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Critical behavior of a one-dimensional fixed-energy stochastic sandpile
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We study a one-dimensional fixed-energy versitmat is, with no input or loss of particle®f Manna’s
stochastic sandpile model. The system has a continuous transition to an absorbing state at a critical value of the
particle density, and exhibits the hallmarks of an absorbing-state phase transition, including finite-size scaling.
Critical exponents are obtained from extensive simulations, which treat stationary and transient properties, and
an associated interface representation. These exponents characterize the universality class of an absorbing-state
phase transition with a static conserved density in one dimension; they differ from those expected at a
linear-interface depinning transition in a medium with point disorder, and from those of directed percolation.
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[. INTRODUCTION FES version of the BTW automatdd?2]. Here we study a
stochastic FES that is expected to be ergodic.

Sandpile models are the prime example of self-organized We find that the model exhibits the hallmarks of an
criticality (SOQ or scale invariance in the apparent absencébsorbing-state critical point, including finite-size scaling,
of tuning parametergl—4]. SOC in a slowly driven sandpile familiar from studies of directed percolation or the contact
is associated with an absorbing-state phase transition in tHfocess[17]. The one-dimensional Manna model defines a
corresponding nondriven or fixed-energy sandpikES ~ universality class different from that of DP, and that of the
[3—-8]. While most studies of sandpiles have probed thdinear-interface depinning transition modélM ) [18]. Con-
slow-driving limit (addition and loss of sand grains at an Nections have been drawn between sandpile criticality and
infinitesimal ratg, there is great interest in understanding theboth DP(in a field-theoretical descriptiofi9]) and the LIM
scaling properties of FES models as wgl|9—11. In this (via an interface mappind.2,13)). The balance of this paper
paper we present extensive numerical results on sca”n@ Organized as follows. In Sec. Il we define the model and
properties, and the dynamics of an interface representatioQUr simulation procedure. Numerical results are analyzed, in
of a particularly simple one-dimensional FES. For back-the contexts of absorbing-state phase transitions and of
ground on FES models in the context of absorbing-statélriven interfaces, in Sec. lll. In Sec. IV we summarize and
phase transitions we refer the reader to Reg]; Ref.[13]  discuss our findings.
discusses the relation of sandpiles to driven interface models.

A central feature of sandpile models is the presence of a Il. MODEL
conserved field, the density of particles. This field couples to
the activity density, which is the order parameter. When, as Our model, a variant of the Manna sandpii0,21], is
in the case of FES, the conserved field is frozen in the abdefined on a one-dimensional latticelokites with periodic
sence of activity, the critical behavior is expected to fall in aboundaries. The configuration is specified by the number of
universality class distinct from that of directed percolationparticlesz;=0,1,2... ateach site; sites witlz;=2 are said
[14]. [Directed percolatioDP) universality is generic for to beactive A Markovian dynamics is defined by the top-
continuous absorbing-state transitions in the absence of Rling rate, which is unity for all active sites and zero for sites
conservation law.One motivation for the present study is to With z<2. When a site topples, it sends two particles to
determine the critical behavior of a one-dimensional examplé@djacent sitesz —z;—2); the particles move independently
of this recently identified class. to randomly chosen nearest neighbgrand ' (j,j’ e{i

In sandpiles the configuration evolves through a series ofr 1i—1}). (Thusj =]’ with probability 1/2) The dynamics
“toppling” events, which may be either deterministic or sto- conserves the number of particldls which is fixed by the
chastic. The well-known Bak-Tang-WiesenféRITW) sand-  initial configuration.
pile has a deterministic toppling rule, allowing many For densitiesf=N/L<1 absorbing configurations exist,
stationary-state properties of the driven sandpile to be founth which all sites havez;<<2. But since the fraction of ab-
exactly[15,16]. A less desirable aspect of the deterministicsorbing configurations vanishes &s-1, it is reasonable to
dynamics is that in the steady-state only a small subset of thexpect a phase transition from an absorbing to an active
possible configurationgdetermined by the initial stateare  phase at somg.<1. Simulations bear this out and show that
visited [15]. This leads to strong nonergodic effects in thethere is a continuous transition gt=0.9488.

