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We study the sample-size dependence of the strength of disordered materials with a flaw, by numerical
simulations of lattice models for fracture. We find a crossover between a regime controlled by the disorder
and another controlled by stress concentrations, ruled by continuum fracture mechanics. The results are
formulated in terms of a scaling law involving a statistical fracture process zone. Its existence and scaling
properties are revealed only by sampling over many configurations of the disorder. The scaling law is in
good agreement with experimental results obtained from notched paper samples.
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The fracture strength of materials depends on various
characteristic length scales of the specimen and represents
a fundamental open problem of science and engineering.
Probably the oldest scientific study of this issue was per-
formed by Leonardo da Vinci, who measured the carrying
capacity of metal wires of varying length [1]. The simple
observation was that the longer the wire, the less weight it
could sustain. This size effect can be understood consider-
ing that some form of disorder, such as dislocations, grains,
or microcracks, is always present in materials. Hence,
different parts of the sample should have a different
strength depending of the local microstructure. In addition,
the strength is not a self-averaging quantity since it is
dominated by the weakest spot, where global failure is
likely to initiate. Longer wires will, in general, contain
more weak parts and are thus bound to fail earlier on
average. While the physical mechanism behind this
extreme-value based statistical size effect is clear, obtain-
ing mathematical laws in realistic situations is still a for-
midable task [2].

In quasibrittle materials, such as concrete and many
other composites, size effects are particularly complicated
because of the significant damage accumulation preceding
sample failure. The limitations of extreme-value statistics
stem from long-ranged elastic interactions: cracks interact
and it is not always obvious how to isolate the weakest
spot. To overcome this problem, it is customary to consider
a specimen containing a preexisting flaw, a notch. If the
notch is sufficiently large, the stress enhancement around
the crack tip will be sufficient to localize the failure. In this
limit, disorder can be treated as a small perturbation [3] by
defining a fracture process zone (FPZ) around the crack tip,
where all the damage accumulation is confined. Several
formulations to account for the size effects have been

proposed in the literature [4–9]. These approaches are
mainly based on the ad hoc extensions of linear elastic
fracture mechanics (LEFM). This is a well established
framework to understand cracks in homogeneous media,
but it encounters fundamental problems when disorder is
strong and homogenization methods are not applicable.
This is particularly true for small notches, when failure is
influenced by statistical effects and may, for instance,
initiate far from the preexisting notch due to nucleated
microcracks.

In LEFM the stability of a flaw against failure is given by
the Griffith energy criterion, analogous to the classical
theory of nucleation in first order phase transitions.
Considering the elastic energy released by the crack and
the interfacial energy gained in creating it, one can show
that a crack of length a0 becomes unstable for stresses
larger than �c � Kc=

�����
a0
p

, where the critical stress inten-
sity factor Kc �

����������
EGc
p

is a function of the fracture tough-
ness Gc and the elastic modulus E [10]. The Griffith
argument has been generalized by Bazant to quasibrittle
materials [4], postulating that when the FPZ is present, the
crack length a0 should increase by an additional length
scale �, yielding

 �c � Kc=
���������������
�� a0

p
: (1)

Equation (1) incorporates two important effects: First, in
the large notch limit �=a0 � 0 one should recover an
expression that follows the LEFM scaling, in which the
strength is inversely proportional to 1=

�����
a0
p

. Second, for a
vanishing external flaw size a0 ! 0, the average strength
should still remain finite. In this limit, however, disorder
cannot be considered as a small perturbation, and the
assumptions underlying Eq. (1) are not valid.
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Here we investigate the role of the disorder in the failure
of notched quasibrittle specimens, providing a microscopic
justification and establishing the limits of validity of
Eq. (1). We study the size scaling of strength by the
extensive numerical simulations, a difficult task due to
the different length scales involved and to the need of
significant statistical averaging. We vary the disorder,
which we model as a locally varying random failure thresh-
old and show that it plays a crucial role in determining the
size effect, influencing the fracture toughness Kc.
Furthermore, the length scale � naturally emerges from
the simulations and can be shown to be directly related to
the FPZ size. Finally, for notch sizes smaller than a critical
length ac, we observe a crossover to the inherent, sample-
size-dependent strength of the unnotched sample. We
present a scaling formula that incorporates all these effects
and confirm its validity by comparing the simulations to
experiments on notched paper samples.

