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Abstract
Small plastic particles, named microplastics, are abundant in the marine environment and can be ingested by marine
organisms. Species with different feeding strategies can be differently affected by the presence of microplastics.
Moreover, the impact of these particles can depend on their size. In this study, we analyzed the effects of 1 µm
polystyrene particles on larval and juvenile development in the ascidian Ciona intestinalis. As previously reported for 10
µm beads, smaller particles caused a delay in the growth of juveniles, even if this delay was registered only at the
highest concentration tested. Instead, larval development was not affected by the presence of microplastics.
Histological analysis of juveniles revealed that 1 µm particles, after ingestion, can translocate from the gut to the
hemocoelic cavity in just 8 days. As a defense mechanism, plastic spheres can also be phagocytized from specific
circulating cells with phagocytic activity. Microplastics confirmed their potential as a threat to marine wildlife,
interfering with food uptake and growth.
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Introduction

Microscopic plastics, 1 µm–1 mm diameter
(microplastics, MPs), are abundant and wide-
spread marine pollutants of increasing environ-
mental and economic concern. They derive from
the fragmentation of larger plastic debris, such as
plastic bottles and bags, and may also be directly
produced by cosmetic industries (O’Brine &
Thompson 2010; Browne et al. 2011; Davidson
2012; Napper et al. 2015).
Biomonitoring studies revealed the widespread

ingestion of microplastic particles by marine
organisms including fish (Boerger et al. 2010;
Davison & Asch 2011; Lusher et al. 2013),
benthic polychaetes (Wright et al. 2013), amphi-
pods, lugworms, barnacles (Thompson et al.
2004), mussels (Browne et al. 2008), decapod
crustaceans (Murray & Cowie 2011) and different
zooplanktonic organisms (Cole et al. 2013).

Different species display disparate aptitudes in
ingestion and retention of MPs, as demonstrated
by the differences in stomach content reported in
various invertebrates sampled in the same locality.
For example, Ascidia spp. specimens retained
a number of MPs five-fold higher than bivalve spe-
cies (Crassostrea gigas; Mytilus galloprovincialis;
Anomia ephippium) (Bonello et al. 2018).
In fact, the ability to select particles varies among

species and depends on their buccal specialization
and feeding mechanisms. No effect of MPs on sur-
vival and growth has been reported when crusta-
ceans or fish, which have selective feeding
strategies, have been analyzed (Fernández 1979;
Paffenhofer & Vansant 1985). Similarly, polychaete
worms are able to ingest and expel plastic micro-
spheres without any apparent detrimental effects
(Cole et al. 2011). On the contrary, filter-feeders
are more sensitive to microplastics pollution as filter-
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feeding is a less selective strategy than predation
(Gallo & Tosti 2015; Rummel et al. 2016).
The effects of MPs oral uptake vary among taxa

ranging from damaging and blocking the feeding
appendages and the digestive system (Laist 1997;
Derraik 2002; Murray & Cowie 2011), to limiting
the food intake and ultimately causing fertility
reduction (Mato et al. 2001; Oehlmann et al.
2009; Talsness et al. 2009; Teuten et al. 2009).
The size of microplastics plays an important role
in determining their effects on marine organisms.
The crustacean Mysis relicta showed different per-
formances in ingesting MPs of different sizes, the
smallest (0.75 µm) and largest (40–50 µm) being
less favored than intermediate sizes (Bigelow &
Lasenby 1991). Moreover, it has been demon-
strated that large microplastics (>10 µm) accumu-
late in the digestive tracts and are eventually
discarded with the feces (Cole et al. 2011), while
only few studies have investigated whether small
microplastics (<10 µm) can translocate from the
gut cavity to the circulatory system and body tis-
sues. Mussels (Mytilus edulis) exposed to 3 µm and
9.6 µm polystyrene beads for 3 days presented
MPs particles of both sizes in their circulatory
system, where they persisted for over 48 days
(Browne et al. 2008). This long permanence in
the animal body greatly enhanced the possibility
of trophic transfer throughout the food web and
hindered the efforts to elucidate MPs fate and
impacts on the marine ecosystem.
Ascidians are filter-feeding organisms evolutionarily

