polymorphs or to stabilize metastable phases [34,35] by acting
on the nucleation kinetics is also well known. This makes it possible to consider the gel method as a
general and useful way to modify the relative stability of correlated crystal forms or generate new
crystalline solids.

To explore further the crystallization kinetics of Cd-bpp systems, we transferred some batch trials
to diffusion conditions, by using the reaction single diffusion technique to perform a comprehensive
screening. We have chosen agarose gel media as diffusive dispersion matrix in order to avoid changes
in pH or ionic strength and the presence of extraneous substances connected to the gel-forming process
(see Materials and Methods, Section 2.2).

3.2.1. Crystallization in Water-Ethanol Solvent System

Layering of an ethanolic solution of the ligand over an agarose-gelified aqueous solution of the
metal salt (see Materials and Methods, Section 2.2.1) generates counter-diffusion of both reactants and
solvents, resulting in a complex precipitation profile. However, the total reactant concentration ([L] +

[M] = 60, 40, 30, < 20 mM), the molar ratio of the reactants ([L]/[M] = 3, 2, 1) and the gel composition
(0.1%, 0.5%, 1%, 3% w/v) proved to be key parameters to highlight coherent trends. Figure 3 summarizes
the main outcomes. We selected a graphical layout that allows to appreciate at a glance (i) the phase
composition at equilibrium, (ii) the phase front distribution along the tube, (iii) the size and (iv) the
morphologies of the crystals.
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Figure 3. Summary of results of the crystallization screening performed by using the two layers-gel
technique (in water-ethanol) for CdCl2-bpp. The stability regions of the different species are shown as a
function of [L] + [M], [L]/[M] and gel strength parameters (M = Cd2+; L = bpp). The phase distribution
along the tube is also shown.

Two patent differences with respect to the batch crystallization experiments (see above) stem
from Figure 3. First, the 1D-cha phase is now missing even in a large excess of bpp ([L]/[M] >> 1),
restricting the competition in the arena of the phase equilibria to 3D networks only. Second, higher
supersaturation levels are generally required for nucleation, as in most cases no crystals are obtained
at low (< 20 mM) [L] + [M] reactantsconcentrations.

When the overall concentration of the reactants [L] + [M] increases (Figure 3, from right to
left for each gel strength), the amount of precipitated material increases as well, but it is essentially
independent from the [L]/[M] ratio (Figure 3, vertical axis). However, higher [L]/[M] values definitely
favour the 3D-dia species over the 3D-sra one, allowing the formation of fewer crystals of larger size.
This behaviour reflects the different stoichiometry of the two phases, as confirmed by their relative and
absolute spatial distribution. In fact, the sra product, when present, is always located below the dia
crystals, in a zone richer in metal salt. In all trials, precipitation starts at the solution/gel boundary, then
the reaction front moves upward (M in water/gel) faster than downward (L in ethanol) favouring the
crystallization in the supernatant solution and the formation of 3D-dia system, which requires higher
[L]/[M] ratios. Only at very high [L] + [M], the diffusion profile allows to observe nucleation of the sra
phase in the gel matrix, below the sol-gel interface (Figure 3, left).

The number of nucleated crystals, as well as their size and morphology, is mostly controlled by
the gel composition. An increase of the gel density (Figure 3, from left to right) corresponds to a
decrease of the pore size that slows down the diffusion of reactants, in turn reducing the speed at which
linear concentration gradients are set up. The supersaturation is thus obtained in longer times, but its
magnitude is generally higher than in low-density media. Accordingly, when the most concentrated
gel is used (3% w/v), many more crystals are formed in the supernatant aqueous solution, where faster
supersaturation can be achieved. Thus, fewer crystals are present at the interface, with a markedly
smaller average size, as they nucleate in a higher supersaturation regime. At the opposite end of the
composition axis, low-density gels (0.5% and 1% w/v) allow nucleation of diamantoid-3D polymers at
the solution/gel interface. Such crystals conserve their characteristic bipyramidal shape, but their lower
part, growing in the gel, is significantly tapered and warped. However, despite of the compressive
stress action of the gel, they maintain their single-crystal nature but, unfortunately, do not seem to
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give rise to gel-trapping phenomena (Figure 4). Gel incorporation phenomena is an important aspect
to consider because it is responsible for the generation of biomimetic composite crystals with large
porous internal structures as well as specific superstructure and characteristic textures at the micro or
nano scale, similar to those observed in nature [36]. Moreover, as shown in our previous work for
a flexible porous network [37], due to gel inclusion, highly porous materials can show an extremely
improved mechanical stability and resistance to dehydration giving crystals of lower mosaicity and
higher diffraction quality [38].
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Figure 4. (a) Crystals of 3D-dia grown at the solution-gel interface. The bottom part of the crystals,
grown in gel, appeared clearly warped with an elongated shape. (b) Crystals of 3D-dia grown in
solution with a well-defined bipyramidal morphology.

