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Caulobacter crescentus represents a remarkable model system to investigate global

regulatory programs in bacteria. In particular, several decades of intensive study

have revealed that its cell cycle is controlled by a cascade of master regulators,

such as DnaA, GcrA, CcrM, and CtrA, that are responsible for the activation of

functions required to progress through DNA replication, cell division and morphogenesis

of polar structures (flagellum and stalk). In order to accomplish this task, several

post-translational (phosphorylation and proteolysis) and transcriptional mechanisms are

involved. Surprisingly, the role of non-coding RNAs (ncRNAs) in regulating the cell cycle

has not been investigated. Here we describe a bioinformatic analysis that revealed that

ncRNAs may well play a crucial role regulating cell cycle in C. crescentus. We used

available prediction tools to understand which target genes may be regulated by ncRNAs

in this bacterium. Furthermore, we predicted whether ncRNAs with a cell cycle regulated

expression profile may be directly regulated by DnaA, GcrA, and CtrA, at the onset,

during or end of the S-phase/swarmer cell, or if any of them has CcrM methylation

sites in the promoter region. Our analysis suggests the existence of a potentially very

important network of ncRNAs regulated by or regulating well-known cell cycle genes in

C. crescentus. Our hypothesis is that ncRNAs are intimately connected to the known

regulatory network, playing a crucial modulatory role in cell cycle progression.

Keywords: Caulobacter crescentus, Cell cycle regulation, ncRNAs, DNA replication, Two-component regulatory

systems (TCS)

INTRODUCTION

In the last two decades, bacterial non-coding RNAs (ncRNAs) and small RNAs in particular
(sRNAs, 50–400 nts), have emerged as central regulators of important cellular processes (Dutta
and Srivastava, 2018). Most sRNAs are post-transcriptional regulators positively or negatively

affecting the translation and/or stability of their targets. As a result, sRNAs have been shown to
play key roles in the adaptive response to the environment and to stress conditions, in particular.
In Enterobacteria, most of the proficient sRNAs/target pairs requires the RNA chaperone Hfq
that both stabilizes them and facilitates the RNA duplex formation; however, this role of Hfq in
sRNA control of gene expression is not conserved in all bacteria that possess an Hfq homolog
(Vogel and Luisi, 2011). While sRNAs are best characterized in enterobacteria (Escherichia coli and
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Salmonella) and a few other well studied species (e.g.,
Staphylococcus, Sinorhizobium, Bacillus, and Listeria),
transcriptomic analyses performed in extremely diverse
species indicate that ncRNAs exist in virtually all bacteria, and
their characterization in those other species is still a challenge
today (Barquist and Vogel, 2015). Clearly the ability to know
and master the activity of ncRNAs targeting specific function(s)
can pave the way to the development of new precisely targeted
weapons against pathogens, a pressing issue given that most of
them are increasingly resistant to most known antibiotics.

Caulobacter crescentus is a model system to investigate
global regulation mechanisms such as the bacterial cell

FIGURE 1 | Cell cycle progression in Caulobacter crescentus. (A) At every cell division cells divide in two different cell types, a swarmer cell (G1) and a stalked cell.

Swarmer cell is unable to replicate the DNA but it is the only form able to move, as it possesses a flagellum and pili. When the swarmer cell finds a suitable

environment it differentiates in a stalked cell, loosing the flagellum, retracting the pili and synthetizing a stalk at the former flagellated pole. After differentiation cells are

able to initiate a single round of replication of DNA (S-phase) until a new swarmer pole is formed and cells divide at the end of a short G2 phase. The single circular

chromosome of C. crescentus is indicated as a red circle. (B) This remarkable cell cycle progression is under the control of several master regulators responsible for

the cell cycle regulated expression of hundreds of genes (DnaA, CtrA, CcrM, and GcrA). Protein levels are here represented in different colors. (C) Based on Table 1

data, ncRNAs were organized by their expression levels (Schrader et al., 2014; Zhou et al., 2015).

