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Abstract

In this paper we prove the existence of solution to backward stochastic differential equa-
tions (BSDEs) in infinite dimensions with continuous driver under various assumptions. We
apply our results to a stochastic game problem with infinitely many players.

1 Introduction

In this paper we consider the following backward stochastic differential equation (BSDE), in the
sense of [18], on a finite time interval [0, T ], in an infinite dimensional setting:

dYt = −BYt dt− ψ(t,Xt, Yt, Zt) dt+ Zt dWt, YT = φ(XT ). (1.1)

In the above, W is a cylindrical Wiener process in a Hilbert space Ξ, B is the infinitesimal
generator of a strongly continuous dissipative compact semigroup (etB) in a Hilbert space K,
X is a Markov process with respect to the filtration generated by W , ψ and φ are deterministic
functions with values in K. The solution (Y,Z) takes values in K × L2(Ξ,K), where L2(Ξ,K)
denotes the space of Hilbert-Schmidt operators from Ξ to K. The solution is understood in an
appropriate sense, see below.

BSDEs in infinite dimensions were first studied in [17]. In this paper the authors proved
existence and uniqueness of the solution to BSDE (1.1) assuming that the driver ψ is uniformly
Lipschitz with respect to (y, z).

BSDEs in infinite dimensions were also studied in [1], [2], [3], [10], [14], [19], [21], in the
more general case when the driver ψ can be random. In [9], [10], [11], [12], equation (1.1) was
considered when the process X takes values in a Hilbert space H and is defined as the solution
to a stochastic evolution equation of the form

dXt = AXt dt+ F (t,Xt) dt+G(t,Xt) dWt, X0 = x ∈ H. (1.2)

1



Here A is the infinitesimal generator of a strongly continuous semigroup (etA) in H, F and G
are appropriate functions with values in H and in the space of bounded linear operators from Ξ
to H, respectively. Various problems were considered in these papers, including applications to
nonlinear partial differential equations for functions defined on [0, T ]×H and optimal stochastic
control. In [13] the fully coupled case is addressed, i.e. when F and G may depend on the
unknown processes Y and Z.

In this paper we prove existence of a solution to BSDE (1.1) assuming that ψ is only con-
tinuous with respect to (y, z).

Our starting point is the result in [15], where all the processes W,X, Y, Z take values in
finite-dimensional vector spaces. In that paper ψ is assumed to have linear growth with respect
to (y, z); this allows to prove the existence result for the BSDE and to prove existence of a Nash
equilibrium in an N -player stochastic differential game. A crucial assumption in that paper
is a condition on the densities of transition probabilities of the process X with respect to the
Lebesgue measure. This condition is fulfilled in the case when G is uniformly non degenerate.
The result of [15] was generalized in [16] to the case of discrete-functional-type drivers.

In our paper we also impose conditions on the transition probabilities of the process X.
However, due to the infinite dimensional nature of the state space H, we need completely
different assumptions.

In section 3 we consider the case when X is an Ornstein-Uhlenbeck process, i.e. it solves (1.2)
with F = 0 and G constant. In this case explicit conditions are known to ensure equivalence
of transition probabilities. We prove a formula for mutual densities, generalizing a result in [4],
and use it to prove the existence of a solution to (1.1) assuming that ψ has linear growth with
respect to (y, z). Generalizations of this result to more general processes X seem to be possible,
for instance using the formulae for transition densities introduced in [22], [23], [24]. The present
result is however sufficient for the applications to stochastic games that we present.

In section 6 we apply the existence result for the BSDE to prove existence of a Nash equilib-
rium in a stochastic game. The underlying controlled process has a nonlinear drift and constant
diffusion coefficient: see equation (6.1). This time, using the infinite-dimensionality of the pro-
cess Y , we are able to study a stochastic game with infinitely many players. Stochastic games
with an infinite number of players are a mathematical model used to describe a variety of eco-
nomical and financial markets, but so far a dynamical setting with continuous time was not
considered to our knowledge, perhaps due to the complexity of the techniques involved.

In sections 4 and 5 we only assume that X is a Markov process with values in a metric
space, and we prove the existence of solution to the BSDE assuming that ψ is bounded. We
impose two kinds of conditions. First, in section 4, we require the transition probabilities of
X to be equivalent to each other (but no condition is imposed on the corresponding densities).
An application is given in example 4.1, again in the case of a process solution of an evolution
equation of the form (1.2). In section 5 we address a case where transition probabilities can
be even singular, and we require a continuity condition with respect to the variation norm:
see (5.2). This kind of property is customary in the theory of stochastic evolution equations
in infinite-dimensional spaces: it has been deeply investigated in connection with the so-called
strong Feller property and several conditions are known which guarantee that it is verified: see
[7]. One example is given below, see example 5.1, to show applicability of the general result.

In section 2 we introduce notation, we state a general approximation lemma and recall some
facts about the Ornstein-Uhlenbeck process in a Hilbert space.

Some results of this paper have been announced at the Fourth International Conference on
Backward Stochastic Differential Equations and Applications, Shanghai, May 30th - June 1st,
2005. The first author would like to thank the Université de Rennes 1 for his stay during which
this article was begun.
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2 Preliminaries

In this section we collect material that will be used in the sequel. First we recall some notation,
then we define the Ornstein-Uhlenbeck semigroup that is used in sections 3 and 6, finally we
state and prove an approximation lemma that is frequently used afterwards.

2.1 Notation

In this paper the letters H,K,Ξ denote Hilbert spaces. All Hilbert spaces are assumed to be
real and separable. The norm is denoted | · | and the scalar product 〈·, ·〉, with a subscript to
indicate the space, if necessary. L(H,K) denotes the space of linear bounded operators from
H to K, with its usual norm. We shorten L(H,H) to L(H). L2(H,K) denotes the space of
Hilbert-Schmidt operators from H to K, with the Hilbert-Schmidt norm. Operator norms are
also denoted by | · |, with a subscript if necessary.

Let (Ω,F ,P) be a complete probability space. A cylindrical Wiener process {Wt, t ≥ 0}
in a Hilbert space Ξ is a family of linear mappings ξ → W ξ

t , defined for ξ ∈ Ξ with values

in L2(Ω,F ,P), such that {W ξ
t , t ≥ 0} is a real Wiener process and E [W ξ

tW
η
s ] = (t ∧ s)〈ξ, η〉

for ξ, η ∈ Ξ and t, s ≥ 0. By Ft we denote the σ-algebra generated by the random variables
{W ξ

s , s ∈ [0, t], ξ ∈ Ξ} and by the P-null sets of F . We call (Ft)t≥0 the Brownian filtration of
W .

Stochastic integration theory can be defined with respect to W : we refer to [6] for de-
tails. If {Ψt, t ∈ [0, T ]} is an (Ft)-predictable process with values in L2(Ξ, H), satisfying

P-a.s.
∫ T

0 |Ψt|2L2(Ξ,H) < ∞ then the stochastic integral {
∫ t

0 Ψs dWs, t ∈ [0, T ]} is an (Ft)-local
martingale with values in H admitting a continuous version.

2.2 The Ornstein-Uhlenbeck process

Let H,Ξ be Hilbert spaces. We are given two linear operators A : D(A) ⊂ H → H and
G ∈ L(Ξ, H) such that

Hypothesis 1 (i) The operator A : D(A) ⊂ H → H is the infinitesimal generator of a strongly
continuous semigroup {etA, t ≥ 0} of bounded linear operators in H.

(ii) G : Ξ→ H is a bounded linear operator.
(iii) The operators

Qtx =

∫ t

0
esAGG∗esA

∗
xds, x ∈ H,

are of trace class for all t ≥ 0.

(iv) etA(H) ⊂ Q
1
2
t (H), for all t > 0.

We define the Ornstein-Uhlenbeck process as the solution of the following stochastic equation:

dXt = AXt dt+G dWt, X0 = x (2.1)

where x ∈ H is given and W is a cylindrical Wiener process in Ξ. Equation (2.1) is understood
in the so-called mild sense: the solution is by definition the process

Xt = etAx+

∫ t

0
e(t−s)AG dWs, t ≥ 0. (2.2)

It is well known (see e.g. [6]) that under the assumptions (i) − (iii) in Hypothesis 1 the Ito
integral is well defined and Xt is a random variable with values in H with law N (etAx,Qt), i.e.
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the Gaussian measure with mean etAx and covariance operator Qt. Moreover, condition (iv)
ensures that the measures {N (etAx,Qt), t > 0, x ∈ H} are all equivalent. In the following we
fix 0 < t ≤ T , x ∈ H and we denote by ktT (x, ·) the density of N (etAx,Qt) with respect to
N (0, QT ).

Lemma 2 Assume that Hypothesis 1 holds, and let 0 < t ≤ T and x ∈ H be given. Define

ΘtT = Q
− 1

2
T etAQT−t(Q

− 1
2

T etA)∗. (2.3)

Then 1 − ΘtT is a positive operator with bounded inverse and we have, for N (0, QT )-almost
every y ∈ H,

ktT (x, y) = det(1−ΘtT )−
1
2 exp { − 1

2
〈(1−ΘtT )−1Q

− 1
2

T etAx,Q
− 1

2
T etAx〉 (2.4)

+〈(1−ΘtT )−1Q
− 1

2
T etAx,Q

− 1
2

T y〉 − 1

2
〈ΘtT (1−ΘtT )−1Q

− 1
2

T y,Q
− 1

2
T y〉}.

We also have the following estimates:

|(1−ΘtT )−1| ≤ 1 + |QT−t||Q−1/2
t etA|2 (2.5)

and
det(1−ΘtT )−1 ≤ exp {(1 + |QT−t||Q−1/2

t etA|2) |Q−1/2
t etA|2 TraceQT−t}. (2.6)

By 1 we also denote the identity operator. These formulae need some explanations. First

we note that, as a consequence of Hypothesis 1, one can prove that the operators Q
−1/2
T etA and

Q
−1/2
t etA are everywhere defined and bounded and that ΘtT is a symmetric trace class operator

satisfying 0 ≤ ΘtT < 1. Next, the determinant occurring in (2.4) and (2.6) is understood as the
infinite product of eigenvalues. It is well defined, since ΘtT is trace class. Finally, for arbitrary

b ∈ H and trace class symmetric operator M the functions 〈b,Q−1/2
T y〉 and 〈MQ

−1/2
T y,Q

−1/2
T y〉,

y ∈ H, are defined by the formulae

〈b,Q−1/2
T y〉 =

∞∑
j=1

λ
−1/2
j 〈b, ej〉〈y, ej〉, (2.7)

and

〈MQ
−1/2
T y,Q

−1/2
T y〉 =

∞∑
j,k=1

λ
−1/2
j λ

−1/2
k 〈Mek, ej〉〈y, ej〉〈y, ek〉,

where (ek), (λk) are the eigenvectors and eigenvalues of QT , the eigenvalues are strictly positive.
The series converge in L2(H,N (0, QT )) so that the formula (2.4) defines a function ktT (x, ·) up

to a set of N (0, QT ) measure 0. In particular, the function y → 〈b,Q−1/2
T y〉 defined in (2.7) has

centered gaussian law with covariance |b|2 on the probability space (H,N (0, QT )) and it follows
that ∫

H
exp{〈b,Q−1/2

T y〉}N (0, QT )(dy) = exp{1

2
|b|2}. (2.8)

Lemma 2 is similar to Proposition 4.2 in [4], where densities with respect to invariant measure
of the process X were considered instead of densities with respect to N (0, QT ). Here we do not
assume that X has an invariant measure. The proof of Lemma 2 is postponed to the appendix.
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2.3 An approximation procedure

Lemma 3 Let M be a metric space, H and K Hilbert spaces and ψ : M × H → K a Borel
measurable function satisfying

|ψ(m,h)| ≤ C(|h|+ g(m)), m ∈M,h ∈ H

for some constant C > 0 and some function g : M → [0,∞). Let ψ(m, ·) : H → K be a
continuous function for every m ∈M .