The 1% w/v crystallizing medium lies somewhat in the middle, as it allows clusters or individual
well-defined plates of 3D-sra to appear in gel at low-to-intermediate [L]/[M] values (Figure 3), and
fewer but larger crystals of 3D-dia at the interface at higher [L]/[M] ratios.

3.2.2. Addition of an Intermediate Layer of Pure Gel

The presence of an intermediate layer of pure gel between the reactants chambers (“buffering”)
prevents the direct contact between the reagents, thus reducing the initial supersaturation with respect
to previous experiments (see above). As diffusion takes place in a finite time across the buffer layer, the
overall kinetics of the process is affected, resulting in different equilibrium compositions and phase
distributions with respect to experiments described in Section 3.2.1. The relevant outcomes are shown
graphically in Figure S1 (in Supplementary Materials). The most striking effect is a severe hampering
of the precipitation in the solution layer, while the phase boundaries described above shift downward:
most of the material crystallizes at the solution/gel interface with a clear preference for the 3D-dia
species. Most important, the 3D-sra phase appears in the gel matrix in the majority of trials, including
those in which the [L]/[M] ratio is apparently unfavourable (3:1). Moreover, the gel concentration has
little or no effect on the yield of the crystalline material: a small change was detected only using the
strongest medium (3% w/v).

By contrast, several significant macro-morphological modifications occur for crystals entirely
grown inside the gel but above specific gel-density levels. In particular, the radiating arrays of acicular
crystals typical of 3D-sra product change to spherulites, axialites or aggregates of lamellar units and very
small platelet crystals, depending on the crystallization conditions (Figure 5). The bipyramidal 3D-dia
crystals instead are strongly deformed and produce disordered aggregates or intergrown crystals.
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We would like to stress the role of gel in determining a large morphological variability at several
hierarchical levels including crystal aggregation and morphology alteration phenomena. This is
because the habit of the crystalline materials, but also the microscopic structures of the crystals, can
have a strong influence on their many properties and functions. Beyond the morphological effects, the
gel matrix is responsible for periodic precipitation phenomena observed in reaction diffusion systems
involving mainly electrolytic compounds [39]. The features of these precipitation patterns and the
transition between periodic or tubular precipitation, dendritic crystal aggregates and well-formed
crystals, have been explained by considering the nature, the chemical quality and the concentration of
the gelling agent [40,41]. The correlation between crystallization conditions and the over-organization
of the crystalline precipitate is important to clarify the mechanistic aspects involved in their generation.
This is a matter of great importance because pattern-forming phenomena are ubiquitous in nature
especially in geological and biological process [42]. However, no satisfactory explanation has still been
provided for their development [43]. In addition to the study of the mechanism, pattern formation in
precipitation process including the growth of dendritic nanostructures has gained great interest in
material science because can serve as basis in development of meso, micro and nano-devices [41].

3.2.3. Crystallization in Water-Water Solvent System

To understand the role of ethanol in determining the phase diagram, we have performed a
crystallization screening analogous to those described in Section 3.2.1 by using water as solvent for
both components and switching the position of the two reactants, i.e., metal salt solution layered over
a gelified solution of the ligand. We considered overall starting concentrations of the reactants [L] +

[M] = 60, 40, 20, < 10 mM, in conjunction with molar ratios [L]/[M] = 3, 2, 1 and gel strengths of 0.1%,
0.5%, 1%, 2%.