1063-651X/2001/6¢45)/0561047)/$20.00 64 056104-1 ©2001 The American Physical Society



RONALD DICKMAN et al. PHYSICAL REVIEW E 64 056104

0.20 T . T 30—
-
015 - B 32 _
| ]
[ ]
Q. 0.10 " ] 34 F 7
.l
| ]
L ] a
0.05 » c 36| ]
»
0.00 L . L
0.94 0.97 1.00 1.03 1.06 38 .
4
FIG. 1. Stationary active-site density versus energy derisity 40r ]
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In most cases we use random sequential dynamics: the inL

next site to topple is chosen at random from a list of active

sites, which is updated following each toppling. The t|metolm 0 top, { — 0.948, 0.94857, 0.94864, 0.948 74, 0.9488,

!n(,:[rhement %Ssocllate?. Wlth.ta to.ppltmgé.“;:tl/';lh'“’ Wherte'\llA thi 0.948 92, 0.949, and 0.95. The inset shows the curvdiwéthe
IS the number ol active sites Just prior to the event. In ISIog-log plot as a function of for L=1000. The straight line is a

way (N,) sites topple per unit time, just as in a simulta- least-squares linear fit.

neously updated version of the modéih a simultaneous

dynamics all active sites topple at each update=1, re- ) ] o

gardless of the number of active sife®/e expect the two State p,=0) to an active one & in the vicinity of 0.95.

dynamics to be equivalent insofar as scaling properties are Our first task is to locate the critical valdg. To this end

concerned; simultaneous updating was used in some of th&e studied the stationary active-site dengifyand its sec-

interface representation studies discussed below. ond momenﬁi, anticipating that as in other absorbing-state
In most of our simulations, the initial condition is gener- phase transitions, the active-site dengitg., the order pa-

ated by distributing/L particles randomly among thesites, rametey will obey finite-size scaling22],

yielding an initial (produc} distribution that is spatially ho-

mogeneous and uncorrelated. Once the particles have been pa(A,L)=L AmR(LYA), 1)

placed, the dynamics begingWe verified that allowing

some toppling eventduring the insertion phase has no effect

FIG. 2. Stationary active-site density vs system size. From bot-

on the stationary propertigs. whereA=¢—/, andR is a scaling functionR(x)~x? for
largex, since forL>¢&é~A "1 we expecip,~A” (& is the
IIl. SIMULATION RESULTS correlation length WhenA=0 we haveFa(O,L)~L*/3’VL.

For A>0, by contrast,p, approaches a stationary value,
while for A<O0 it falls off as L™9 Thus in a double-
We simulated the model on systems ranging fram logarithmic plot ofp, versusL, supercritical valuesX>0)
=100 to about 19 sites.(Since¢=N/L with N andL inte- are characterized by an upward curvature, while £er0
gers, we are obliged to use different setd afalues to study the graph curves downwardee Fig. 2 Using this criterion
different densities.) In stationary-state simulations, we col- (specifically, zero curvature in the data foe=1000), we
lect data over an interval df, time units, following a relax-  find {.=0.948 877), with the uncertainty reflecting the scat-
ation period oft,. For small systemst, and t, are ter in our numerical results for the curvatufgee Fig. 2,
of the order of 16, but for our largest systems we used insed. The associated exponent ratiodév, =0.235(11). A
t,=5x10° andt,,=2.5x 10°. We verified that our results similar analysis of the data fop2 yields {,=0.948 83(5)
show no systematic variation with time for-t, . In practice  with an exponent of B/v, =0.483(18). We therefore adopt
tny, is limited because fof={., the survival probability de- the estimateg.=0.94885(7) ang3/v, =0.239(11).
cays sensibly over this time scale; in some cases only about In order to characterize dynamical scaling, we studied the
25% of the trials survive to timg +t,,. We average ovadg  survival probabilityP(t), i.e., that there is at least one active
independent trials, each with a different initial configurationsite in the system. In systems with an absorbing state, the
with Ng ranging from 2x< 10° for L=100, to 500 or 1000 for survival probability decays exponentiallp(t)~e Y7, with
L=10% the lifetime 7~L? at the critical point. Figure 3 shows the
Figure 1 shows the overall dependence of the stationartypical behavior of the survival probability in relation to the
active-site density as a function ¢f the points represent relaxation of the active-site densipy We see that the latter
extrapolations of results fdr=100-5000 to th& — o limit. relaxes on a shorter time scale thR(t), and that the sur-
The data indicate a continuous transition from an absorbingival probability does indeed decay exponentially in the sta-