Then there exists a sequence of Borel measurable functions ψn : M ×H → K satisfying the
following conditions.

(i) There exists a constant C ′ > 0 such that for every n

|ψn(m,h)| ≤ C ′(|h|+ g(m) + 1), m ∈M,h ∈ H.

(ii) For every m ∈M , ψn(m, ·) : H → K is infinitely Fréchet differentiable.
(iii) There exist constants Cn > 0 such that for every n

|ψn(m,h)− ψn(m, k)| ≤ Cn|h− k|, m ∈M ;h, k ∈ H.

(iv) If hn → h in H then ψn(m,hn)→ ψ(m,h) in K, for every m ∈M .

Proof. We use the construction in [20]. Let (ei) denote a basis of H and define the
projection Pn : H → Rn setting Pnh = (〈ei, h〉)ni=1, h ∈ H. Then for y = (yi)

n
i=1 ∈ Rn we

have P ∗ny =
∑n

i=1 yiei. Let ρn : Rn → [0,∞) be infinitely differentiable functions such that∫
Rn ρn(y)dy = 1 with support contained in {y ∈ Rn : |y|Rn ≤ 1/n}. Define

ψn(m,h) =

∫
Rn
ψ(m,P ∗n(Pnh+ y))ρn(y)dy, h ∈ H,m ∈M.

It is easy to show that ψn(m, ·) : H → K is infinitely Fréchet differentiable, that ψn(m,hn) →
ψ(m,h) whenever hn → h in H, and to prove the estimate |ψn(m,h)| ≤ C ′(|h|+ g(m) + 1), for
some constant C ′. Next we take ηn ∈ C∞(R) such that ηn(x) = 1 for x ≤ n, ηn(x) = 0 for
x ≥ n+ 1, |ηn(x)|+ |η′n(x)| ≤ c for some constant c. Then setting

ψn(m,h) = ηn(
√

1 + |h|2 − 1 + g(m))ψn(m,h), h ∈ H,m ∈M,

it is easy to show that the gradient of ψn is bounded by some constant (depending on n) and
that all the conclusions of the Lemma are satisfied.

3 BSDE with linear growth continuous driver

In this section we consider a BSDE of the form:

dYt = −BYt dt− ψ(t,Xt, Yt, Zt) dt+ Zt dWt, YT = φ(XT ), (3.1)

for t varying on a bounded time interval [0, T ]. W is a cylindrical Wiener process in a Hilbert
space Ξ and we denote by (Ft) its Brownian filtration. The unknown processes Y and Z take
values in a Hilbert space K and in the Hilbert space L2(Ξ,K) respectively. X is a given (Ft)-
predictable process in another Hilbert space H. On the drivers B and ψ and the final datum φ
we assume the following.
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Hypothesis 4 (i) The operator B : D(B) ⊂ K → K is the infinitesimal generator of a strongly
continuous dissipative semigroup {etB, t ≥ 0} of linear bounded operators on K.

(ii) φ : H → K and ψ : [0, T ]×H ×K ×L2(Ξ,K)→ K are Borel measurable functions, and
there exist two constants C > 0 and p ≥ 1 such that

|φ(x)| ≤ C(1 + |x|p), x ∈ H,

|ψ(t, x, y, z)| ≤ C(1 + |x|p + |y|+ |z|), t ∈ [0, T ], x ∈ H, y ∈ K, z ∈ L2(Ξ,K).

(iii) For every t ∈ [0, T ] and x ∈ H, the function ψ(t, x, ·, ·) : K ×L2(Ξ,K)→ K is continuous.

Let us suppose that supt∈[0,T ] E|Xt|2p < ∞. We say that an (Ft)-predictable process (Y, Z)
with values in K × L2(Ξ,K) is a mild solution of (3.1) if

sup
t∈[0,T ]

E |Yt|2 + E
∫ T

0
|Zt|2dt <∞ (3.2)

and for every t ∈ [0, T ] the following equality holds:

Yt +

∫ T

t
e(s−t)BZs dWs = e(T−t)Bφ(XT ) +

∫ T

t
e(s−t)Bψ(s,Xs, Ys, Zs) ds, P− a.s. (3.3)

The result of [17] states that there exists a unique mild solution if, in addition to the previous
assumptions, one supposes that the function ψ(t, x, ·, ·) is Lipschitz continuous. In the following
we will drop the Lipschitz condition and prove some existence results. We first need some
preliminary estimates.

Lemma 5 Assume that Hypothesis 4 holds and let X be an (Ft)-predictable process satisfying
supt∈[0,T ] E|Xt|2p <∞. Let (Y, Z) be a mild solution to (3.1). Then

sup
t∈[0,T ]

E |Yt|2 + E
∫ T

0
|Zt|2dt ≤ C sup

t∈[0,T ]
E(1 + |Xt|2p). (3.4)

If ψ′, φ′ are functions satisfying Hypothesis 4 and (Y ′, Z ′) is a corresponding mild solution then

E
∫ T

0
|Zt−Z ′t|2dt ≤ E|φ(XT )−φ′(XT )|2 +C

(
sup
t∈[0,T ]

E(1 + |Xt|2p)

)1/2(
E
∫ T

0
|Yt − Y ′t |2dt

)1/2

.

(3.5)
In (3.4) and (3.5) the constant C depends only on T and on the constants C, p in Hypothesis 4.

Proof. Let us introduce the operators Jk = k(k · 1 − B)−1, k > 0. A direct computation
shows that BJk = k2(k · 1−B)−1 − k · 1, so in particular the operators BJk are bounded (they
are called the Yosida approximations of B). We set Y k

t = JkYt, Z
k
t = JkZt. We now verify that

Y k admits the Itô differential

dY k
t = −BY k

t dt− Jkψ(t,Xt, Yt, Zt) dt+ Zkt dWt. (3.6)

In fact applying Jk to both sides of (3.3) we have

Y k
t +

∫ T

t
e(s−t)BZks dWs = e(T−t)BJkφ(XT ) +

∫ T

t
e(s−t)BJkψ(s,Xs, Ys, Zs) ds. (3.7)
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Applying B to both sides and integrating we obtain, for every r ∈ [0, T ],∫ T

r
BY k

t dt+

∫ T

r

∫ T

t
e(s−t)BBZks dWs dt

=

∫ T

r
e(T−t)BBJkφ(XT ) dt+

∫ T

r

∫ T

t
e(s−t)BBJkψ(s,Xs, Ys, Zs) ds dt.

(3.8)

We have ∫ T

r
e(T−t)BBJkφ(XT ) dt = e(T−r)BJkφ(XT )− Jkφ(XT )

and, applying the stochastic Fubini theorem (see e.g. [6])∫ T

r

∫ T

t
e(s−t)BBZks dWs dt =

∫ T

r

∫ s

r
e(s−t)BBZks dt dWs =

∫ T

r
(e(s−r)BZks − Zks ) dWs.

Substituting in (3.8) and comparing with (3.7) gives∫ T

r
BY k

t dt = Y k
r +

∫ T

r
Zks dWs − Jkφ(XT )−

∫ T

r
Jkψ(s,Xs, Ys, Zs) ds,

which proves (3.6).
Applying the Itô formula to |Y k

t |2 we obtain

|Y k
t |2 +

∫ T

t
|Zks |2ds

= |Jkφ(XT )|2 + 2

∫ T

t
(〈Y k

s , BY
k
s 〉+ 〈Y k

s , Jkψ(s,Xs, Ys, Zs)〉) ds− 2

∫ T

t
〈Y k
s , Z

k
s dWs〉.

We have

E
(∫ T

0
|(Zks )∗Y k

s |2ds
)1/2

≤ E

[
sup
s∈[0,T ]

|Y k
s |
(∫ T

0
|Zks |2ds

)1/2
]
<∞, (3.9)

since it follows from (3.6) and Burkholder’s inequality that E supt∈[0,T ] |Y k
t |2 <∞. (3.9) ensures

that we can take expectation in the previous equality and obtain

E|Y k
t |2 + E

∫ T

t
|Zks |2ds = E|Jkφ(XT )|2 + 2E

∫ T

t
(〈Y k

s , BY
k
s 〉+ 〈Y k

s , Jkψ(s,Xs, Ys, Zs)〉) ds.

Now we use the dissipativity of B and we obtain

E|Y k
t |2 + E

∫ T

t
|Zks |2ds ≤ E|Jkφ(XT )|2 + 2E

∫ T

t
〈Y k
s , Jkψ(s,Xs, Ys, Zs)〉 ds.

It is well known that |Jk|L(K) ≤ 1 and Jkh → h for every h ∈ K. By the growth condition on
ψ, the hypothesis supt∈[0,T ] E|Xt|2p <∞ and by (3.2) we can apply the dominated convergence
theorem and we arrive at

E|Yt|2 + E
∫ T

t
|Zs|2ds ≤ E|φ(XT )|2 + 2E

∫ T

t
〈Ys, ψ(s,Xs, Ys, Zs)〉 ds. (3.10)

Next we have, for every ε > 0 and for some constant Cε,

〈Ys, ψ(s,Xs, Ys, Zs)〉 ≤ C|Ys|(1 + |Xs|p + |Ys|+ |Zs|) ≤ ε|Zs|2 + Cε(1 + |Xs|2p + |Ys|2).
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Choosing ε sufficiently small we obtain, for some C, c > 0,

E|Yt|2 + cE
∫ T

t
|Zs|2ds ≤ E|φ(XT )|2 + 2E

∫ T

t
(1 + |Xs|2p + |Ys|2) ds

≤ C sup
t∈[0,T ]

(1 + E |Xt|2p) + CE
∫ T

t
|Ys|2 ds,

and (3.4) follows from Gronwall’s lemma.
In order to prove (3.5) we write the equation satisfied by (Y − Y ′, Z − Z ′) and, introducing

the operators Jk and proceeding as before, instead of (3.10) we arrive at

E|Yt − Y ′t |2 + E
∫ T

t
|Zs − Z ′s|2ds

≤ E|φ(XT )− φ′(XT )|2 + 2E
∫ T

t
〈Ys − Y ′s , ψ(s,Xs, Ys, Zs)− ψ′(s,Xs, Y

′
s , Z

′
s)〉 ds.

We set fs = ψ(s,Xs, Ys, Zs)− ψ′(s,Xs, Y
′
s , Z

′
s) and note that

|fs| ≤ C(1 + |Xs|p + |Ys|+ |Zs|+ |Y ′s |+ |Z ′s|).

From estimate (3.4) we deduce

E
∫ T

0
|fs|2ds ≤ C sup

t∈[0,T ]
E (1 + |Xt|2p)

and we obtain

E|Yt − Y ′t |2 + E
∫ T

t
|Zs − Z ′s|2ds

≤ E|φ(XT )− φ′(XT )|2 + 2

(
E
∫ T

t
|Ys − Y ′s |2 ds

)1/2(
E
∫ T

t
|fs|2 ds

)1/2

≤ E|φ(XT )− φ′(XT )|2 + C

(
sup
t∈[0,T ]

E (1 + |Xt|2p)

)1/2(
E
∫ T

t
|Ys − Y ′s |2 ds

)1/2

.

(3.5) follows immediately.

We are now able to state and prove the main result of this section, where for the process X
we take the Ornstein-Uhlenbeck process introduced in section 2.2: Given x0 ∈ H we define

Xt = etAx0 +

∫ t

0
e(t−s)AG dWs. (3.11)

Theorem 6 Assume that Hypotheses 1 and 4 hold and suppose that the operators etB are com-
pact for t > 0. Let X be the Ornstein-Uhlenbeck process defined by (3.11).