Figure 6 summarizes the results. As in the water/EtOH system, the stoichiometry of the observed
products closely matches the concentration profiles generated by the counter-diffusion of reactants
through the gel-solution column. The most striking difference with respect to previous experiments is
the absence of the 3D-dia phase, which clearly requires a minimum amount of ethanol to form. On the
contrary, the 1D-cha network, which was completely absent before, is now the predominant product.
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Figure 6. Results of the crystallization screening performed by using the two layers-gel technique
in water for CdCl2-bpp. This representation shows the stability regions of the different species as a
function of the starting total [L] + [M] reactant concentrations and [L]/[M] ratio (M = Cd2+; L = bpp), as
well as also the phases distribution along the tube. Yellow = 3D-sra phase (thin needles); dark grey =

1D-cha phase (big dendritic “fern-leaf” shape); light grey−(x) = bladed or radial aggregates of platy
1D-cha crystals.

The 1D-cha species grows in form of dendritic crystals extending downward from the nucleation
sites at the liquid-gel interface (Figure 7). Only at higher depth in the gel, flower-like aggregate of
plates of the same phase appear.
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Figure 7. Crystallization trials close to equilibrium performed by using the two layers-gel technique
at [L] + [M] = 28 mM and varying [L]/[M] ratios (M = Cd2+; L = bpp). All the crystals belong to the
1D-cha phase. The number of crystals and the depth at which they form decrease while increasing the
ligand to metal molar ratio. Only the half of the tubes filled with gel are shown.

Actually, both the [L] + [M] and [L]/[M] parameters deeply affect the final architecture of the
aggregated 1D-cha crystals, which move from an irregular dendritic “fern-leaf” shape to bladed or
radial aggregates of large or thin platy crystals at high [L] + [M] and low [L]/[M].

The overall crystallization yield of 1D-cha, as well as the distance of the crystals from interface
at equilibrium, increase with the [L] + [M] parameter but also with the reduction of the [L]/[M] one
(Figures 6 and 7). This is rather surprising, as the stoichiometry of this complex requires three times the
molar amount of the ligand per metal centre (Table 1) but it can be explained by taking into account the
different diffusion mobility of the two components, the stoichiometry of the products and the higher
supersaturation required in gel to observe nucleation.

Under these conditions, a significant supersaturation is achieved throughout the gel, determining
the nucleation and growth of the 1D-cha product. Then, the equilibrium is continuously shifted toward
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1D-cha, as all the transport phenomena are slowed down in the gel medium and the spatial/time
evolution of the two concentration profiles is different.

The competing 3D-sra phase can only appear in the supernatant for [L]/[M] = 1, but requires
higher values of [L] + [M] compared to crystallization from solution (Section 3.1). 3D-sra grows at
the sol-gel interface, almost 0.5 cm above the 1D-cha species, and forms aggregates of well separate
needles that extend upward (Figure 6).

The system is essentially unaffected by changes in gel stiffness in terms of composition, amount of
crystalline material and overall morphology. Only for low-density gel (0.1 w/v%) relevant morphological
changes have been detected consisting of a clear reduction in the gel-induced deformations of the
crystals. Moreover, a fast evolution of the crystals shape during the growth process until obtaining the
typical sword-shaped morphology of 1D-cha species has been observed (Figure S2). To highlight the
changes in the growth mechanisms responsible for the phenomena, an in-situ kinetic study has been
performed (see Section 3.4).