A. Absorbing-state phase transition
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FIG. 3. Decay of the active-site densityand of the survival £
probability P in a system ol.=5012 sites at=0.948 92.

FIG. 5. Inset: Stationary autocorrelation functi@ft) vs t at
tionary regime as is usual at an absorbing-state phase trangi=0.9488 for(left to right) L =625, 1250, 2500, 5000, and .0n
tion [17]. Analyzing the lifetime in a series of studies &t the main graph the data are plotted vs a rescaled tindefined in
=0.9488 for system sizds= 1250, 2500, 5000, and {owe  the text.
find z=1.58; a similar series of studies &t 0.948 92 yields ] ) )
z=1.70(see Fig. 4 (We generated 3000—5000 realizations Poral rescaling factor required to obtain a da_ta colla_lpse
for each system sizeGiven our estimate for, quoted betweerC(t;L/2) andC(t/r;L). A good collapse is possible
above, we conclude that=1.637); therather large uncer- (S€€ Fig. 5 but the rescaling factor depends anfor L
tainty reflects the sensitivity of our estimates to small =2" X625, we use™* =t/r" with r =2.93, 2.91, and 2.89 for
changes in;.. The scaling of the timer, for the active-site N=1, 2, and 3, respectively. The rescaling factappears to
density to attain its stationary value yields a similar result. @pproach a limiting [(— ) value of 2.805), corresponding

We also studied the autocorrelation function for the num-0 a relaxation time that scales as-L"I""+ with v) /v, =z

ber of active sites\,, =Inr/in2=1.5. This value is consistent with that obtained
from the lifetime analysis, but is less reliable, sinCét)
(Na(to+t)Na(te)) —(Ny)?2 does not follow a simple exponential decay, and we have to
C(t)= > 5 (2)  extrapolate the rescaling factor ko—o.
(N2)—(Na) Next we examine the stationary scaling of the order pa-

in the stationary state. To obtain clean results @gt) we {_ameter a\t/yay fr?m dthe _ct?ﬂtlcall_pc;mt. V_\/etgete_r m'qed ;he sta-
study surviving trials in relatively long rungfrom t,,  tonary active-site density,(¢,L) for £ in the vicinity of £

_ _ 100 thi : for system size4 =100-5000. We analyze these data using
=2¥% = =
210" for L =625, to 510" for L =10; this obliges us the finite-size scaling form of Eq1), which implies that a

t d le to 200 iving trials fox 2500 and il o
0 reduce our samp'e 1o Surviving 'mars an plot of L#":p,(A,L) versusLY:A should exhibit a data

100 surviving trials fol. =5000). Results fot,=0.9488 are ; . Bl
shown in Fig. 5:C(t) decreases monotonically, but does notcollapse. We shift ea_ch data $gt a log-log plot .Oﬂ‘ Pa
: , ersus LYtA) vertically by (B/v,)InL, using Blv

follow a simple exponential decay. To study the dependenc¥_0239 found ab d det L t,h horizont Ii hift

of the relaxation time on system size, we determine the tem-_ ™" as found above, and aetermine the horizontal Shits
S(L) required for data collapse. The latter follo(L)

16 et =v, YnL with v *=0.5533). That these values yield an

excellent data collapse is evident from Fig. 6. The slope of

the scaling plot(linear regression using the 25 points with

187 ] In(LY¥"1A)>—0.5) yields 8=0.41Q4). This is somewhat
] smaller than, but consistent with, the estim@te 0.43(2)
L ML . obtained by combining »;'=0.553(3) and B/v,
£ =0.239(11). We adopB=0.42(2) as our final estimate.
13 .