Then there exists a mild solution (Y,Z) to equation (3.1).
Moreover there exist Borel measurable functions u : [0, T ]×H → K, v : [0, T ]×H → L2(Ξ,K)

such that, P-a.s.,

Yt = u(t,Xt), for all t ∈ [0, T ]; Zt = v(t,Xt), for almost all t ∈ [0, T ].
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Proof - First Step. Approximation. We apply Lemma 3 to the metric space [0, T ] × H
and the Hilbert space K × L2(Ξ,K) and obtain a sequence of functions ψn : [0, T ] ×H ×K ×
L2(Ξ,K)→ K such that, for any n ≥ 1,

|ψn(t, x, y, z)| ≤ C(1 + |x|p + |y|+ |z|), (3.12)

and for fixed n, ψn is Lipschitz with respect to (y, z) uniformly with respect to (t, x).
Let (Y n,t,x, Zn,t,x) be the unique mild solution of

dY n,t,x
s = −BY n,t,x

s ds− ψn(s,Xt,x
s , Y n,t,x

s , Zn,t,xs ) ds+ Zn,t,xs dWs, Y n,t,x
T = φ(Xt,x

T ), (3.13)

where Xt,x
s is the Ornstein-Uhlenbeck process starting from x at time t:

Xt,x
s = e(s−t)Ax+

∫ s

t
e(s−r)AG dWr, 0 ≤ t ≤ s ≤ T,

(we define Xt,x
s = x for s < t). It is easy to prove that sups∈[0,T ] E|X

t,x
s |2p ≤ C(1 + |x|2p) and

(3.4) implies

sup
s∈[t,T ]

E|Y n,t,x
s |2 + E

∫ T

0
|Zn,t,xs |2ds ≤ C(1 + |x|2p). (3.14)

Moreover there exist Borel measurable functions un : [0, T ] × H → K and vn : [0, T ] × H →
L2(Ξ,K), such that

Y n,t,x
s = un(s,Xt,x

s ), Zn,t,xs = vn(s,Xt,x
s ). (3.15)

The proof of (3.15) can be found in [8] (see also [9], Proposition 3.2, for a direct proof in the
infinite dimensional case).

Second Step. In this step we prove that there exists a subsequence of un(t, x) which is
convergent in K for every t, x. This is obvious for t = T , since un(T, x) = φ(x), so we can
assume t < T .

We denote by µt(x, dy) the gaussian measure N (etAx,Qt)(dy) and by µT (dy) the measure
N (0, QT )(dy), and we note that the law of Xt,x

s is µs−t(x, dy), 0 ≤ t ≤ s ≤ T . Noting that
un(t, x) = Y n,t,x

t , taking expectation in the BSDE we have

un(t, x) = E e(T−t)Bφ(Xt,x
T ) + E

∫ T

t
e(s−t)Bψn(s,Xt,x

s , Y n,t,x
s , Zn,t,xs ) ds

= E e(T−t)Bφ(Xt,x
T ) + E

∫ T

t
e(s−t)Bψn(s,Xt,x

s , un(s,Xt,x
s ), vn(s,Xt,x

s )) ds

= E e(T−t)Bφ(Xt,x
T ) +

∫ T

t
e(s−t)B

∫
H

Ψn(s, y) µs−t(x, dy) ds,

(3.16)

where Ψn(s, y) = ψn(s, y, un(s, y), vn(s, y)). For t < T and δ > 0 so small that t + δ ≤ T we
decompose un(t, x) as follows:

un(t, x) = q(t, x) + anδ (t, x) + bnδ (t, x), (3.17)

where q(t, x) = E e(T−t)Bφ(Xt,x
T ),

anδ (t, x) =

∫ t+δ

t
e(s−t)B

∫
H

Ψn(s, y) µs−t(x, dy) ds,

bnδ (t, x) =

∫ T

t+δ
e(s−t)B

∫
H

Ψn(s, y) µs−t(x, dy) ds.

9



We note that the inequality∣∣∣∣∫
H

Ψn(s, y) µs−t(x, dy)

∣∣∣∣ =
∣∣Eψn(s,Xt,x

s , Y n,t,x
s , Zn,t,xs )

∣∣
≤ C E (1 + |Xt,x

s |p + |Y n,t,x
s |+ |Zn,t,xs |)

(3.18)

implies

|anδ (t, x)| ≤ C E
∫ t+δ

t
(1 + |Xt,x

s |p + |Y n,t,x
s |+ |Zn,t,xs |) ds

≤ C δ1/2

(
E
∫ t+δ

t
(1 + |Xt,x

s |2p + |Y n,t,x
s |2 + |Zn,t,xs |2) ds

)1/2

≤ Cx δ
1/2,

(3.19)

by (3.14). Next we consider bnδ (t, x) that we rewrite

bnδ (t, x) =

∫ T

t+δ
e(s−t)B

∫
H

Ψn(s, y)ds,t(x, y) µs(0, dy) ds,

where we have denoted ds,t(x, y) the density of µs−t(x, ·) with respect to µs(0, ·). Let us consider
the Hilbert space of Borel measurable functions [0, T ]×H → K, square summable with respect
to the measure µs(0, dy)ds, equipped with the usual inner product. It will be denoted L2([0, T ]×
H;µs(0, dy)ds;K). Let us check that (Ψn) is a bounded set in this space: Indeed we have∫ T

0

∫
H
|Ψn(s, y)|2 µs(0, dy) ds = E

∫ T

0
|ψn(s,X0,0

s , Y n,0,0
s , Zn,0,0s )|2ds

≤ C E
∫ T

0
(1 + |X0,0

s |2p + |Y n,0,0
s |2 + |Zn,0,0s |2) ds

≤ C,

by (3.14). The sequence (Ψn) is therefore weakly compact and there exists a subsequence (still
denoted (Ψn)) which is weakly convergent in L2([0, T ]×H;µs(0, dy)ds;K).

For fixed k ∈ K define

ϕ(s, y) = 1[t+δ,T ](s)d
s,t(x, y) e(s−t)B∗k

and assume for a moment that ϕ (which of course depends also on t, x, δ, k) belongs to L2([0, T ]×
H;µs(0, dy)ds;K). The function ϕ is chosen so that

〈bnδ (t, x), k〉 =

∫ T

t+δ

∫
H
〈e(s−t)BΨn(s, y), k〉ds,t(x, y) µs(0, dy) ds = 〈Ψn, ϕ〉L2([0,T ]×H;µs(0,dy)ds;K).

It follows that for integers n,m ≥ 1,

〈un(t, x)− um(t, x), k〉 = 〈anδ (t, x)− amδ (t, x), k〉+ 〈bnδ (t, x)− bmδ (t, x), k〉
= 〈anδ (t, x)− amδ (t, x), k〉+ 〈Ψn −Ψm, ϕ〉L2([0,T ]×H;µs(0,dy)ds;K).

From (3.19) it follows that

|〈un(t, x)− um(t, x), k〉| ≤ C δ1/2|k|+ |〈Ψn −Ψm, ϕ〉L2([0,T ]×H;µs(0,dy)ds;K)|,

and since (Ψn) is weakly convergent we conclude that (〈un(t, x), k〉)n is a Cauchy sequence for
every k ∈ K, so that, for all t, x, (un(t, x))n is a weakly convergent sequence in K.
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It remains to check that ϕ ∈ L2([0, T ] × H;µs(0, dy)ds;K). From Lemma 2, the density
ds,t(x, y) has the form

ds,t(x, y) = det(1−Θs,t)−
1
2 exp { − 1

2
〈(1−Θs,t)−1Q

− 1
2

s e(s−t)Ax,Q
− 1

2
s e(s−t)Ax〉

+〈(1−Θs,t)−1Q
− 1

2
s e(s−t)Ax,Q

− 1
2

s y〉 − 1

2
〈Θs,t(1−Θs,t)−1Q

− 1
2

s y,Q
− 1

2
s y〉},

where Θs,t = Q
−1/2
s e(s−t)AQt(Q

−1/2
s e(s−t)A)∗. So setting hs,t,x = (1 − Θs,t)−1Q

− 1
2

s e(s−t)Ax, we

obtain 0 ≤ ds,t(x, y) ≤ det(1−Θs,t)−1/2 exp(〈hs,t,x, Q
− 1

2
s y〉) and recalling formula (2.8) we find∫ T

0

∫
H
|ϕ(s, y)|2µs(0, dy)ds ≤ C

∫ T

t+δ

∫
H
|ds,t(x, y)|2µs(0, dy)ds

≤ C
∫ T

t+δ
det(1−Θs,t)−1 exp(2|hs,t,x|2)ds.

(3.20)

By (2.6) we have

det(1−Θs,t)−1 ≤ exp

[
(1 + |Qt||Q

− 1
2

s−te
(s−t)A|2) |Q−

1
2

s−te
(s−t)A|2 TraceQt

]
and, taking into account (2.5),

|hs,t,x| ≤ |(1−Θs,t)−1||Q−
1
2

s Q
1
2
s−t||Q

− 1
2

s−te
(s−t)A||x|

≤ (1 + |Qt||Q
− 1

2
s−te

(s−t)A|2)|Q−
1
2

s Q
1
2
s−t||Q

− 1
2

s−te
(s−t)A||x|.

Since Qs ≥ Qs−t it follows that |Q−
1
2

s Q
1
2
s−t| ≤ 1. Using the inequality (7.6) and noting that

s− t ≥ δ we obtain |Q−
1
2

s−te
(s−t)A| ≤ |Q−

1
2

δ eδA|. It follows that

det(1−Θs,t)−1 ≤ exp

[
(1 + |Qt||Q

− 1
2

δ eδA|2) |Q−
1
2

δ eδA|2 TraceQt
]
,

|hs,t,x| ≤ (1 + |Qt||Q
− 1

2
δ eδA|2)|Q−

1
2

δ eδA||x|.

This shows that the right-hand side of (3.20) is finite and therefore ϕ belongs to L2([0, T ] ×
H;µs(0, dy)ds;K).

So far in Step 2 we have proved that for all t, x, the sequence (un(t, x))n is weakly convergent
in K. We will now prove that the convergence takes place in the norm of K. To this purpose
it is enough to show that, for fixed t, x, the sequence (un(t, x))n is relatively compact in K or,
equivalently, that it is totally bounded.

Let us fix (t, x) and let ε > 0 be arbitrary. Let us consider again the decomposition (3.17).
By (3.19) we can choose δ such that |anδ (t, x)| < ε/2 for every n. Next note that

bnδ (t, x) = eδB
∫ T

t+δ
e(s−t−δ)B

∫
H

Ψn(s, y) µs−t(x, dy) ds,

and from (3.18) it follows that∣∣∣∣∫ T

t+δ
e(s−t−δ)B

∫
H

Ψn(s, y) µs−t(x, dy)ds

∣∣∣∣ ≤ C E
∫ T

0
(1+|Xt,x

s |p+|Y n,t,x
s |+|Zn,t,xs |)ds ≤ C(t, x, δ)
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by (3.14). Since eδB is compact by our assumptions, the sequence (bnδ (t, x))n is relatively com-
pact, hence totally bounded. So there exists a finite set A ⊂ K such that for any n there
exists a ∈ A satisfying |bnδ (t, x) − a| < ε/2. So for every n there exists a ∈ A such that
|un(t, x)− q(t, x)− a| < ε. This proves that (un(t, x))n is totally bounded. We have now proved
that (un(t, x))n is a convergent sequence in K for every (t, x).