3.3. Crystallization by Double-Diffusion Method in U-Tube

We performed a further crystallization screening with the double-diffusion gel technique in
water-ethanol mixtures (see Materials and Methods, Section 2.3). Within a U-tube, the horizontal
column of gel acts as a neutral separation buffer, allowing a finer control of the double-diffusion of
reactants. Therefore, the [M] and [L] concentration profiles change continuously not only in space,
but also in time, generating a time-dependent gradient of supersaturation along the diffusion path.
This implies a continuous change of both [L] + [M] and [L]/[M] parameters, and determines a
spatio.temporal sequence of crystallization events that depends on the thermodynamic boundary
conditions. To avoid complex correlations, we chose to fix the parameters U-tube size and total volume
to test the effect of those defining the main chemistry of the crystallization environment ([L]/[M], [L] +

[M], EtOH %, gel density). The experimental outcomes, including the time response of the system, are
shown in Figure 8.
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Figure 8. Results of the crystallization screening in water-EtOH 44% v/v performed by double diffusion
in a U-tube for the CdCl2-bpp system. The schemes refer to a growth period of five weeks. The effect of
[L] + [M] and [L]/[M] is shown at constant solvent composition and gel density with fixed boundary
conditions (U-tube size, total volume). The month-scale time evolution of the crystallization trials is
also reported, to highlight the long time required to reach equilibrium.

3.3.1. Concentration of Reactants

As expected, no precipitation is present below a concentration threshold (~45 mM) roughly similar
to that required in the test tube trials; as before, the spatial distribution along the gel column of the
different compounds reflects their [L]/[M] composition.
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In most trials, new crystals nucleate continuously, but growth of the 3D-dia species is favoured
(see Figure 8 and Figure S3). Therefore, a large number of crystals is present at equilibrium, with
a non-homogeneous size distribution. The morphology of the products is markedly different with
respect to solution-grown crystals, due to the gel matrix. In particular, the 3D-dia bipyramidal crystals
acquire an entirely elongated shape, with rounded edges and a rugged surface. For this species,
phenomena of disordered intergrowth and aggregation of crystals have been also observed. For the
3D-sra compound, only the spherulitic habit is adopted under these conditions.

Equilibration invariably requires long times, of the order of months. However, specific timescales
and kinetics strongly depend on the growth conditions. High [L] + [M] concentrations induce larger
observable changes during equilibration, while high [L]/[M] ratios enhance the transformation rate in
the starting stage (Figure 8). More in detail, an increase of the [L]/[M] ratio increases the precipitation
yield and, according with the stoichiometric composition of the products, the formation of the 3D-dia
over the 3D-sra phase. On the contrary, when [L] + [M] is raised at constant [L]/[M] = 1/1, the
precipitation yield is only barely increased, but the precipitation area undergoes a marked narrowing,
without variation in the relative composition of the system.

3.3.2. Chemical Environment

Experiments have also been undertaken as a function of solvent composition (EtOH: 44, 30, 22,
15 v/v%), gel concentration (3, 1, 0.5, 0.1 w/v%) at constant [L] + [M] and [L]/[M], to test the effect
of the chemical environment on the crystallization of CdCl2-bpp. Despite the limited sampling of
the parameters space, interesting trends emerged, consistent with screenings in solution and gel
(Sections 3.1 and 3.2). Results are reported graphically in Figures S4 and S5.

Concerning the solvent composition, as the water content is increased, the 3D-dia phase is more and
more favoured over the 3D-sra one. At the same time, the precipitation zone widens and moves toward
the ligand arm (L), while a large region of coexistence of the two 3D phases appears. Interestingly,
the morphology of sra is very sensitive to the EtOH content and exhibits larger and larger varieties of
morphologies as the amount of alcohol decreases. Going from the metal arm (M) to ligand arm (L) of
the tube, small spherulites, rosette-like aggregates of radiating plates, and spherical clusters of thin
needles are observed for dilute enough solutions. 3D-dia is instead much less affected. This phase
essentially forms bow-tie aggregates of misshapen bipyramidal crystals and compact clusters of small
parallel crystal units, near the ligand solution or the L-end of the tube. In addition, the size of the
crystals increases as the EtOH percentage increases (see Figure S4). Only in the presence of pure water,
i.e., at 0% EtOH content, the 1D-cha species appears, as observed in single diffusion trials (Section 3.2).