close to vertebrates (Delsuc et al. 2006), and they are an
important component of benthic assemblages world-
wide (Zega et al. 2009). Adults and juveniles of the
ascidian Ciona intestinalis employ the pharyngeal basket
to filter a huge amount of water per day, estimated
around 46.4 ml/min for adults with a total dry weight
of 0.84 g (Randløv & Riisgård 1979), and they
appeared to be unable to discriminate between food
and inorganic particles (Messinetti et al. 2018). In
a previous paper, we tested the effects of 10 µm dia-
meter polystyrene beads inC. robusta and demonstrated
that exposure to these MPs was not detrimental during
larval and juvenile development. In laboratory condi-
tions, juveniles could efficiently ingest them even when
they are present at low concentrations (0.125 µg/ml). At
high concentrations (12.5 and 25 µg/ml), 10 µm MPs
persisted in the digestive system and affected the
growth-rate during metamorphosis, probably by
decreasing the energy intake (Messinetti et al. 2018).
In this paper, we tested the effects of small poly-

styrene MPs (1 µm diameter) on larval and juvenile
development of C. intestinalis in order to compare

their effects with those obtained with larger MPs.
Moreover, we tested whether small MPs can trans-
locate in the circulating fluids.

Material and methods

Microplastics

Polystyrene spherical microparticles with a dark blue
color and a diameter of 1 µm were used in the experi-
ments; chemical and physical properties of the MPs
were provided by the supplier (Sigma, Milano, Italy).
The blue color allowed us to track the beads inside the
transparent-tested animals. Polystyrene microbeads
were preferred as they determine a negligible amount
of styrene release when in aqueous suspension (Cohen
et al. 2002). The commercial standard, an aqueous
suspension of 50 mg particles/ml, was diluted 1:1000
in filtered seawater (FSW) to produce a stock suspen-
sion of 50 µg/ml of beads from which the final expo-
sure suspensions were made. All the suspensions were
freshly prepared each time and sonicated for 10 min
before use to ensure a homogenous distribution of the
beads in the medium. Based on previous work
(Messinetti et al. 2018), four different MPs concen-
trations were tested: 0.125, 1.25, 12.5, and 25 µg/ml.

Ascidians

Adults of Ciona intestinalis were collected in the water
near Roscoff (France) and maintained in aquaria at
18 ± 1°C. Constant light condition was preferred to
promote gamete production and avoid spawning
(Lambert & Brandt 1967). For each experiment, at
least three adults were sacrificed. Eggs and sperms
were obtained by dissection of gonoducts and cross-
fertilization was performed in vitro. Embryos were
cultured at 18 ± 1°C in FSW until they reached the
desired developmental stages (see below).

Development and survival rate

To test the effects of MPs presence on embryonic
development, 30 embryos at two-cells stage (Hotta
et al. 2007) were exposed to various bead concen-
trations in FSW. Samples were reared at 18 ± 1°C.
Larval survival rate was evaluated when control
embryos (CO), maintained in FSW, reached the
hatching larva stage (,18 h post fertilization (hpf);
Hotta et al. 2007). Each experimental group was
carefully observed under a stereoscope, and the per-
centage of alive samples was calculated as: (number
of alive sample/total exposed samples) x 100. Each
experiment was performed in triplicate.
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Metamorphosis

To determine the effects of small MPs on metamor-
phosis, 30 larvae for each treatment were transferred
into 5.5 cm Petri dishes and allowed to attach to the
substrate. After adhesion, FSW was replaced with the
testing suspensions (0.125, 1.25, 12.5, and 25 µg/ml
microbeads in FSW). Control animals (CO) were
maintained in fresh FSW. One hundred microliters of
a concentrated suspension of algae were added to each
treatment group. The media were changed every day
with freshly prepared ones. Animals were left to
develop in the experimental conditions for four days.
Then, each individual was observed under
a stereoscope to estimate the proceeding of juvenile
development. Metamorphosis in C. intestinalis pro-
ceeds following a series of events (Chiba et al. 2004),
mainly consisting in tail reabsorption, organs rotation,
and development of protostigmata or gill slits. By day
4, juveniles normally reach stage 4, characterized by
completed organs rotation and the presence of two
pairs of protostigmata. Metamorphosis is completed
by day 14 (stage 8) when the two atrial siphons fuse
together, and the organs and tissue are almost the same
as those of the adult (for a comprehensive description
ofCionametamorphosis process see Chiba et al. 2004).
To evaluate MPs effects on metamorphosis, we

assigned a developmental stage, roughly correspond-
ing to those described in Chiba et al. (2004), to each
individual, mainly evaluating organ rotation and the
dimension of the axial complex (Messinetti et al.
2018). We also counted animals that adhered to
the dish and died soon after. Each experiment was
performed in triplicate.