Third Step. Convergence of Y n and Zn.
Let us consider again the the Ornstein-Uhlenbeck process Xs = X0,x0

s defined in (3.11) and
let us denote Y n

s = Y n,0,x0
s , Zns = Zn,0,x0s . Denoting by u(t, x) the limit of un(t, x) then obviously

Y n
s = un(s,Xs) converges to u(s,Xs), which we denote by Ys. Setting s = t in (3.14) we have
|un(t, x)| = E|Y n,t,x

t | ≤ C(1 + |x|p) and consequently

|Y n
s |2 = |un(s,Xs)|2 ≤ C(1 + |Xs|2p);

since E
∫ T

0 |Xt|2pdt < ∞ we conclude that Y n converges to Y in L2(Ω × [0, T ];K). ¿From
inequality (3.5) of Lemma 5 it follows that

E
∫ T

0
|Znt − Zmt |2dt ≤ C

(
sup
t∈[0,T ]

E (1 + |Xt|2p)

)1/2(
E
∫ T

0
|Y n
t − Y m

t |2dt
)1/2

≤ Cx0
(
E
∫ T

0
|Y n
t − Y m

t |2dt
)1/2

(3.21)

from which we conclude that (Zn) is a Cauchy sequence in L2(Ω×[0, T ];L2(Ξ,K)). Let us denote
by Z its limit. Passing to a subsequence, we can assume that |Znt − Zt| → 0, P-a.s. for almost
every t. Let us define a function v : [0, T ]×H → L2(Ξ,K) by setting v(t, x) = limn→∞ v

n(t, x)
for all (t, x) for which the limit exists, v(t, x) = 0 elsewhere. Then v is Borel measurable and
we have Zt = v(t,Xt), P-a.s. for almost every t.

Fourth Step. Existence of solution. For every t ∈ [0, T ], (Y n, Zn) satisfies P-a.s.:

Y n
t +

∫ T

t
e(t−s)BZns dWs = e(T−t)Bφ(XT ) +

∫ T

t
e(t−s)Bψn(s,Xs, Y

n
s , Z

n
s ) ds.

To prove that (Y, Z) is a solution to (3.3) it remains to check that

E
∫ T

0
|ψn(s,Xs, Y

n
s , Z

n
s )− ψ(s,Xs, Ys, Zs)| ds→ 0.

From (iv) of Lemma 3 we obtain ψn(s, x, yn, zn) → ψ(s, x, y, z) in K, whenever yn → y in K
and zn → z in L2(Ξ,K), for every s ∈ [0, T ], x ∈ H. Taking into account (3.12) and (3.14) we
have

E
∫ T

0
|ψn(s,Xs, Y

n
s , Z

n
s )|2 ds ≤ CE

∫ T

0
(1 + |Xs|2p + |Y n

s |2 + |Zns |2) ds ≤ C

which shows that (ψn(s,Xs, Y
n
s , Z

n
s )) is uniformly integrable on Ω × [0, T ] and the required

convergence follows immediately.

4 BSDE with bounded continuous generator

In this section and in the following one we adopt a more general approach and we consider a
process X with values in a metric space. We will assume that X is a Markov process with respect
to a Brownian filtration. More precisely, in the sequel we will make the following assumptions.
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(1) (Ω,F ,P) is a complete probability space and {Wt, t ∈ [0, T ]} is a cylindrical Wiener process
in a Hilbert space Ξ. For an arbitrary interval [s, t] ⊂ [0, T ] we denote by F[s,t] the σ-

algebra generated by the random variables {W ξ
r −W ξ

s , r ∈ [s, t], ξ ∈ Ξ} and by the P-null
sets of F .

(2) X = {Xt,x
s (ω), ω ∈ Ω, 0 ≤ t ≤ s ≤ T, x ∈ M} is a stochastic process with values in a

complete separable metric space M , measurable with respect to F × B(∆) × B(M) and
B(M) respectively (here by ∆ we denote the set {(t, s), 0 ≤ t ≤ s ≤ T} and by B(Λ) the
Borel σ-algebra of any topological space Λ).

(3) For every t ∈ [0, T ] and x ∈ M , the process {Xt,x
s , s ∈ [t, T ]} has continuous paths and is

adapted to the filtration {F[t,s], s ∈ [t, T ]}.

(4) For 0 ≤ t ≤ s ≤ T and x ∈M we have, P-a.s.,

Xt,x
t = x, Xs,Xt,x

s
r = Xt,x

r , τ ∈ [s, T ]. (4.1)

Let us denote by

µt,xs (A) = P(Xt,x
s ∈ A), 0 ≤ t ≤ s ≤ T, x ∈M, A ∈ B(M),

the transition probabilities. Standard arguments show that X is a Markov process, in the sense
that for every bounded Borel function φ on M and for 0 ≤ t ≤ s ≤ r ≤ T and x ∈M , we have

EFsφ(Xt,x
r ) =

∫
M
φ(y) µs,X

t,x
s

r (dy), P− a.s.

We need the following lemma, that has been proved in [9], Proposition 3.2, in the special
case when M is a Hilbert space. Exactly the same arguments carry over to the general case.

Lemma 7 Assume the properties (1)− (4) above. Suppose that

(i) z = {z(ω, s, t, x), ω ∈ Ω, 0 ≤ t ≤ s ≤ T, x ∈ M} is a stochastic process with values in a
Hilbert space V , measurable with respect to F × B(∆)× B(M) and B(V ) respectively.

(ii) For every t ∈ [0, T ] and x ∈M , the process {z(s, t, x), s ∈ [t, T ]} is predictable with respect
to the filtration {F[t,s], s ∈ [t, T ]}.

(iii) For 0 ≤ t ≤ s ≤ T and x ∈M we have, P-a.s.,

z(r, s,Xt,x
s ) = z(r, t, x), for almost all r ∈ [s, T ]. (4.2)

Then there exists a Borel measurable function v : [0, T ] ×M → V such that, for t ∈ [0, T ] and
x ∈ H, we have P-a.s.

z(s, t, x) = v(s,Xt,x
s ), for almost all s ∈ [t, T ]. (4.3)

We fix arbitrary x ∈M and consider the following BSDE:

dYt = −BYt dt− ψ(t,X0,x
t , Yt, Zt) dt+ Zt dWt, YT = φ(X0,x

T ), (4.4)

under the following assumptions.

13



Hypothesis 8 (i) The process X satisfies the properties (1)-(4) above.
(ii) The operator B : D(B) ⊂ K → K is the infinitesimal generator of a strongly continuous

dissipative semigroup {etB, t ≥ 0} of bounded linear operators in K.
(iii) φ : M → K and ψ : [0, T ]×M ×K × L2(Ξ,K)→ K are Borel measurable functions,

E |φ(Xt,x
T )|2 <∞, t ∈ [0, T ], x ∈M,

and there exists a constant C > 0 such that

|ψ(t, x, y, z)| ≤ C, t ∈ [0, T ], x ∈M,y ∈ K, z ∈ L2(Ξ,K).

(iv) For every t ∈ [0, T ] and x ∈M the function ψ(t, x, ·, ·) : K×L2(Ξ,K)→ K is continuous.

We say that an (Ft)-predictable process (Y,Z) with values in K×L2(Ξ,K) is a mild solution
of (4.4) if

sup
t∈[0,T ]

E |Yt|2 + E
∫ T

0
|Zt|2dt <∞ (4.5)

and for every t ∈ [0, T ] the following equality holds:

Yt +

∫ T

t
e(t−s)BZs dWs = e(T−t)Bφ(X0,x

T ) +

∫ T

t
e(t−s)Bψ(s,X0,x

s , Ys, Zs) ds, P− a.s. (4.6)

Lemma 9 Assume that Hypothesis 8 holds and let (Y,Z) be a mild solution to (4.4). Then

sup
t∈[0,T ]

E |Yt|2 + E
∫ T

0
|Zt|2dt ≤ C (1 + E|φ(X0,x

T )|2). (4.7)

If ψ′, φ′ are functions satisfying Hypothesis 8 and (Y ′, Z ′) is a corresponding mild solution then

E
∫ T

0
|Zt − Z ′t|2dt ≤ E|φ(X0,x

T )− φ′(X0,x
T )|2 + C E

∫ T

0
|Yt − Y ′t | dt. (4.8)

In (4.7) and (4.8) the constant C depends only on T and on the constant C in Hypothesis 8.

Proof. Proceeding as in the proof of Lemma 5 we obtain (compare (3.10))

E|Yt|2 + E
∫ T

t
|Zs|2ds ≤ E|φ(X0,x

T )|2 + 2E
∫ T

t
〈Ys, ψ(s,X0,x

s , Ys, Zs)〉 ds. (4.9)

Since ψ is bounded we have

E|Yt|2 + E
∫ T

t
|Zs|2ds ≤ E|φ(X0,x

T )|2 + CE
∫ T

t
|Ys| ds

≤ E|φ(X0,x
T )|2 + CE

∫ T

t
(1 + |Ys|2) ds,

and (4.7) follows from Gronwall’s lemma.
In order to prove (4.8) we write the equation satisfied by (Y − Y ′, Z − Z ′) and proceeding

as before we arrive at

E|Yt − Y ′t |2 + E
∫ T

t
|Zs − Z ′s|2ds

≤ E|φ(X0,x
T )− φ′(X0,x

T )|2 + 2E
∫ T

t
〈Ys − Y ′s , ψ(s,X0,x

s , Ys, Zs)− ψ′(s,X0,x
s , Y ′s , Z

′
s)〉 ds.
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By the boundedness assumptions on ψ,ψ′ we obtain

E|Yt − Y ′t |2 + E
∫ T

t
|Zs − Z ′s|2ds ≤ E|φ(X0,x

T )− φ′(X0,x
T )|2 + CE

∫ T

t
|Ys − Y ′s | ds.

(4.8) follows immediately.

Theorem 10 Assume that Hypothesis 8 holds, that the operators etB are compact for t > 0,
and that the transition probabilities of the process X:

µt,xs , 0 ≤ t < s ≤ T, x ∈M

are all equivalent measures on M .
Then there exists a mild solution to equation (4.4).
Moreover there exist Borel measurable functions u : [0, T ] × M → K, v : [0, T ] × M →

L2(Ξ,K) such that, P-a.s.,

Yt = u(t,Xt), for all t ∈ [0, T ]; Zt = v(t,Xt), for almost all t ∈ [0, T ].

Proof - First Step. Approximation. We apply Lemma 3 to the metric space [0, T ] ×M
and the Hilbert space K × L2(Ξ,K) and obtain a sequence of functions ψn : [0, T ]×M ×K ×
L2(Ξ,K)→ K such that, for any n ≥ 1,

|ψn(t, x, y, z)| ≤ C, (4.10)

and for fixed n, ψn is Lipschitz with respect to (y, z) uniformly with respect to (t, x).
Let (Y n,t,x, Zn,t,x) be the unique mild solution of

dY n,t,x
s = −BY n,t,x

s ds− ψn(s,Xt,x
s , Y n,t,x

s , Zn,t,xs ) ds+ Zn,t,xs dWs, Y n,t,x
T = φ(Xt,x

T ), (4.11)

where we use the convention Xt,x
s = x for s < t. By (4.7)

sup
s∈[t,T ]

E|Y n,t,x
s |2 + E

∫ T

0
|Zn,t,xs |2ds ≤ C (1 + E|φ(Xt,x

T )|2) <∞. (4.12)

Moreover, from the uniqueness of the solution to (4.11) it is easy to deduce the following iden-
tities: for 0 ≤ t ≤ s ≤ T and x ∈M , we have, P-a.s.,

Y n,s,Xt,x
s

r = Y n,t,x
r , for all r ∈ [s, T ],

Zn,s,X
t,x
s

r = Zn,t,xr , for almost all r ∈ [s, T ].

Setting un(t, x) = Y n,t,x
t it follows immediately that for every t, x, P-a.s.,

Y n,t,x
s = un(s,Xt,x

s ), s ∈ [t, T ].

Applying Lemma 7 to the process z(s, t, x) = Zn,t,xs we conclude that there exist Borel measur-
able functions vn : [0, T ]×M → L2(Ξ,K), such that for every t, x, P-a.s.,

Zn,t,xs = vn(s,Xt,x
s ), for almost all s ∈ [t, T ].