B. Interface representation

12t § The interface representation is constructed by defining
] height variabled,(t) that count the number of topplings at
. . . sitei up to timet. The dynamics of the interface representa-
116 7 8 9 10 tion is discussed in Ref412,13; the latter reference de-
InL _scribes the dis_crete interface equation for the Manna model
in greater detail.
FIG. 4. Lifetime 7 vs system size. Filled symbolg=0.9488; In the interface description the system undergoes a depin-
open,{=0.948 92. The straight lines are least-squares linear fits. ning transition at a critical force value equivalent de ¢,
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FIG. 6. Scaling plot of the active-site density versiis=¢ FIG. 7. Scaling plot of/2=W?/L?* vst=t/L? for {=0.9489,
—{.. Symbols: +, L=100; @, L=200; X, L=500; O, L using a=1.41 andz=1.645. System size¢top to bottom L
=1000; 0, L=2000; ¢, L=5000. =1253, 2506, 5012, 10 024, and 20 048.

[23,24. The interface behavior, assuming simple scaling,
described by two exponents: the roughness expoaesnd
the early-time exponengBy,. Introducing the widthW as
usual,

'Sncreases without limit as— <. Since larger systems have a
longer lifetime, this has implications for the roughness as
measured byW?,=W?(7¢,,L), 7sa being the time at
which the absorbing state is reached. The saturation width

W2(t,L)=([H;(t)—H(t)]?) (3)  Wsar scales ad “, with « related togy, andz as above. In
models exhibiting an absorbing state such as the contact pro-

[hereH(t) is the mean heigfitthese exponents are defined cess or a FES, the width saturates only because activity even-

via tually ceases; the width isurvivingtrials does not saturate.
28 This is in marked contrast to interf_ace models, in whi_ch the
WA(tLL)~ t t<ty 7 width saturates due to the Laplacian term representing sur-
’ L2« t>t,, face tension, since the noise is bounded. The interface de-

. , . scription of the Manna model, like other absorbing-state
where the crossover tinte ~L*. Assuming that the correla- phase transitions and their associated interface representa-
tions in the interface can be described by a single lengthions[25], includes a noise term whose strength grows while
scale, we have the exponent relatiBpz= «a. there is activity[13].

This scaling picture, familiar from the study of surface Finally, in absorbing-state models, interface scaling ap-

growth, was recently shown to apply in the case of a simplg,ears 1o be strongly linked to the approach to the stationary

3bsorbi_ng-slta'\t/|e phased tlrat‘r?SitiQthi]- For thel_ o?ed- potate. In a model with simple scalirige., unique diverging
imensional vianna model the situation 1S compiicate yIength and time scales and no conserved quaniitide

several factors. First, the noise appearing in the mterfacerOWth exponentBy, is related to the critical exponertt

description has two contributions: a columnar component red . Ec)h i Vlvd f activity Vigu + o= 1 FZS] |

flecting the initial configuration and a noise field arising from governing the iniiaj decay ot activity Vigwt 0= -n

the random redistribution of particles in toppling evefis]. thfa present case r_ela_xat|0n is comph_cated by effects that may

The interface dynamics will therefore exhibit a crossoverMimic (for a certain time columnazf disorder. _

from a regime dominated by the initial configuration to a  We studied the interface widiv“(t,L) in systems of size
randomness-dominated regime. This effect also appears l=1253, 2506, 5012, 10024, and 20048,{at0.948 92.
higher dimensions, but inl=1, due to the meager phase The dependence of the saturation width on system size yields