To simulate a disordered elastic solid, we consider the
simplest case where disorder and LEFM-like stress en-
hancements can be incorporated. We perform extensive
simulations of the random fuse model (RFM) [11,12].
The RFM represents a quasibrittle failure process by an
electrical analog composed of a network of fuses. We
consider a triangular lattice of linear size L with a central
notch of length a0. The fuses have unit conductance (which
would correspond to E � 1 in the elastic system) and
random breaking thresholds ic. These represent a locally
varying fracture toughness or strength. The ic lie between 0
and 1, with a cumulative distribution P�ic� � i1=Dc , where
D represents a quantitative measure of disorder. The larger
D is, the stronger the disorder [13]. In the simulation, the
burning of a fuse occurs irreversibly, whenever the electri-
cal current in the fuse exceeds its threshold ic. An external
current is increased applying a voltage difference between
the top and the bottom lattice bus bars and applying
periodic boundary conditions along the other direction.
Damage accumulates until a connected fracture path dis-
connects the network and one can define the strength �c as
the total peak current divided by the length of the bus bar.
We also perform numerical simulations for the random
spring model (RSM) [14], similar to the mesoscale models
used routinely for concrete [15]. The RSM is similar to the
RFM, but the fuses are replaced by elastic springs that
break when their elongation reaches a random threshold.
While the RSM represents more faithfully the elastic con-
tinuum, the statistical properties of the fracture process are
analogous to those of the RFM [14].

The inset of Fig. 1 reports the strength, averaged over
different configurations, with varying a0, D, and L. The
most instructive way of plotting is to consider the inverted
square strength, 1=�2

c. Assuming Eq. (1), it is clear that
1=�2

c should become a linear function of a0 for large
enough notches. Plotting the data in such a manner in
Fig. 1 reveals four interesting features: (i) for a0 � 1,

the scaling of Eq. (1) is recovered asymptotically; (ii) the
linear part of the data when extrapolated toward a0 � 0
reveals a disorder-dependent intercept ��D�, that should be
related to the size of the FPZ; (iii) the slope of the linear
part of the data [1=K2

c�D�] is disorder dependent, which
implies a disorder-dependent fracture toughness Gc�D�;
and finally, (iv) a careful observation (see Fig. 2) reveals
that for small a0 less than a critical crack size ac, the
strength scaling crosses over from a stress concentration
dominated LEFM scaling [Eq. (1)] to a disorder-dominated
scaling. In particular, the data presented in the inset of
Fig. 2 indicate that the strength of the unnotched system
(for a0 � 0) is smaller than the LEFM limit Kc=

���
�
p

[where
1=K2

c is the slope and � is the intercept of the lines in Fig. 1
based on Eq. (1)]. Hence, in order to extrapolate the typical
sample-size-dependent strength from notched experiments
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FIG. 1 (color online). Inset: The strength �c as a function of
the notch size a0 for several disorders D. Results for different
system sizes L are plotted together. The main figure shows the
scaling plot of the data according to Eq. (1).
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FIG. 2 (color online). A close-up of the strength data for D �
0:6 and various a0 and L. The inset compares fracture strength in
unnotched samples with that predicted by Eq. (1) for a0 � 0.
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it is necessary to know ac. As can be seen, these features
are also exhibited by RSM results.

The crossover at a critical crack size ac marks the
important role of structural disorder or internal damage
on the size effect and relates to the size effect in unnotched
samples. For the RFM, the size effect without a notch has
been shown by simulations and theoretical arguments to
have a logarithmic dependence on the linear system size, L
[12,16]. For many engineering materials, one resorts to the
Weibull theory [17] as an empirical starting point.

This crossover from LEFM dominated strength scaling
to disorder-dominated strength scaling is illustrated in
Fig. 3, where we compare the simulation data to experi-
mental results on paper samples with varying center notch
sizes. The paper data are from Ref. [18]. The two data sets
presented are for strips of L � 15 cm cut from laboratory-
made handsheets, of fine paper-type, with center defects of
nominal sizes of a0 � 0:5, 1, 1.5, 2, and 2.5 mm. Tensile
tests were performed on 100 samples, in order to average
the results. In Fig. 3, we observe clearly the presence of ac,
below which the notches have a negligible role on �c, and
for crack sizes a0 larger than ac fracture is ruled by LEFM.
We have also fitted the simulation data to these experi-
ments, by considering similar a0=L ratios and varying the
D to obtain reasonable agreement with the experimental
data.