Second Step. In this step we prove that there exists a subsequence of un(t, x) which is
convergent in K for every t, x. This is obvious for t = T , since un(T, x) = φ(x), so we can
assume t < T .
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Noting that un(t, x) = Y n,t,x
t , taking expectation in the BSDE we have

un(t, x) = E e(T−t)Bφ(Xt,x
T ) + E

∫ T

t
e(s−t)Bψn(s,Xt,x

s , Y n,t,x
s , Zn,t,xs ) ds

= E e(T−t)Bφ(Xt,x
T ) + E

∫ T

t
e(s−t)Bψn(s,Xt,x

s , un(s,Xt,x
s ), vn(s,Xt,x

s )) ds

= E e(T−t)Bφ(Xt,x
T ) +

∫ T

t
e(s−t)B

∫
M

Ψn(s, y) µt,xs (dy) ds,

(4.13)

where Ψn(s, y) = ψn(s, y, un(s, y), vn(s, y)). We fix an arbitrary x0 ∈M and note that, from our
assumptions, µt,xs is absolutely continuous with respect to µ0,x0

s for s > t and x ∈ M . Let us
denote by ds,t(x, y) the corresponding density. Then

un(t, x) = E e(T−t)Bφ(Xt,x
T ) +

∫ T

t

∫
M
e(s−t)BΨn(s, y)ds,t(x, y) µ0,x0

s (dy) ds.

Since (Ψn) is uniformly bounded, this family is a bounded set in L∞([0, T ]×M ;µ0,x0
s (dy) ds;K),

whence relatively compact in the weak∗ topology. Since, in addition, the space L1([0, T ] ×
M ;µ0,x0

s (dy) ds;K) is separable, there exists a sequence (still denoted Ψn) and a function Ψ0 ∈
L∞([0, T ]×M ;µ0,x0

s (dy) ds;K) such that for any ϕ ∈ L1([0, T ]×M ;µ0,x0
s (dy) ds;K) we have

lim
n→∞

∫ T

0

∫
M
〈Ψn(s, y)−Ψ0(s, y), ϕ(s, y)〉K µ0,x0

s (dy) ds = 0.

For any fixed (t, x) and for every k ∈ K,∫ T

0

∫
M

1s∈[t,T ]d
s,t(x, y) |e(s−t)B∗k| µ0,x0

s (dy) ds =

∫ T

t

∫
M
|e(s−t)B∗k| µt,xs (dy) ds

≤ C
∫ T

t

∫
M
µt,xs (dy) ds = C · (T − t),

which shows that ϕ(s, y) = 1s∈[t,T ]d
s,t(x, y)e(s−t)B∗k belongs to L1([0, T ]×M ;µ0,x0

s (dy) ds;K).
We conclude that

lim
n→∞

〈un(t, x), k〉 = E 〈e(s−t)Bφ(Xt,x
T ), k〉+ lim

n→∞

∫ T

0

∫
M
〈Ψn(s, y), ϕ(s, y)〉K µ0,x0

s (dy) ds

= E 〈e(s−t)Bφ(Xt,x
T ), k〉+

∫ T

t

∫
M
〈Ψ0(s, y), e(s−t)B∗k〉ds,t(x, y) µ0,x0

s (dy) ds.

and so that (un(t, x))n is weakly convergent in K for every t, x.
To prove that (un(t, x))n is convergent in the norm of K we will show that, for every (t, x),

the sequence (un(t, x))n is totally bounded.
For t < T and δ > 0 so small that t + δ ≤ T we decompose un(t, x) as follows (compare

(4.13)):
un(t, x) = q(t, x) + anδ (t, x) + bnδ (t, x), (4.14)

where q(t, x) = E e(T−t)Bφ(Xt,x
T ),

anδ (t, x) =

∫ t+δ

t
e(s−t)B

∫
M

Ψn(s, y) µt,xs (dy) ds, bnδ (t, x) =

∫ T

t+δ
e(s−t)B

∫
M

Ψn(s, y) µt,xs (dy) ds.

16



Let us fix (t, x) and let ε > 0 be arbitrary. Since (Ψn) is uniformly bounded, we have∣∣∣∫M Ψn(s, y) µt,xs (dy) ds
∣∣∣ ≤ C, so it follows that |anδ (t, x)| ≤ C δ, and we can choose δ such that

|anδ (t, x)| < ε/2 for every n. Next note that

bnδ (t, x) = eδB
∫ T

t+δ
e(s−t−δ)B

∫
M

Ψn(s, y) µt,xs (dy) ds,

and ∣∣∣∣∫ T

t+δ
e(s−t−δ)B

∫
M

Ψn(s, y) µt,xs (dy) ds

∣∣∣∣ ≤ C.
Since eδB is compact by our assumptions, the sequence (bnδ (t, x))n is relatively compact, hence
totally bounded. So there exists a finite set A ⊂ K such that for any n there exists a ∈ A
satisfying |bnδ (t, x)−a| < ε/2. So for every n there exists a ∈ A such that |un(t, x)−q(t, x)−a| < ε.
This shows that (un(t, x))n is totally bounded and the claim is proved.

Third Step. Convergence of Y n and Zn.
Let us denote Y n

s = Y n,0,x0
s , Zns = Zn,0,x0s . Denoting by u0(t, x) the limit of un(t, x) then

obviously Y n
s = un(s,Xs) converges to u(s,Xs), which we denote by Ys. ¿From (4.12) it follows

that

sup
n

E
∫ T

0
|Y n
s |2ds <∞

and we deduce that Y n converges to Y in L1(Ω × [0, T ];K). ¿From inequality (4.8) of Lemma
9 it follows that

E
∫ T

0
|Znt − Zmt |2dt ≤ CE

∫ T

0
|Y n
t − Y m

t | dt,

from which we conclude that (Zn) is a Cauchy sequence in L2(Ω×[0, T ];L2(Ξ,K)). Let us denote
by Z its limit. Passing to a subsequence, we can assume that |Znt − Zt| → 0, P-a.s. for almost
every t. Let us define a function v : [0, T ]×H → L2(Ξ,K) setting v(t, x) = limn→∞ v

n(t, x) for
all (t, x) for which the limit exists, v(t, x) = 0 elsewhere. Then v is Borel measurable and we
have Zt = v(t,Xt), P-a.s. for almost every t.

Fourth Step. Existence of solution. For every t ∈ [0, T ], (Y n, Zn) satisfies P-a.s.:

Y n
t +

∫ T

t
e(t−s)BZns dWs = e(T−t)Bφ(X0,x0

T ) +

∫ T

t
e(t−s)Bψn(s,X0,x0

s , Y n
s , Z

n
s ) ds.

To prove that (Y, Z) is a solution to (3.3) it remains to check that

E
∫ T

0
|ψn(s,X0,x0

s , Y n
s , Z

n
s )− ψ(s,X0,x0

s , Ys, Zs)| ds→ 0.

From (iv) of Lemma 3 we obtain ψn(s, x, yn, zn) → ψ(s, x, y, z) in K, whenever yn → y in K
and zn → z in L2(Ξ,K), for every s ∈ [0, T ], x ∈ H. Taking into account (4.10) the required
convergence follows from the dominated convergence theorem.

4.1 Example

Let W be a cylindrical Wiener process in a Hilbert space Ξ with Brownian filtration (Ft).
Consider the following equation on the time interval [0, T ] for an unknown process X with
values in a Hilbert space H:

dXt = AXt dt+ F (t,Xt) dt+G dWt, X0 = x,
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where x ∈ H, the operators A and G satisfy Hypothesis 1, F : [0, T ] × H → H is a Borel
measurable mapping such that, for some constant C ≥ 0,

|F (t, x)− F (t, x′)| ≤ C |x− x′|, |F (t, x)| ≤ C (1 + |x|), t ∈ [0, T ], x, x′ ∈ H,

and there exists α > 0 such that

Trace

∫ T

0
s−α esAGG∗esA

∗
ds <∞

(this is a stronger assumption than Hypothesis 1-(iii)).
It is well known (see e.g. [6]) that under these conditions there exists a unique mild solution,

i.e. an (Ft)-adapted process X, with continuous paths in H, such that, P-a.s.,

Xt = etAx+

∫ t

0
e(t−s)AF (s,Xs) ds+

∫ t

0
e(t−s)AG dWs, t ≥ 0.

X is unique up to indistinguishability. Let us denote by µ0,x
t the law of Xt.

We assume further that the image of F is contained in the image of G and there exists C ≥ 0
such that

|G−1F (t, x)| ≤ C, t ∈ [0, T ], x ∈ H,

where G−1 denotes the pseudo-inverse of G. We consider the Ornstein-Uhlenbeck process X ′

solution of
dX ′t = AX ′t dt+G dWt, X ′0 = x.

By the Girsanov theorem, setting

ρ = exp

(∫ T

0
〈G−1F (s,X ′s), dWs〉 −

1

2

∫ T

0
|G−1F (s,X ′s)|2 ds

)
,

we have E ρ = 1 and the process W ′t = Wt−
∫ t

0 G
−1F (s,X ′s) ds, t ∈ [0, T ], is a cylindrical Wiener

process with respect to the probability P′ admitting density ρ with respect to P. Then we have

dX ′t = AX ′t dt+ F (t,X ′t) dt+G dW ′t , X0 = x,

and it follows that the law of X ′ under P′ is the same as the law of X under P. Since P and P′
are equivalent measures, it follows in particular that the µ0,x

t is equivalent to N (etAx,Qt), and
therefore that {µ0,x

t , t ∈ (0, T ], x ∈ H} is a family of equivalent measures. In the same way one
proves that the process Xt,x

s , solution in the mild sense to the equation

dXt,x
s = AXt,x

s ds+ F (s,Xt,x
s ) dt+G dWs, Xt = x,

on the interval [t, T ] ⊂ [0, T ], satisfies all the requirements of Theorem 10. So if B, ψ, φ satisfy
the assumptions in Hypothesis 8 and the operators etB are compact for t > 0, then there exists
a mild solution to equation (4.4).

5 BSDE with bounded continuous generator: second case

In this section we still consider a Markov process X = {Xt,x
s , 0 ≤ t ≤ s ≤ T, x ∈ M}, with

values in a complete separable metric space M , satisfying the properties (1)− (4) of section 4.
We denote by µt,xs the transition probabilities of X. We suppose that Hypothesis 8 holds and,
in addition, that the function φ is bounded. In particular the conclusions of Lemma 9 still hold.
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We fix arbitrary x ∈M and we consider the same BSDE as in formula (4.4)

dYt = −BYt dt− ψ(t,X0,x
t , Yt, Zt) dt+ Zt dWt, YT = φ(X0,x

T ). (5.1)

As before an (Ft)-predictable process (Y,Z) with values in K×L2(Ξ,K) is called a mild solution
of (5.1) if it satisfies (4.5) and (4.6).

In this section we replace the requirement of mutual absolute continuity of the transition
probabilities of X with a continuity assumption of the map x→ µt,xs with respect to the variation
norm.

More precisely we assume that for every sequence xn converging to x in M and for 0 ≤ t <
s ≤ T we have

V ar (µt,xs − µt,xns )→ 0, (5.2)

for n→∞, where V ar denotes the total variation.

Theorem 11 Assume that Hypothesis 8 holds, that the operators etB are compact for t > 0,
that the transition probabilities of the process X satisfy (5.2), and that |φ(x)| ≤ C for some
constant C > 0 and every x ∈M .

Then there exists a mild solution to equation (5.1).
Moreover there exist Borel measurable functions u : [0, T ] × M → K, v : [0, T ] × M →

L2(Ξ,K) such that, P-a.s.,

Yt = u(t,Xt), for all t ∈ [0, T ]; Zt = v(t,Xt), for almost all t ∈ [0, T ].