A change in the gel density (Figure S5) severely affects the crystal morphology, while the relative
product yields and the total amount of precipitate, though undergoing significant changes as well, are
less influenced. High concentrations of the gel favour the sra phase, at the expense of a slight decrease
in the nucleation density. Even though aggregation phenomena and morphology alterations occur at
any gel density, deformation effects are most evident in the densest medium (3% w/v). In this case,
almost shapeless dia crystals are formed, while sra exhibits a huge variety of morphologies. A complete
morphological range, consisting of a sequence of small and large spherulites, aggregate of radiating
slender fibres and clusters of plates, has been spanned even in a single crystallization test.

3.3.3. Overall Parameters Analysis

A crosscheck between information provided by all crystallization experiments made it possible
to highlight how the effect of the crystal growth parameters on the crystallization process are closely
correlated. For example, in presence of a high ethanol content, the total concentration of reagents
largely affects the spatial distribution of the products while at low alcohol percentage [L] + [M]
influences the precipitation degree and the ratio between the products.

It is clear that the U-tube method allows a more cost-effective and faster screening of crystallization
space compared to the other configurations. Moreover, U-tube trials highlight some peculiar features of
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a two components M-L diffusing-reacting system in terms of stability and composition of MLn products.
However, the different mobility of the diffusing entities in gel as well as the time dependent evolution
of the system in terms of concentration gradients and, therefore, of supersaturation along the gel
column, are responsible for a more complex history-dependent precipitation profile and consequently
for a distinctive, method-related phases distribution [44,45].

In fact, for a two components, diffusion-reaction configuration has been proven that, beside the
critical supersaturation, the “equivalency” rule of the reagents activities must be fulfilled for nucleation
to occur [23,24]. For this reason, time and location of nucleation events result strictly connected to both
the solubility properties of the products and to their stoichiometric composition. Furthermore, the
supersaturation level and its evolution toward the critical threshold can affect the growth mechanism
in any stage of the growth process, resulting in clear morphological effects, like the generation of radial
spherulites at high supersaturation degrees.

Our systematic study has highlighted how the evolutionary “history” of the system, that deeply
influences the kinetics of the whole process, may be modified by simply changing the initial reagents’
concentration, the solvent composition, that is the solubility products and the relative stability of the
phases, or the gel density, that is the mobility of the diffusing components.

3.4. Kinetics of Growth

In the crystallization screenings in water performed in test tubes (see above), the nucleation takes
place at the gel-solution interface as a result of an instantaneous reaction between the upper (M = CdCl2)
and lower (L = bpp) reactants, except at very low total concentration [L] + [M]. In most trials, crystals
of the 1D-cha phase nucleate and grow downward very fast and continuously up to several centimetres
in length. Beyond the effects on the system’s composition and phases’ distribution, due to the change
of the crystallization conditions during the screening, we have detected relevant morphological effects
(see above). The most important one is definitely the quite fast shape evolution process undergone by
the 1D-cha crystals from an irregular dendritic shape towards the typical sword-shaped morphology of
this species. To highlight the changes in the growth mechanism responsible for these phenomena, we
have performed an in situ and real-time observation of the growth process by optical microscopy.

Since the gel stiffness can affect the characteristics and the diffusion properties of the gel network, we
carried out two identical experiments using gels of different density (1.0 and 0.1 w/v %). The evolution
of the crystals size and the relative growth rate profile as function of time for both investigations are
reported in Figure 9, Figures S6–S8 and Figure 10, Figure 11 and Figure S9. In both cases, it is clear
that the relaxation of supersaturation toward equilibrium occurs via different growth mechanisms,
generating deep and characteristics morphological changes in the system.

In the first experiment (gel density = 1 w/v %), the crystals grew very fast, leading to dendritic
structures with the typical fern-leaf shape observed during crystallization in gel for this species (see
Section 3.2.3). We have collected and analysed data on three different crystals during the growth
process. To reduce potential errors in the growth rate estimation arising from the manual evaluation of
data and the irregular shape of the growing system, we measured the linear size of the crystals on the
recorded images in different growth directions parallel to the focusing plane of the camera.