The observations from Figs. 1 and 2 can be summarized
into a single scaling theory by noticing that there must be a
scale ac above which the LEFM holds and �c follows
Eq. (1). For a0 � ac the strength scaling deviates signifi-
cantly from Eq. (1) and saturates to a value that depends
only on disorder and the sample size, ��L;D�. This is the
strength of the unnotched system of size L and disorder D.
The crossover from LEFM scaling [Eq. (1)] occurs at a
notch size ac which can be obtained from Eq. (1) as

1=��L;D�2 ’ �ac � ��=K
2
c . It is possible to describe this

crossover by the following scaling form, valid for all a0

such that

 

K2
c

�2
c
� �� a0f�ac=a0�; (2)

where the scaling function f�y� fulfills the limits

 f�y� ’
�

1 if y� 1;
y if y� 1:

(3)

The length scale ac ’ 	Kc�D�=��L;D�
2 � ��D� corre-
sponds to a crossover scale below which material strength
is governed by disorder strength and system size. When the
notch size exceeds this crossover length scale (a0 > ac),
fracture is governed by LEFM. At fixed L, stronger dis-
order will increase ac since the strength of unnotched
samples decays faster than the decrease in Kc. This is
understandable since the disorder masks more efficiently
the stress concentration due to the notch. Likewise, at fixed
D, ac increases with increasing L.

Simulations of the RFM allow us to access the damage
evolution prior to failure and can thus be used to visualize
the development of the FPZ. As shown in Fig. 4, for a
single realization of the disorder, at maximum stress we see
only diffuse damage, without apparent localization so that
the FPZ cannot be observed. When we average the damage
over different configurations, however, a clear FPZ
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FIG. 3 (color online). Comparison of numerical results with
the experimental data for two kinds of paper. The figure presents
the size effect for small notch sizes using a RFM simulation of a
system of size L � 128 and a disorder of D � 0:6.

FIG. 4 (color online). The damage (fraction of failed elements
or fuses) at maximum stress �c for L � 128 and D � 0:6. The
black markers illustrate the broken fuses in one single, randomly
chosen sample whereas the color background represents the
damage averaged over N � 2000 (number of samples). The
color code indicates the intensity of damage. A damage cloud
that increases in density is clearly visible close to the initial
notch. The figure demonstrates the screening of damage due to
free crack faces. It is clear that in the disordered samples, FPZ is
a statistical zone, visible only when damage profiles are aver-
aged over many samples.
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emerges in front of the crack tip (see Fig. 4). Hence the
FPZ should be considered a statistical concept, visible only
when averaging over disorder, while the effect of the FPZ
is nevertheless seen in the size effect (�). To measure the
FPZ size, we consider a projection of the average damage
along the crack direction and obtain a profile that is decay-
ing exponentially toward a homogeneous background
value: d�x� � A� B exp��x=�FPZ� [see Fig. 5(a)]. We
have analyzed the data for different values of D and
checked that the profiles do not depend on a0 as long as
this is not too far from ac. The LEFM stress intensity factor
would indicate a 1=

���
r
p

-like divergence of the stress at the
crack tip. It is evident that the observed exponential shape
of the damage profile d is in contrast to a 1=

���
r
p

-like decay
and should be naturally interpreted as a screening of the
crack tip caused by the disorder. In Fig. 5(b), we plot the
deduced fracture process size �FPZ�D� against the intrinsic
scale � that one obtains from the fits of the strength data to
the Eq. (1) and which also is an important part of the
scaling theory presented in Eq. (2). It can be seen that
these are linearly proportional indicating that � is indeed a
direct measure of the FPZ size. Notice that an exponential
damage zone has indeed been measured in paper samples
and the corresponding length scale was compared with the
one obtained from Eq. (1) [19].

In conclusion, we have resorted to simulations of statis-
tical fracture models to analyze the problem of the size
effect in the failure of materials. For large notches, the
simulations recover the expected scaling of LEFM [4] and
allow us to relate the effective FPZ size � to the actual
average damage profiles. As the notch size is decreased we
observe a crossover at a novel scale ac to a disorder-
dominated size-dependent regime that is not described by
LEFM and is furthermore seen in experiments. All the

regimes are summarized in a generalized scaling expres-
sion [Eq. (2)] for the strength of disordered media.
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FIG. 5 (color online). (a) Damage profiles along the crack axis
for various disorders D. Damage profiles follow an exponential
decay on a uniform damage background, i.e., d�x� �
A� B exp��x=�FPZ�, where A and B are constants and x is
the distance from the crack tip along the crack axis. (b) � vs �FPZ

for various disorders D.
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