Proof - First Step. Approximation. Applying Lemma 3 we construct a sequence of
functions ψn : [0, T ]×M ×K × L2(Ξ,K)→ K such that, for any n ≥ 1,

|ψn(t, x, y, z)| ≤ C (5.3)

and for fixed n, ψn is Lipschitz with respect to (y, z) uniformly with respect to (t, x). Let
(Y n,t,x, Zn,t,x) be the unique mild solution of

dY n,t,x
s = −BY n,t,x

s ds− ψn(s,Xt,x
s , Y n,t,x

s , Zn,t,xs ) ds+ Zn,t,xs dWs, Y n,t,x
T = φ(Xt,x

T ), (5.4)

where we define Xt,x
s = x for s < t. By (4.7) and the boundedness of φ,

sup
s∈[t,T ]

E|Y n,t,x
s |2 + E

∫ T

0
|Zn,t,xs |2ds ≤ C (1 + E|φ(Xt,x

T )|2) ≤ C. (5.5)

Arguing as in the proof of Theorem 10 we deduce that there exist Borel measurable functions
un : [0, T ]×M → K, vn : [0, T ]×M → L2(Ξ,K), such that for every t, x, P-a.s.,

Y n,t,x
s = un(s,Xt,x

s ), s ∈ [t, T ],

Zn,t,xs = vn(s,Xt,x
s ), for almost all s ∈ [t, T ].

Second Step. In this step we prove that there exists a subsequence of un(t, x) which is
convergent in K for every t, x.

We first claim that for fixed (t, x) there exists a subsequence (nk) (depending on (t, x)) such
that (unk(t, x))k is convergent in K. This is obvious for t = T , since un(T, x) = φ(x), so we
can assume t < T . It is enough to show that, for fixed t, x, the sequence (un(t, x))n is relatively
compact in K or, equivalently, that it is totally bounded.
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From the definition of mild solution to (5.4) we obtain, taking expectation,

un(t, x) = Y n,t,x
t = E e(T−t)Bφ(Xt,x

T ) + E
∫ T

t
e(s−t)Bψn(s,Xt,x

s , Y n,t,x
s , Zn,t,xs ) ds

= E e(T−t)Bφ(Xt,x
T ) +

∫ T

t
e(s−t)Bgn,t,x(s) ds,

where gn,t,x(s) = E ψn(s,Xt,x
s , Y n,t,x

s , Zn,t,xs ) satisfies |gn,t,x(s)| ≤ C. It follows that |un(t, x)| ≤
C, i.e. the sequence (un(t, x))n is uniformly bounded. For δ > 0 so small that t + δ ≤ T we
decompose un(t, x) as follows:

un(t, x) = q(t, x) + anδ (t, x) + bnδ (t, x), (5.6)

where q(t, x) = E e(T−t)Bφ(Xt,x
T ),

anδ (t, x) =

∫ t+δ

t
e(s−t)Bgn,t,x(s) ds, bnδ (t, x) =

∫ T

t+δ
e(s−t)Bgn,t,x(s) ds.

Let us fix (t, x) and let ε > 0 be arbitrary. We have |anδ (t, x)| ≤ C δ, so that we can choose
δ such that |anδ (t, x)| < ε/2 for every n. Next note that

bnδ (t, x) = eδB
∫ T

t+δ
e(s−t−δ)Bgn,t,x(s) ds,

and ∣∣∣∣∫ T

t+δ
e(s−t−δ)Bgn,t,x(s) ds

∣∣∣∣ ≤ C.
Since eδB is compact by our assumptions, the sequence (bnδ (t, x))n is relatively compact, hence
totally bounded. So there exists a finite set A ⊂ K such that for any n there exists a ∈ A
satisfying |bnδ (t, x)−a| < ε/2. So for every n there exists a ∈ A such that |un(t, x)−q(t, x)−a| < ε.
This shows that (un(t, x))n is totally bounded and the claim is proved.

Next note that

un(t, x) = E e(T−t)Bφ(Xt,x
T ) + E

∫ T

t
e(s−t)Bψn(s,Xt,x

s , Y n,t,x
s , Zn,t,xs ) ds

= E e(T−t)Bφ(Xt,x
T ) + E

∫ T

t
e(s−t)Bψn(s,Xt,x

s , un(s,Xt,x
s ), vn(s,Xt,x

s )) ds

=

∫
M
e(T−t)Bφ(y) µt,xT (dy) +

∫ T

t
e(s−t)B

∫
M

Ψn(s, y) µt,xs (dy) ds,

where Ψn(s, y) = ψn(s, y, un(s, y), vn(s, y)).
Let us fix a dense sequence (tj) in [0, T ] and a dense sequence (xi) in M . By the previous

claim and a diagonal procedure we can find a subsequence (nk) such that (unk(tj , xi))k converges
for every i, j. By a change of notation we can assume that the original sequence (un(tj , xi))n is
convergent for every i, j.

Next we fix j and we prove that (un(tj , x))n is convergent for every x ∈M . The assertion is
trivial if tj = T , so we assume tj < T . We start from the inequality

|un(tj , x)− um(tj , x)| ≤ |un(tj , x)− un(tj , xi)|+ |um(tj , x)− um(tj , xi)|
+|un(tj , xi)− um(tj , xi)|.

(5.7)
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We have

un(tj , x)− un(tj , xi) = e(T−t)B
∫
M
φ(y) [µ

tj ,x
T (dy)− µtj ,xiT (dy)]+

+

∫ T

tj

e(s−t)B
∫
M

Ψn(s, y) [µ
tj ,x
s (dy)− µtj ,xis (dy)] ds,

and since φ is bounded and Ψn is uniformly bounded we obtain∣∣∣∣∣
∫ T

tj

e(s−t)B
∫
M

Ψn(s, y) [µ
tj ,x
s (dy)− µtj ,xis (dy)] ds

∣∣∣∣∣ ≤ C
∫ T

tj

V ar(µ
tj ,x
s − µtj ,xis ) ds,

and ∣∣∣∣e(T−t)B
∫
M
φ(y) [µ

tj ,x
T (dy)− µtj ,xiT (dy)] ds

∣∣∣∣ ≤ C V ar(µ
tj ,x
T − µtj ,xiT ).

We note that by (5.2) for every sequence xn → x we have V ar(µ
tj ,x
s − µtj ,xns ) → 0 for s > tj .

Since V ar(µ
tj ,x
s − µtj ,xns ) ≤ 2, by the dominated convergence theorem we obtain∫ T

tj

V ar(µ
tj ,x
s − µtj ,xns ) ds→ 0.

Given ε > 0, from the previous inequalities it follows that we can choose xi so close to x that

|un(tj , x)− un(tj , xi)| ≤ ε,

for every n. In a similar way one proves that xi can be chosen such that in addition |um(tj , x)−
um(tj , xi)| ≤ ε for every m, and since (un(tj , xi))n is convergent we conclude from (5.7) that
(un(tj , x))n is a Cauchy sequence for every x ∈M .

Next we prove that (un(t, x))n is convergent for every t ∈ [0, T ] and x ∈M . We can assume
t < T , otherwise the assertion is trivial. We first claim that for t < r we have∣∣∣∣un(t, x)−

∫
M
un(r, y) µt,xr (dy)

∣∣∣∣ ≤ C · (r − t). (5.8)

From (5.4) we obtain

Y n,t,x
t − Y n,t,x

r =

∫ r

t
e(s−t)Bψn(s,Xt,x

s , Y n,t,x
s , Zn,t,xs ) ds−

∫ r

t
e(s−t)BZn,t,xs dWs.

Taking expectation we obtain

E
∫ r

t
e(s−t)Bψn(s,Xt,x

s , Y n,t,x
s , Zn,t,xs ) ds = E [Y n,t,x

t − Y n,t,x
r ]

= E [un(t, x)− un(r,Xt,x
r )]

= un(t, x)−
∫
M
un(r, y) µt,xr (dy),

and since ψn is uniformly bounded, (5.8) follows immediately.
Then we have, for tj > t,

|un(t, x)− um(t, x)| ≤
∣∣∣∣un(t, x)−

∫
M
un(tj , y) µt,xtj (dy)

∣∣∣∣
+

∣∣∣∣um(t, x)−
∫
M
um(tj , y) µt,xtj (dy)

∣∣∣∣
+

∣∣∣∣∫
M
un(tj , y) µt,xtj (dy)−

∫
M
um(tj , y) µt,xtj (dy)

∣∣∣∣ .
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Given ε > 0, we choose j such that tj − t < ε. For n,m ≥ N we have

|un(t, x)− um(t, x)| ≤ C · ε+

∫
M

sup
n,m≥N

|un(tj , y)− um(tj , y)| µt,xtj (dy).

Since the sequence (un(tj , y))n is convergent for every y and it is uniformly bounded, the last
integral tends to 0 for N →∞. The proof of step 2 is finished.

The third and fourth step are the same as in Theorem 10 and this concludes the proof.

5.1 Example

Let W be a cylindrical Wiener process in a Hilbert space Ξ with Brownian filtration (Ft). We
take H = Ξ and consider the following equation on the time interval [t, T ] ⊂ [0, T ] for an
unknown process X with values in H:

dXs = AXs ds+ F (Xs) ds+G(Xs) dWs, Xt = x,

where x ∈ H, the operator A : D(A) ⊂ H → H is the infinitesimal generator of a strongly
continuous semigroup {etA, t ≥ 0} of bounded linear operators in H, F : H → H and G : H →
L(H) are Borel measurable mappings such that, for some constant C ≥ 0,

|F (x)− F (x′)| ≤ C |x− x′|, |G(x)−G(x′)|L(H) ≤ C |x− x′|, x, x′ ∈ H.

We also assume that etA ∈ L2(H,H) for t > 0 and that
∫ T

0 e−αt|etA|2L2(H,H)dt < ∞ for some

α > 0. It is well known (see e.g. [6]) that under these conditions there exists a mild solution i.e.
an (Ft)-adapted process, with continuous paths in H, such that, P-a.s.,

Xs = e(s−t)Ax+

∫ s

t
e(s−r)AF (Xr) dr +

∫ s

t
e(s−r)AG(Xr) dWr, s ∈ [t, T ].

X is unique up to indistinguishability. The solution will be denoted Xt,x
s , to stress the depen-

dence on x and t. The process X constructed in this way satisfies the conditions (1)− (4) of
section 4. We denote by µt,xs the law of Xt,x

s .
Assume now in addition that G(x) is invertible for every x ∈ H and there exists C ≥ 0 such

that |G(x)−1|L(H) ≤ C for all x ∈ H. Then the following inequality has been proved in [20] (see
also [7], Theorem 7.1.1 and Lemma 7.1.5):

V ar (µt,xs − µt,x
′

s ) ≤ C√
s− t

|x− x′|, 0 ≤ t < s ≤ T, x, x′ ∈ H.

So under the previous assumptions condition (5.2) clearly holds, and so if B, ψ, φ satisfy the
other requirements in Theorem 11 then there exists a mild solution to equation (5.1).

6 A stochastic game with infinitely many players

Let W be a cylindrical Wiener process in a Hilbert space Ξ, defined on a complete probability
space (Ω,F ,P), and let (Ft) be its Brownian filtration.

We consider the Ornstein-Uhlenbeck process in a Hilbert space H defined by the equation
dXt = AXt dt+G dWt, more precisely

Xt = etAx+

∫ t

0
e(t−s)AG dWs, t ∈ [0, T ],

with A and G satisfying Hypothesis 1, and x ∈ H.

22



Hypothesis 12 i) Let I be a finite or countable set.

ii) For every i ∈ I, a metric space Ui is given. We denote U = ×i∈I Ui the product space.

iii) We assume that Borel measurable functions are given

R : [0, T ]×H × U → Ξ, li : [0, T ]×H × U → R, φi : H → R,

for every i ∈ I. Moreover there exist constants cR ≥ 0, ci ≥ 0 such that

|R(t, x, v)| ≤ cR, |li(t, x, v)|+ |φi(x)| ≤ ci(1 + |x|p), t ∈ [0, T ], x ∈ H, v ∈ U, i ∈ I.

Finally we assume that for every t ∈ [0, T ], x ∈ H and i ∈ I the functions

R(t, x, ·) : U → Ξ, li(t, x, ·) : U → R,

are continuous.

iv) For every i ∈ I a number λi ≥ 0 is given. If I is infinite, identifying I with the natural
numbers, we assume that λi → +∞ as i→∞.