space, relaxation is much slower and transient effects may b¢=1.441). We then attempt to collapse the data for
much more severe. W2(t,L) using this exponent and varyirgo obtain the best
A special aspect of one-dimensional interface models i§0llapse; in this way we find=1.652). Theresulting scal-
anomalous scaling, i.e., the two-point correlation function ofing plot (Fig. 7) of W2=W?/L2“ versust=t/L? shows a
the surface roughness scales with a different exporeggy, good collapse, and an apparent power-law growth in the
than the exponentr defined in Eq.(4). For fundamental roughness, following an initial transient. From the scaling
reasonsg <1 [18,26. The exponentr can attain larger relation 8y= a/z we obtainB=0.863(13); a direct fit to
values; for exampleq=1.25 for the one-dimensional LIM the time-dependent width data yield3,=0.8712). For
[18]. The exponents are related vie= a;,.+ x, Where comparison, an independent series of studieg=a0.9490
measures the divergence of the height difference betweemere performed to determine;,; and the saturation width
neighboring sites with time. Thus, anomalous scaling impliesNg,; for L=400 to L=6400. Power-law fits to these data
that the typical height difference between neighboring siteyield essentially consistent results, i.eq=1.482),
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Bw=0.862), and z=1.7(0(3). Figure 8 shows a clear gimes before reaching the quasistationary state: an initial
power-law dependence of the saturation width on the lifepower-law decayl), followed by a crossover to a slower
time in individual runs power-law regime(l), and finally a rapid approactill) to
Similarly to the case of the LINI18], we find that there is the stationary state. Far=20 048, the exponents associated
an independeribcal roughness exponen,. that describes with regimes | and Il are 0.163 and 0.144, respectively.
the two-pointkth order height-height correlation function While the latter exponent is in reasonable agreement with the
Gi(r)={(|H;;,—H;[")~rkaoe for r<g(t)~tY2 We find  scaling relationg,,+ 6=1, it is clear that relaxation to the
a10c=0.59(3) fork=1,...,8.This shows that the interface stationary state is more complicated for the sandpile than for,
is self-affine, not multifractal. say, the contact process, which presents a unique power-law
We note that the interface exponents of the Manna sandegime. A qualitative explanation may be found in the inter-
pile arenot those of the one-dimensional LIM. This is most face representation: the short-time dynamics is dominated by
likely due to the fact that, perhaps differently from the two- relaxation of the initial configuration, which in the interface
and higher-dimensional cases, here it is important that theanguage means that at short times, columnar noise domi-
noise termincreasesn strength with the propagation of the nates.
interface, or with sustained activity. Thus the anomaly expo- A related facet of the relaxation process is the approach of
nent « indicates an even stronger dependence of the stefhe mean height to its global valug at a site with initial
height onL at saturation than in the LIM. The same is also
true if the step height is considered as a function of time for 05
t<7gar: We find kyanna~0.82~ k ;y +0.5.

0.0
C. Initial relaxation
At the critical point of a simple absorbing-state model xo 05
such as the contact process, starting from a uniform initial £

condition with activity densityp,>0, p, exhibits an initial
power-law decayp,~t~?, followed by a crossover to the
quasistationary valup,~L ~#1 [17]. As noted above the
growth exponent is related to the activity-decay exponent via -1.5
0+ Bw=1 if only one time scale is presef5]. A plot of
LALp,(t) versust/L? yields a data collapse to a scaling R S
function that is independent &f In the present cad&ig. 9), 15 -10 5 0
we see that the collapse is imperfect and that the form of