Tracking the uptake of polystyrene microbeads

To determine whether polystyrene microspheres had
accumulated in the gut, juveniles exposed for 8 days
to 25 µg/ml microplastics were fixed in 4% parafor-
maldehyde in phosphate buffer and sectioned for
detailed localization of microbeads. Briefly, animals

were dehydrated in ethanol series, stained in alcoholic
eosine and embedded in Technovit resins (Heraeus
Kulzer, Werheim, Germany). Five micrometer sec-
tions were cut with a microtome, counterstained
with ematossilin and mounted with entellan (Merck,
Whitehouse Station, N.J.). Samples were observed
under a light microscope and photographed using
a Leica DFC-320-C camera.

Statistical analyses

To evaluate if the different MPs concentrations sig-
nificantly affect animal survival and development,
the analysis of variance (ANOVA), followed by
HSD Tukey’s post hoc test, was performed using
R software (R-Core-Team 2018) and “agricolae”
package (de Mendiburu 2015). A Cochran test was
performed to test the homogeneity and normality of
the variances and percentage data were transformed
when they did not meet the assumptions of the
analysis (normality and homoscedasticity).

Results

Exposure of ascidian embryos to different concentra-
tions of 1 µmMPs from two cells to larval stage did not
affect development and larval survival (Figure 1A;
ANOVA: F = 0.9721, p = 0.4644). Under laboratory
conditions, 4 days after attachment, more than 90% of
control juveniles reached stage 4 of development, char-
acterized by completed organs rotation and the pre-
sence of two pairs of protostigmata. The percentage of
juveniles that reached stage 4 after exposure to theMPs
decreased with increasing bead concentrations and was
significantly different between samples exposed to 25
µg/ml MPs and control juveniles (Figure 1B; ANOVA:
F = 6.1473, p = 0.03612; Tukey’s post hoc: CO vs 25
µg/ml p = 0.0431). At the same time, the percentage of
juveniles at stage 3 significantly increased (Figure 1B;
ANOVA: F = 7.247, p = 0.026; Tukey’s post hoc: CO
vs 25 µg/ml p = 0.0328).

Figure 1. (A) Larval survival rate after exposure to microplastics. (B) Percentages of juveniles at different developmental stages observed
after 4-day exposure to different concentrations of MPs. Data are means of 3 replicates ± standard error (SE). * = signicantly different
from control; ° = significantly different from 0.125 µg/ml.
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The transparency of ascidian juveniles allowed
to clearly observe the gut content in whole mount
specimens (Figure 2A). Juveniles were able to
efficiently ingest small microplastics, that
appeared clearly visible in their gut cavity, and
to egest them in the fecal pellets (Figure 2B).
When both MPs and algae were present in the
medium, juveniles were not able to discriminate
between them. Algae and MPs were both present
in the gut cavity and in the fecal pellets of
exposed individuals (Figure 2C).

Histological analyses showed that ascidian juveniles
exposed to microparticles had accumulated polystyr-
ene microspheres in their gut cavity (Figure 3). The
microparticles were easily recognizable for their shape,
color, and dimensions. They were found in the phar-
ynx, the esophagus, the stomach and the intestine
(Figure 3A–D). Some beads were present in the cyto-
plasm of fusiform cells localized in the wide hemocoe-
lic cavity, characteristic of ascidian juveniles (Figure
3C). These cells presented dark granules in their cyto-
plasm, of ,1 µm in diameter (Figure 3C’’, C’’’) and,

Figure 2. (A) Control juvenile that ingested microalgae. (B) Juvenile exposed to 25 µg/ml MPs. (C) Juvenile exposed to 1.25 µg/ml MPs.
St = stomach; OS = Oral Siphon; fp = fecal pellets.