The frame sequence shown in the time-lapse Video S1 and Figure S8 illustrates the shape and size
variation of the crystals and, above all, the progressive morphological evolution of the crystals revealing
a “reverse” roughening transition indicative of a change in the growth mechanism. The initially
“rough” surface of the crystal becomes more regular and smoother as supersaturation decreases and
growth slows down, leading to the formation of a regular system of macroscopic steps. As growth
proceeds, a lateral propagation of the steps takes place producing continuous layers and allowing a
partial morphological recovery of the crystals [46,47].
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the linear dependence of L2 from the time of growth (see L2 vs. t graph in Figure 9). This behaviour is 
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controlled by surface integration. Whatever the mechanism, it is clear that a transition occurs between 
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The second kinetic experiment has been carried out by using a low gel density (0.1 w/v %) in 
order to reproduce the morphological development observed in a single-gel diffusion crystallization 
trial (see Section 3.2.3 and Figure S2). The time-laps video S2 and Figure 10 show the growth of a 
crystal in real time from 5 to 170 hours after the experimental start-up. Figure 11 shows the analysis 
of the growth data relative to the crystal length measured from the tip of the crystal. 

 

Figure 9. Measured values of the crystal size (left) and its square (right) plotted versus time for the
middle and final stage of the growth process (23–164 hours, gel density 1 w/v%). The shape of the
curve changes over time (blue and red dots) suggesting a change in the growth mechanism. Only some
selected experimental data points have been reported for clarity. Dotted lines show the fitting of the
data according to the relation reported alongside the curve. The linear size of the crystals in different
growth directions parallel to the focusing plane of the camera has been measured. The absolute values
are direction-dependent but the growth behaviour is the same for any directions.
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Figure 10. Optical microscopy images of the morphology evolution in the time-dependent crystal growth
experiment of 1D-cha polymer (agarose concentration 0.1 w/v %). The images show the morphological
evolution of the crystal from an irregular morphology to a well-defined sword shape.

This phenomenon can be explained by considering the strict correlation existing between
supersaturation, growth mechanism, growth rate and the structural profile of the surface [48–51].

In order to determine the mechanisms involved in the growth process we should use the standard
plot of the growth rate evolution as a function of supersaturation. However, in a diffusive reacting
system like the present one, an accurate measurement of the time-dependent supersaturation in the
close proximity to the crystal face is very complex and time-expensive. We have, therefore, performed
a direct fitting of the experimental crystal size vs. time and discuss the results by using an appropriate
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kinetic model to extract the mechanistic information and, above all, to highlight changes in the growth
regime [49].
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Figure 11. Measured values of the crystal size (crystal length from the tip of the crystal) plotted versus
time for the middle and final stage of the growth process (20 to 168 hours, gel density 0.1 w/v%). Only
some selected experimental data points have been reported for clarity. The crystal reconstruction seems
to start about 40 hours after the experimental start-up (see also Figure S9).

Figure 9 and Figure S7 show the experimental results for the middle stage and the whole growth
process, respectively. The initial portion of the curve in Figure 9 (L vs. t) is parabolic, as confirmed by
the linear dependence of L2 from the time of growth (see L2 vs. t graph in Figure 9). This behaviour is
usually considered characteristic of one-dimensional diffusion [46,48]. At a later stage of the growth,
the curve is better described by a quadratic function that seems to suggest a growth mechanism
controlled by surface integration. Whatever the mechanism, it is clear that a transition occurs between
different growth regimes.

The second kinetic experiment has been carried out by using a low gel density (0.1 w/v %) in
order to reproduce the morphological development observed in a single-gel diffusion crystallization
trial (see Section 3.2.3 and Figure S2). The time-laps video S2 and Figure 10 show the growth of a
crystal in real time from 5 to 170 hours after the experimental start-up. Figure 11 shows the analysis of
the growth data relative to the crystal length measured from the tip of the crystal.

During the process, we have observed a notable morphological evolution of the crystal from an
irregular pattern characterized by jagged lateral profiles to a well-defined sword-shaped morphology
representing the common habit observed for the polymeric 1D-cha species under study (see Figure 11
and Figure S2). The crystal shape recovery takes place by enlarging the lateral “ledges”, which mutually
coalesce, and by the rebuilding of the crystal tip. The process starts when the growth rate becomes very
low and the crystal lengths do not increase appreciably any more (after about 78 hours). In this case,
we cannot speculate about the mechanism involved in the reconstruction route, because the growth
data refer to the tip of the crystal, even though the measurements may be considered representative of
the {110} faces. No data regarding the microstructural events involving the lateral irregularity can
be measured at the optical microscope resolution. However, it is clear that the polyhedral form is
(re)generated, as expected, at very low supersaturation, in a kinetic-controlled system near equilibrium
where morphological stability is recovered.