*
pa(t) changes withL. Herez was chosen so as to optimize Int
the collapse at long times, yielding=1.753). For large FIG. 9. Scaled active-site density vs scaled time{fer0.9489,
systems, the active-site density exhibits three distinct resystem sizet =1253 ..., 20 048 asndicated.
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1.2 interface equation has a fundamentally different structure de-
pending on the dimension. It is worth remarking that our
result for roughness exponent is rather closexte3/2, the
value one expects if only the columnar component of the
noise is relevanf30]. The other exponents, however, seem
to be far from the columnar-disorder universality cléiss.,
v, =2,z=2, B=1, andB,,=3/4) [30]. In linear interface
models, translational invariance of the noise can be used to
derive the scaling relation (2a) v, =1 [31]. Our results do
not satisfy this relation.
We determined the dynamic exponenising several dif-
ferent approacheg1) scaling of the lifetime at the critical
08 40'00 8000 point[z=1.63(7)]; (2) from the temporal rescaling required
for a data collapse of the interface widthW?(t) [z
=1.65-1.70; (3) from a data-collapse analysis of the initial
FIG. 10. Mean heightz(t)|z(0)) of sites with initial height —decay of the activitf z=1.70(5)]. Pooling these results we
z(0), in asystem of 1400 sites at., averaged over 2000 trials. have z=1.667), which rules out the LIM value ofz
From bottom to topz(0) = 0, 1, 2, 3, and 4. The inset is a plot of =1.42(3)[18]. In the context of interface depinnirzran be
In|(z(®)[z(0))—¢] vs Int. linked to the other exponents via the scaling relation
=Blv, +a [31]. Inserting the values g8, v, , anda mea-
heightz(0). In Fig. 10 we plot the mean heigkz(t)|z(0))  sured in our simulations, we obtaim= 1.7, consistent with
in at system of 1400 sites &t, averaged over 2000 trials. our result forz.
The inset shows that the asymptotic approach iwapproxi- We note that the present model does not exhibit the strong
mately power law,|(z(t)|z(0))—¢|~t~%, with ¢=0.46, nonergodic effects observed in the fixed-energy version of
0.45,0.47, 0.50, and 0.53 fa(0)=0, 1, 2, 3, and 4, respec- the BTW sandpile. The relaxation of the mean height))
tively. All of these exponents are close ¢o=1/2, the value from its initial value to the averagé, follows a power law

<z(t)iz(0)>
o =

o
©

expected for uncorrelated diffusion. with an exponent=1/2. We find good evidence for finite-
size scaling, in contrast with most driven sandpjlgéa—34.
IV. DISCUSSION In summary, we have identified a one-dimensional sandpile

) ) ) . . model that exhibits an absorbing-state phase transition as the

- We studied the _scall_ng behavior of a one-dlmensmna}ebvam temperaturelike parametéhe energy densilyis
fixed-energy sandpile with the same local dynamics as thgaried. |t appears to be the “minimal model” for absorbing-
Manna model. The model exhibits a continuous phase transiaie phase transitions belonging to a recently identified uni-
sition between an absorbing state and an active one at\fsality class associated with a conserved density. Prelimi-
critical particle density/.=0.9488%7). The phase transi- 51y studies indicate that the driven version of the model
tion in the one-dimensional stochastic sandpile is characteisynipits scale-invariant avalanche statis{i8s35]. We may
ized by the critical exponent8=0.42(2) andv, =1.81),  therefore hope that analysis of the driven model, and of
which d|_ffer significantly from those asso_uated_ with d'reCtedspreading of activity at the critical point of the fixed-energy
percolation 3=0.2765y, =1.0968) and linear-interface de- gystem, will permit us to establish detailed connections be-
pinning[ 8=0.253),v, =1.3]. While absorbing-state phase tyeen scale invariance under driving and the underlying
transitions are expected to fall generically in the d'reCtEdabsorbing-state phase transition.
percolation universality clag27,28, it is reasonable to ex- Let us stress, finally, that while in higher dimensions the
empt the Manna model from this rule due to local conservajinegar-interface depinning universality class appears to con-
tion of pa_rtlcles; this conservation law |s_expected to aI.ter theside with that of an absorbing-state phase transition in the
universality class. In fact, studies of various models with theyresence of a conserved static field, our present results show
same local conservation law as the Manna sandpile, in digat this equivalence is violated i 1. It will be interesting
mensionsd>1, indicate a common universality class for 5 stydy other one-dimensional systems with absorbing states
models sharing this featu{d2,14,29. and an order parameter coupled to a static conserved field

Studying the interface representation of the model, W84 14,29 in order to compare the critical exponents and
obtain the roughness exponent 1.48(2) and growth expo- anomalies with those reported in this paper.
nent Byw=0.862), which should be compared with
a=1.331), By=0.839(1) for DP anda=1.21), Bw

=O.8_8(2)_for LIM. Study of the height-height correlation ACKNOWLEDGMENTS
function yields the local roughness exponefy.=0.593);
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