Figure 3. (A) Section of an ascidian juvenile. (B) Details of esophagus containing MPs. (C) MPs particles phagocytized by amoebocytes.
(C’’, C’’’) Magnification of amoebocytes containing MPs. (D) Stomach of juvenile containing MPs particles. Arrows indicate MPs that
translocated through the stomach wall into the hemocoelic cavity. i = intestine; b = hemolymph lacuna; e = esophagus; s = stomach.
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based on these characteristics, they were identified as
granular amoebocytes with phagocytic activity
(Rowley 1982). The microbeads were particularly
abundant in the stomach where they appeared densely
packed (Figure 3D). Most interestingly, some micro-
particles were found outside the gut cavity, in the
extracellular fluid, next to the stomach wall
(Figure 3D).

Discussion

The present work demonstrates that juveniles of
Ciona intestinalis can efficiently ingest 1 µm micro-
plastics which accumulate in stomach and intestine.
The presence of MPs in the gut delayed juvenile

development probably due to lower food intake and
insufficient energy supply. Control individuals, fed
with algae could obtain all the energy necessary for
the development, while juveniles that co-ingested
MPs and algae obtained a lower amount of energy
from their feeding activity, as their stomach was
filled with MPs, and the amount of ingested algae
was drastically reduced. Our data are consistent with
those previously reported exposing ascidian juveniles
to larger (10 µm) plastic particles (Messinetti et al.
2018). However, the effects on juvenile develop-
ment were more severe when animals were fed
with large MPs, probably because smaller ones can
be more easily expelled. Altogether these results
confirm that underfeeding may be a detrimental
consequence of microplastics presence in the marine
environment for filter feeder invertebrates.
ThoughMPs have been shown to accumulate in the

gut cavity of several marine animals, particles translo-
cation from the gut to the circulatory system is still
poorly investigated in invertebrates. In our study, par-
ticles of polystyrene translocated from the gut cavity to
the internal extracellular compartment in only 8 days.
Particles translocation can occur through two alterna-
tive pathways: the paracellular pathway, implying the
passage between cells, through intercellular junctions
and spaces, and the transcellular pathway, involving
the absorption of particles by the enterocytes, which
release them through the basolateral membrane (for
a review see Carr et al. 2012). In histological sections,
we never observed MPs inside the enterocytes but
always in strict contact with the gut basal membrane
so that we cannot exclude either of the alternative
mechanisms. Further works are required to elucidate
themechanismbywhichMPs cross the gut barrier and
move to the internal compartment.
After translocation, phagocytosis may play an impor-

tant role in recognizing MPs as nonself particles and in
clearing them. In fact, we observed MPs inside the

cytoplasm of fusiform circulating cells, probably pha-
gocytes. In ascidians, several blood cell types were
identified, including macrophage-like cells with large
vacuoles and devoid of amoeboid activity and amoebo-
cytes of the hyaline/microgranular type involved in pha-
gocytosis (Ballarin et al. 1994). Granular amoebocytes
are readily recognizable as they are the only amoebocyte
type that contains large granules (0.5–1.5 µm in dia-
meter; Rowley 1981). Since the MPs containing cells
have also dark cytoplasmic granules, they could be
reasonably identified as granular amoebocytes.
In the colonial ascidian Botryllus schlosseri, hyaline

cells can ingest latex granules of 1 and 3 µm in
diameter, confirming the capability of ascidian pha-
gocytes to internalize particles of that size.
Granulocytic hemocytes of Mytilus galloprovincialis
are able to phagocytize polystyrene particles up to
800 nm in in vitro trials (Cajaraville & Pal 1995)
suggesting that the surface properties of polystyrene
beads can be recognized by invertebrate phagocytes.
Considering our results, we cannot exclude the pos-

sibility that ingestion and/or translocation of plastic
into the animal body may induce toxicological effects.
We treated the animals only for 8 days with one type of
plastic particles; in the environment, animals are
exposed to different kinds of particles characterized
by different chemical properties. Plastics can poten-
tially release various types of contaminants, especially
the additives used in their production (Jang et al.
2016). Moreover, persistent organic pollutants may
accumulate on plastic fragments and plastic pellets
(Rios et al. 2007), possibly leading to further adverse
effects after particles ingestion.
Therefore, future studies should be addressed to

survey the toxicological effects induced by long-term
exposure to various plastic particles usually found in
marine habitats.
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