4. Conclusions

In this work, we have shown the results of a thorough experimental screening on the crystallization
behaviour in gel of a two-component (metal-ligand) diffusing-reacting system, forming three different
coordination polymers featuring different topologies (3D-dia, 3D-sra and 1D-cha), crystal morphologies
and various ligand to metal ratios. Through a phenomenological approach, we provided several
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insights on the chemical, environmental and boundary conditions affecting the kinetics of the whole
crystal formation process, including the equilibrium phase composition of the Cd-bpp system.

In this study, we have proven that the use of gels as reaction-diffusion media could dramatically
alter the crystallization picture observable in solution. In particular, the gel composition can control
number, size and morphology of the nucleated crystals while the crystallization geometry can deeply
influence the direction and magnitude of concentration gradients, affecting the overall kinetics of the
process and, thus, the crystallization outcomes. Of utmost importance, however, is the fact that the
gel can easily allow the system to escape from strict “equality range” criteria, as far from equilibrium
concentrations can be locally attained, which persist for a long time, due to lower diffusion rates. For
example, needle-like crystals of the 3D-sra phase (L:M 3:2) can nucleate in the gel buffer, even when the
nominal [L]/[M] ratio is apparently unfavourable (3:1). On the contrary, with a reversed sequence of
the gel and solution layers in the crystallization column, the formerly missing 1D-cha plates become
neatly favoured.

We also showed that experiments in a U tube constitute a cheap way to study the evolutionary
“history” of the system, that is, the spatiotemporal sequence of phases that crystallize at different
positions and times, while the concentration gradient of the reagents and, thus, the supersaturation
profile, varies very slowly. This means that the U tube setup is particularly suited for one-pot
explorations of the crystal phase diagram, as it allows to literally taking snapshots of the evolving
product mixture as the diffusion of reactants proceeds. The continuous evolution of the concentration
gradients is also demonstrated by measurements of the growth kinetics of the 1D-cha plates.
Our measurements highlight a transition between diffusion–controlled and reconstructive growth
regimes, as the system spontaneously switches from the first stage to the second one, depending on the
relative amount of supersaturation.

We stressed the role of gel in determining deep morphological modifications, including crystals
aggregation, morphology alterations and gel inclusion phenomena. This is because experimental
evidence supports the hypothesis of a strong influence of these effects on the properties and
functionalities of the crystalline materials, such as CPs, opening up new possibilities for their use in
technological applications. Moreover, a detailed morphological analysis of aggregation phenomena
in a reaction-diffusion system may be helpful to understand the pattern formation mechanism in
diffusion-limited reaction that is common in biological and geological processes occurring in nature.

There are only a few examples in the literature of the application of gel growth technique
to the synthesis of coordination polymers (CP) or metal-organic frameworks (MOF). However,
some experimental studies of the morphological evolution of the system depending on specific
experimental parameters (temperature, density of the gel and concentration and nature of the reagents)
are available [52]. As in our case, the outcomes are always discussed in terms of generation of a
supersaturation wave propagating through the reaction-diffusion systems [53,54]. All the results seem
to support the hypothesis of a non-chemical action of the gel matrix that is essentially responsible of an
efficient hindering of the rates of nucleation and crystal growth.

As a final remark, we think that crystal growth in gel is an effective tool to acquire a better
understanding of the crystallogenesis process of CPs but also as method to induce macro and micro
alterations in the morphologies of these materials and a useful way to modify the relative stability of
correlated crystal forms.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/9/7/363/s1;
Figures S1–S5 Crystallization screening; Figures S6–S9: Kinetics of growth; Section S1: Screening in solution at
high concentrations; Section S2: X-ray diffraction analysis.
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