Each element i ∈ I represents a player. Ui represents the set of actions that player i can take
at any time. Coordinates of an element v ∈ U are denoted vi and we use the notation v = (vi)i.

λi is a discount factor in the cost of player i, as defined below.
An (Ft)-adapted process u = {ut, t ∈ [0, T ]}, with values in U , is called admissible decision

process. Each component ui = {uit, t ∈ [0, T ]}, i ∈ I, is then a process with values in Ui; u
i
t

represents the action taken by player i at time t.
For every admissible decision process u, a cost J i(u) for the player i ∈ I is defined as follows.

By the Girsanov theorem the process

W u
t = Wt −

∫ t

0
R(s,Xs, us) ds, t ∈ [0, T ],

is a Wiener process under the probability measure Pu admitting the density ρu with respect to
P given by

ρu = exp

(∫ T

0
〈R(s,Xs, us), dWs〉 −

1

2

∫ T

0
|R(s,Xs, us)|2 ds

)
.

We define

J i(u) = Eu
[∫ T

0
e−λit li(t,Xt, ut) dt+ e−λiTφi(XT )

]
, i ∈ I.

Since R is bounded, the application of the Girsanov theorem is justified and we also have
E|ρu|p <∞ for every p ∈ [1,∞). We note that X satisfies

Xt = etAx+

∫ t

0
e(t−s)AGR(s,Xs, us) ds+

∫ t

0
e(t−s)AG dW u

s , t ∈ [0, T ]. (6.1)

Therefore, under Pu, X is the solution of a controlled stochastic equation with nonlinear drift.
An admissible decision process û is called a Nash equilibrium if, for each i ∈ I, the equality

J i(û) ≤ J i(u),

takes place for arbitrary decision process u satisfying, for all j 6= i,

ujt = ûjt , P−a.s. for almost every t ∈ [0, T ].
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The aim of this section is to show that a Nash equilibrium exists under appropriate condi-
tions. Our main assumption is Hypothesis 13 below. Before its statement we introduce some
notation.

Let us fix numbers ρi > 0 such that
∑

i∈I c
2
i ρi < ∞, where ci are the constants introduced

in Hypothesis 12. In the sequel we will consider backward equations for processes with values in
the Hilbert space `2ρ(I), the space of real sequences (yi)i satisfying

∑
i∈I |yi|2ρi < ∞, endowed

with the inner product

〈y, v〉`2ρ(I) =
∑
i∈I

yiviρi, y = (yi)i ∈ `2ρ(I), v = (vi)i ∈ `2ρ(I).

For i ∈ I we denote gi the element of `2ρ(I) defined by gji = 0 if i 6= j, gii = 1/ρi. We note that
〈y, gi〉`2ρ(I) = yi for every y = (yi)i ∈ `2ρ(I) and that the family {gi

√
ρi, i ∈ I} is a complete

orthonormal basis of `2ρ(I). For every z ∈ L2(Ξ, `2ρ(I)) we can define elements zi ∈ Ξ∗ by the
formula

ziξ = 〈zξ, gi〉`2ρ(I), ξ ∈ Ξ, i ∈ I.

Since z is a Hilbert-Schmidt operator we have∑
i∈I
|zi|2Ξ∗ ρi <∞, (6.2)

so that the sequence (zi)i belongs to the Hilbert space `2ρ(I,Ξ
∗) consisting of Ξ∗-valued sequences

satisfying (6.2), endowed with the natural inner product. It is easy to check that the mapping
z → (zi)i is a Hilbert space isomorphism between L2(Ξ, `2ρ(I)) and `2ρ(I,Ξ

∗). In the sequel we
will make the identification z = (zi)i.

Hypothesis 13 There exists a Borel measurable function u : [0, T ] × H × L2(Ξ, `2ρ(I)) → U
such that for every t ∈ [0, T ], x ∈ H, z = (zi)i ∈ L2(Ξ, `2ρ(I)), i ∈ I the inequality

ziR(t, x, u(t, x, z)) + li(t, x, u(t, x, z)) ≤ ziR(t, x, v) + li(t, x, v),

holds for every v ∈ U satisfying vj = uj(t, x, z) for all j 6= i. Moreover for every t ∈ [0, T ],
x ∈ H and i ∈ I the function ui(t, x, ·) : L2(Ξ, `2ρ(I))→ U is continuous.

Remark 14 Hypotheses 12 and 13 are easier to check in the special case

R(t, x, v) =
∑
j∈I

Rj(t, x, v
j), li(t, x, v) =

∑
j∈I

lij(t, x, v
j), t ∈ [0, T ], x ∈ H, v ∈ U, (6.3)

i.e. when R and each li are sums of functions depending only on one coordinate vj ∈ Uj of v ∈ U .
More precisely suppose that I, Ui, φ

i satisfy the assumptions of Hypothesis 12 (in particular,
|φi(x)| ≤ ĉi(1 + |x|p) for every x, i and for some constants ĉi ≥ 0) and that for every i, j ∈ I
there exist Borel measurable functions

Rj : [0, T ]×H × Uj → Ξ, lij : [0, T ]×H × Uj → R,

and constants cRj , cij such that

|Rj(t, x, a)| ≤ cRj , |lij(t, x, a)| ≤ cij(1 + |x|p), t ∈ [0, T ], x ∈ H, a ∈ Uj ,

and
∑

j cRj < ∞,
∑

j cij < ∞ for every i ∈ I. We also assume that for every t ∈ [0, T ], x ∈ H
and i, j ∈ I the functions

Rj(t, x, ·) : Uj → Ξ, lij(t, x, ·) : Uj → R,
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are continuous. If R and li are defined by (6.3) then Hypothesis 12 is satisfied with ci =∑
j cij + ĉi. Suppose now that there exist Borel measurable functions ui : [0, T ]×H ×Ξ∗ → Ui,

i ∈ I, such that

ηRi(t, x, u
i(t, x, η)) + lii(t, x, u

i(t, x, η)) ≤ ηRi(t, x, a) + lii(t, x, a), (6.4)

for every i ∈ I, t ∈ [0, T ], x ∈ H, η ∈ Ξ∗, a ∈ Ui. Moreover assume that for every t ∈ [0, T ],
x ∈ H and i ∈ I the function ui(t, x, ·) : Ξ∗ → Ui is continuous. Then setting

u(t, x, z) = (ui(t, x, zi))i

it is easy to verify that Hypothesis 13 is satisfied.
Note that (6.4) can be expressed as

ui(t, x, η) ∈ argmin
a∈Ui

[ηRi(t, x, a) + lii(t, x, a)].

The existence of a function ui satisfying (6.4) and such that ui(t, x, ·) is continuous can be
effectively checked in particular cases. For instance, in addition to the previous assumptions,
suppose that all the metric spaces Ui coincide with the ball B(0, r) of radius r > 0 centered at
the origin of another Hilbert space A. Furthermore assume that Rj are defined by

Rj(t, x, a) = Rj(t, x)a, t ∈ [0, T ], x ∈ H, a ∈ A,

where each Rj(t, x) is a linear bounded operator from A to Ξ, Rj(·, ·)a : [0, T ] × H → Ξ is
Borel measurable for every a ∈ A, and |Rj(t, x)| ≤ cRj , t ∈ [0, T ], x ∈ H, for some constants
cRj ≥ 0 satisfying

∑
j cRj < ∞. Suppose finally that lii have the special form lii(t, x, a) = |a|2,

a ∈ B(0, r). Then a minimizer of a → ηRi(t, x, a) + lii(t, x, a) = ηRi(t, x)a + |a|2 over B(0, r)
can be easily computed, and the required function ui can be defined by

ui(t, x, η) =


−1

2
(ηRi(t, x))∗ if |ηRi(t, x)| ≤ 2r,

−r (ηRi(t, x))∗

|ηRi(t, x)|
if |ηRi(t, x)| > 2r,

for t ∈ [0, T ], x ∈ H, η ∈ Ξ∗, where by (ηRi(t, x))∗ ∈ A we denote the image of ηRi(t, x) ∈ A∗
under the Riesz isometry A∗ → A.

Theorem 15 Under Hypotheses 1, 12 and 13 there exists a Nash equilibrium û. Moreover there
exists a Borel measurable function v : [0, T ]×H → L2(Ξ, `2ρ(I)) such that

ût = u(t,Xt, v(t,Xt)), P−a.s. for almost every t ∈ [0, T ]. (6.5)

Remark 16 By equality (6.5), û is called a closed-loop Nash equilibrium.

Proof. Let us define an operator B in `2ρ(I) setting (By)i = −λiyi for y ∈ D(B) = {(yi)i :∑
i∈I λ

2
i |yi|2ρi <∞}. B is a self-adjoint operator with eigenvectors gi and eigenvalues −λi. It is

the infinitesimal generator of the dissipative semigroup given by the formula (etBy)i = e−λityi.
The condition λi →∞ ensures that etB is compact for every t > 0.

Let us define φ(x) = (φi(x))i and f(t, x, z) = (f i(t, x, z))i, where

f i(t, x, z) = ziR(t, x, u(t, x, z)) + li(t, x, u(t, x, z)), t ∈ [0, T ], x ∈ H, z ∈ L2(Ξ, `2ρ(I)), (6.6)
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and let us consider the backward equation

dYt = −BYt dt− f(t,Xt, Zt) dt+ Zt dWt, YT = φ(XT ), (6.7)

where the unknown processes Y and Z take values in `2ρ(I) and L2(Ξ, `2ρ(I)) respectively.
Next we verify that the functions

f : [0, T ]×H × L2(Ξ, `2ρ(I))→ `2ρ(I), φ : H → `2ρ(I)

satisfy the assumptions of Theorem 6. By Hypothesis 12,

|f(t, x, z)|`2ρ(I) ≤
(∑

i

|ziR(t, x, u(t, x, z))|2ρi
)1/2

+

(∑
i

|li(t, x, u(t, x, z))|2ρi
)1/2

≤ cR

(∑
i

|zi|2Ξ∗ρi
)1/2

+

(∑
i

c2
i ρi

)1/2

(1 + |x|p)

= cR|z|L2(Ξ,`2ρ(I)) +

(∑
i

c2
i ρi

)1/2

(1 + |x|p),

|φ(x)|`2ρ(I) =

(∑
i

|φi(x)|2ρi
)1/2

≤
(∑

i

c2
i ρi

)1/2

(1 + |x|p).

The functions f i(t, x, ·) are continuous since they are defined in terms of the continuous
mappings R(t, x, ·), li(t, x, ·) and u(t, x, ·). To check continuity of f(t, x, ·), let us consider a
sequence zn converging to z in L2(Ξ, `2ρ(I)) and note that

|f i(t, x, zn)− f i(t, x, z)| ≤ |zinR(t, x, u(t, x, zn))− ziR(t, x, u(t, x, z))|
+|li(t, x, u(t, x, zn))− li(t, x, u(t, x, z))|

≤ cR|zin − zi|+ |zi| |R(t, x, u(t, x, zn))−R(t, x, u(t, x, z))|
+|li(t, x, u(t, x, zn))− li(t, x, u(t, x, z))|.

It follows that

|f(t, x, zn)− f(t, x, z)|`2ρ(I) =

(∑
i

|f i(t, x, zn)− f i(t, x, z)|2ρi
)1/2

≤ cR|zn − z|L2(Ξ,`2ρ(I))

+

(∑
i

|zi|2 |R(t, x, u(t, x, zn))−R(t, x, u(t, x, z))|2ρi
)1/2

+

(∑
i

|li(t, x, u(t, x, zn))− li(t, x, u(t, x, z))|2ρi
)1/2

.

Since R is bounded,
∑

i |zi|2ρi < ∞, |li(t, x, u(t, x, zn))| ≤ ci(1 + |x|p) and
∑

i c
2
i ρi < ∞ we

conclude that |f(t, x, zn)− f(t, x, z)|`2ρ(I) → 0.

Theorem 6 shows that (6.7) has a solution satisfying, in particular, E
∫ T

0 |Z
i
s|2 ds < ∞.

Moreover, there exists a Borel measurable function v : [0, T ] × H → L2(Ξ, `2ρ(I)) such that
Zt = v(t,Xt), P-a.s. for almost every t ∈ [0, T ].

We will show that the process ût = u(t,Xt, Zt) = u(t,Xt, v(t,Xt)), t ∈ [0, T ], is a Nash
equilibrium. Writing (6.7) in the form specified by definition (3.3) and taking scalar product
with gi we obtain, for every i ∈ I,

Y i
t +

∫ T

t
e−λi(s−t)Zis dWs = e−λi(T−t)φi(XT ) +

∫ T

t
e−λi(s−t)f i(s,Xs, Zs) ds.
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For every admissible decision process u, by the definition of W u we obtain

Y i
0−e−λiTφi(XT ) = −

∫ T

0
e−λisZis dW

u
s −
∫ T

0
e−λisZisRs(s,Xs, us) ds+

∫ T

0
e−λisf i(s,Xs, Zs) ds.

We recall that W u is a Wiener process under Pu and we note that

Eu
(∫ T

0
|Zis|2 ds

)1/2

= E

[
ρu
(∫ T

0
|Zis|2 ds

)1/2
]
≤
(
E|ρu|2

)1/2(E∫ T

0
|Zis|2 ds

)1/2

<∞.

It follows that
∫ t

0 Z
i
s dW

u
s , t ∈ [0, T ] is a Pu-martingale. Taking expectation we obtain

Y i
0 = e−λiTEuφi(XT ) + Eu

∫ T

0
e−λis[f i(s,Xs, Zs)− ZisR(s,Xs, us)] ds

= J i(u) + Eu
∫ T

0
e−λis[f i(s,Xs, Zs)− ZisR(s,Xs, us)− li(s,Xs, us)] ds.

(6.8)

By the definition of f i and Hypothesis 13, for every i ∈ I,

f i(t, x, z) ≤ ziR(t, x, v) + li(t, x, v), t ∈ [0, T ], x ∈ H, z ∈ L2(Ξ, `2ρ(I)),

for every v ∈ U satisfying vj = uj(t, x, z) for all j 6= i. It follows that

f i(t,Xt, Zt) ≤ ZitR(t,Xt, ut) + li(t,Xt, ut), (6.9)

for every decision process such that ujt = ûjt = uj(t,Xt, Zt) for all j 6= i.
On the other hand from (6.6) we obtain

f i(t,Xt, Zt) = ZitR(t,Xt, ût) + li(t,Xt, ût). (6.10)

From (6.8) and (6.9) it follows that Y i
0 ≤ J i(u); from (6.8) and (6.10) it follows that Y i

0 = J i(û);
we conclude that J i(û) ≤ J i(u), which shows that û is a Nash equilibrium.

7 Appendix.

This appendix is devoted to the proof of Lemma 2. We follow closely [4], proof of Proposition
4.2. We keep the notation of section 2.2; by Im we denote the image of an operator. We first
state a lemma on gaussian measures.

Lemma 17 Suppose that Q,R are nonnegative, injective, trace class linear operators on H
satisfying

ImQ1/2 = ImR1/2; (7.1)

suppose moreover that the operator

G = (R−1/2Q1/2)∗R−1/2Q1/2 − 1 (7.2)

is trace class. Then N (0, R) is equivalent to N (0, Q) and, for N (0, Q)-a.e. x ∈ H,

dN (0, R)

dN (0, Q)
(x) = det(1 +G)1/2 exp

(
−1

2
〈GQ−1/2x,Q−1/2x〉

)
. (7.3)
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The determinant is understood as the infinite product of eigenvalues. It is well defined, since
G is trace class. Equivalence of measures follows from the Feldman-Hajek Theorem, while the
formula for the density can be found in [5], II.4.3, Remark 4.4 and formula (4.16). A simple
direct proof can be found in [4].

In the rest of this appendix we assume that Hypothesis 1 holds. We state two well-known
properties of the operators Qt, whose short proofs are reported for the reader’s convenience.

(i) The operators Qt, t > 0, are injective.

Indeed, by a duality argument (see for instance [6], appendix B), Hypothesis 1-(iv) implies
that for every t > 0 there exists Ct > 0 such that

|etA∗y| ≤ Ct|Q1/2
t y|, y ∈ H.

So if Qtx = 0 for some t > 0, then Qsx = 0, s ≤ t, and consequently esA
∗
x = 0, s ≤ t;

letting s→ 0, we obtain x = 0.

(ii) For every t > 0, ImQ
1/2
T = ImQ

1/2
t . In particular, Q

−1/2
T etA is a linear bounded operator

on H.

We notice the equality QT = Qt + etAQT−te
tA∗ , which is a consequence of the definition

of Qt and QT . We obtain

QT = Qt + etAQT−te
tA∗ = Q

1/2
t

[
1 + (Q

−1/2
t etA)QT−t(Q

−1/2
t etA)∗

]
Q

1/2
t ,

which yields, for some constant CtT > 0,

|Q1/2
T x|2 = |

[
1 + (Q

−1/2
t etA)QT−t(Q

−1/2
t etA)∗

]1/2
Q

1/2
t x|2 ≤ CtT |Q1/2

t x|2, x ∈ H. (7.4)

On the other hand,

|Q1/2
t x|2 = 〈Qtx, x〉 ≤ 〈QTx, x〉 = |Q1/2

T x|2, x ∈ H. (7.5)

By a duality argument (see e.g. [6], Appendix B) we conclude that ImQ
1/2
T = ImQ

1/2
t .

(iii) For 0 < s ≤ t we have

|Q−1/2
t etA| ≤ |Q−1/2

s esA|. (7.6)

We start from the easily verified identity Qt = Qt−s + e(t−s)AQse
(t−s)A∗ , which implies

Qt ≥ e(t−s)AQse
(t−s)A∗ and therefore |Q1/2

t x|2 ≥ |Q1/2
s e(t−s)A∗x|2, x ∈ H. By a du-

ality argument it follows that |Q−1/2
t e(t−s)AQ

1/2
s | ≤ 1 and consequently |Q−1/2

t etAx| =

|Q−1/2
t e(t−s)AQ

1/2
s Q

−1/2
s esAx| ≤ |Q−1/2

s esAx|, which proves the claim.

Proof of Lemma 2. The kernel k is the Radon-Nikodym density

kt(x, ·) =
dN (etAx,Qt)

dN (0, QT )
.

We will first prove the special case corresponding to x = 0, namely that

kt(0, ·) = det(1−ΘtT )−1/2 exp

{
− 1

2
〈ΘtT (1−ΘtT )−1Q

−1/2
T y,Q

−1/2
T y〉

}
. (7.7)
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Since QT−t is a trace class operator and Q
−1/2
T etA is linear bounded, the operator ΘtT is trace

class. Moreover, since

Qt = QT − etAQT−tetA
∗

= Q
1/2
T

[
1− (Q

−1/2
T etA)QT−t(Q

−1/2
T etA)∗

]
Q

1/2
T = Q

1/2
T (1−ΘtT )Q

1/2
T

we have
(1−ΘtT )x = Q

−1/2
T QtQ

−1/2
T x, x ∈ ImQ

1/2
T . (7.8)

Therefore, 〈(1 − ΘtT )x, x〉 ≥ 0 for x ∈ ImQ
1/2
T , a dense subset of H; it follows that (1 − ΘtT )

is nonnegative. Equality (7.8) also implies, by standard arguments, that (1−ΘtT ) is invertible
and

(1−ΘtT )−1 = (Q
−1/2
t Q

1/2
T )∗Q

−1/2
t Q

1/2
T . (7.9)

Define G = (Q
−1/2
t Q

1/2
T )∗Q

−1/2
t Q

1/2
T − 1. Then

G = (1−ΘtT )−1 − 1 = ΘtT (1−ΘtT )−1, (7.10)

so G is trace class and formula (7.7) follows from Lemma 17.
To prove the general case, we use the equality

kt(x, ·) =
dN (etAx,Qt)

dN (0, Qt)

dN (0, Qt)

dN (0, QT )
=
dN (etAx,Qt)

dN (0, Qt)
kt(0, ·), (7.11)

and we notice that, by the Cameron-Martin Theorem (see e.g. [6]),

dN (etAx,Qt)

dN (0, Qt)
(y) = exp

(
〈Q−1/2

t etAx,Q
−1/2
t y〉 − 1

2
|Q−1/2

t etAx|2
)
,

for N (0, Qt)-a.e. y ∈ H. If m ∈ ImQt, then (7.9) implies (1−ΘtT )−1Q
−1/2
T m = Q

1/2
T Q−1

t m and
we have, for y ∈ H, a.e. with respect to N (0, QT ) and N (0, Qt),

〈Q−1/2
t m,Q

−1/2
t y〉 = 〈Q−1

t m, y〉 = 〈Q1/2
T Q−1

t m,Q
−1/2
T y〉

= 〈(1−ΘtT )−1Q
−1/2
T m,Q

−1/2
T y〉.

(7.12)

(7.9) also implies

|Q−1/2
t m|2 = |(1−ΘtT )−1/2Q

−1/2
T m|2. (7.13)

The equalities (7.12) and (7.13) extend by continuity to every m ∈ ImQ
1/2
t . So we can set

m = etAx, and substituting into (7.11) and using (7.7), we prove the formula for k.
It remains to prove the inequalities (2.5) and (2.6).

The equality (7.9) shows that |(1−ΘtT )−1| = |Q−1/2
t Q

1/2
T |2. The first equality in (7.4) implies

that
|Q−1/2

t Q
1/2
T |

2 ≤ |1 + (Q
−1/2
t etA)QT−t(Q

−1/2
t etA)∗|,

and since (Q
−1/2
t etA)QT−t(Q

−1/2
t etA)∗ ≥ 0, we conclude that

|(1−ΘtT )−1| ≤ 1 + |(Q−1/2
t etA)QT−t(Q

−1/2
t etA)∗| ≤ 1 + |QT−t||Q−1/2

t etA|2, (7.14)

which proves (2.5).
In the sequel we denote for simplicity

a = |QT−t||Q−1/2
t etA|2.
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To prove (2.6) we first recall that ΘtT is a trace class nonnegative operator and we denote
λ0, λ1, . . . its eigenvalues, arranged in decreasing order. Since 0 ≤ ΘtT < 1 we have 0 ≤ . . . ≤
λ1 ≤ λ0 = |ΘtT | < 1. It follows that (1 − λ0)−1 = |(1 − ΘtT )−1| and by (7.14) we have
(1− λ0)−1 ≤ 1 + a and we first conclude that λ0 ≤ a/(1 + a).
Next we compute

det(1−ΘtT )−1 =

∞∏
k=0

(1− λk)−1 = exp

[
−
∞∑
k=0

log(1− λk)

]
.

Since the function x→ (− log(1− x))/x is increasing in the interval (0, 1) we have in particular

− log(1− λk)
λk

≤ − log(1− λ0)

λ0
≤
− log(1− a

1+a)
a

1+a

=
log(1 + a)

a
(1 + a) ≤ 1 + a,

and we obtain

det(1−ΘtT )−1 ≤ exp

[
(1 + a)

∞∑
k=0

λk

]
= exp [(1 + a) TraceΘtT ] .

Then we have

TraceΘtT = Trace ((Q
−1/2
T etA)QT−t(Q

−1/2
T etA)∗) ≤ (TraceQT−t)|Q−1/2

T etA|2

and since the inequality (7.5) implies that |Q−1/2
T Q

1/2
t | ≤ 1, we deduce that

|Q−1/2
T etA| ≤ |Q−1/2

T Q
−1/2
t ||Q−1/2

t etA| ≤ |Q−1/2
t etA|.

Substituting, we obtain det(1 − ΘtT )−1 ≤ exp
[
(1 + a) (TraceQT−t)|Q−1/2

t etA|2
]

and (2.6) is

proved.
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