cycle and differentiation/morphogenesis (Lasker et al., 2016).
This alphaproteobacterium produces a swarmer non-replicative
motile cell and a sessile replicative stalked cell at every round
of cell division (Figure 1A) explaining why it became the model
organism in a number of top level laboratories around the
world. The remarkable regulatory program implementing the cell
cycle/differentiation can be easily investigated in C. crescentus, as
a large number of pure swarmer cells in the G1 phase can be
isolated and studied while in synchrony (Schrader and Shapiro,
2015). This differentiation program is under the control of a
set of regulators that implement a finely orchestrated genetic
circuit (Figure 1B). In C. crescentus, swarmer cells differentiate
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in stalk cells and fire a single round of DNA replication
thanks to the protein DnaA, which binds the unique origin of
replication and activates the DNA polymerase complex (Collier,
2012; Felletti et al., 2018). Besides controlling the replication
of the chromosome, DnaA controls the transcription of the
gene encoding GcrA, which in turn controls many essential
genes during S-phase, including ctrA (Holtzendorff et al., 2004;
Hottes et al., 2005; Collier et al., 2006). This latter gene codes
for a response regulator that activates cell division and the
expression of genes essential for cell differentiation, such as
those for flagellum/pilum assembly, chemotaxis, stalk biogenesis
and many others (Reisenauer et al., 1999; Jones et al., 2001;
Laub et al., 2002; Biondi et al., 2006). DnaA, GcrA and CtrA
constitute an essential transcriptional cascade that requires
multiple regulatory levels in order to ensure the correct timing
of ensuing events. For example, GcrA activity depends on
methylation of the chromosome by the methyl-transferase CcrM
(Fioravanti et al., 2013; Murray et al., 2013; Mohapatra et al.,
2014; Haakonsen et al., 2015); CtrA’s activity is regulated by
phosphorylation (Biondi et al., 2006) and inactivated by a ClpXP-
dependent degradation (Ryan et al., 2002, 2004; Joshi et al.,
2015). Among well-known regulatory layers, surprisingly, the
activity and the role of ncRNAs in C. crescentus has been
poorly investigated, and still, they represent ideal candidates for
such regulations, as they provide dynamic patterns not easily
achievable with transcriptional regulation only. In 2008, a paper
entitled “Small non-coding RNAs in Caulobacter crescentus”
described 27 ncRNAs in this organism (Landt et al., 2008).
Unfortunately only few of them appeared to be involved in
important functions and, besides a work in 2010 describing
CrfA (Landt et al., 2010), an sRNA involved in adaptation to
carbon starvation, no other ncRNA identified in 2008 was further
characterized. More recently another sRNA was characterized
in C. crescentus and named GsrN (Tien et al., 2017). This
ncRNA is involved in multiple stresses response factor directly
controlled by the general stress sigma factor, σ

T. Finally new
recent approaches using RNAseq and post-genomic techniques
expanded the plethora of ncRNA candidates in this species to over
100 (Zhou et al., 2015).

This observation prompted us to start a systematic
investigation of this new ncRNA world aiming to identify
global regulators and ncRNAs possibly involved in the cell
cycle in C. crescentus. We applied several bioinformatics
tools in order to understand what kind of functions may be
controlled by ncRNAs and we focused on uncharacterized
ncRNAs with a changing expression level during cell cycle.
We predicted their targets in the C. crescentus genome and we
integrate this information with motif scanning and ChIP-Seq
data.

METHODS

Prediction of Targets of ncRNAs
Sequences of ncRNAs were retrieved by the annotation of
genes by previous results (Schrader et al., 2014; Zhou et al.,
2015). PredatorRNA (Eggenhofer et al., 2011). was used using
the genome NC_011916, as deposited in the PredatorRNA

website, and prediction was performed as default. TargetRNA2
(Kery et al., 2014) was performed using the following settings:
NTs before start codon 80, NTs after start codon 20, Seed
length 7, sRNA conservation and accessibility true, sRNA
window size 13, mRNA structural accessibility true, Interaction
region 20, Filter size 1,000, P-value threshold 0.5 (predictions
were considered significant only with a P < 0.05). Finally
CopraRNA (Wright et al., 2014) was used with default
settings.

Secondary structure prediction of ncRNAs was performed
using mFold (Zuker, 2003) and RNAfold (Gruber et al., 2008)
using default settings.

Prediction of DnaA, CcrM, and CtrA
Consensus Sequences
Prections of DnaA, CcrM, and CtrA potential controls were
performed as previously described (Brilli et al., 2010). Position
Weight Matrices (PWM) modeling the CtrA and DnaA binding
sites were used to scan the entire genome by calculating a
measure of similarity for each genome position with the formula:

Si : i+L =
1

L

i+L∑

n=i

(2+ log2fnx).

From Schneider et al. (1986). Basically, for each position n in a
genomic window of length L, where L is also the length of the
transcription factor binding motif, we sum the logarithm base 2
of the frequency of nucleotide x at position n of the motif and
then we average over all nucleotides.

As this score is continuous, there is the need to establish
a threshold, that can be quite arbitrary. In this context, we
normalize all the scores with respect to the maximum score
attainable by the PWM under analysis, and we only retain scores
that are at least 60% of the maximum.

ChIPseq data of GcrA were analyzed as previously described
(Fioravanti et al., 2013) using the new annotation of ncRNAs
(Zhou et al., 2015).

RESULTS

Selection of Cell Cycle Regulated ncRNAs
Previous works based on total RNA sequencing and 5′-RACE
have identified a list of predicted ncRNAs expressed in culture
conditions (Schrader et al., 2014; Zhou et al., 2015). Based on
this experimental analysis we recovered all sequences previously
identified and we initially separated ncRNA candidates based
on previous annotation and their dynamic regulation during
cell cycle. Out of 199, identified as ncRNAs expressed in rich
or poor media, respectively PYE and M2G, 88 were further
characterized for their Transcriptional Start Site (TSS), with
few of them having multiple transcription start sites (Zhou
et al., 2015). Among those ncRNAs, 43 were related to the
translational machinery (tRNAs or ribosome-related), therefore
we excluded them in the following analyses, as well as the
TmRNA (Keiler and Shapiro, 2003; Cheng and Keiler, 2009;
Russell and Keiler, 2009). The bibliographical data mining
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TABLE 1 | ncRNAs in Caulobacter crescentus.

CCNA Multiple

TSS

Cell cycle phase

G1, S, G2

TSS

location

strand 0 min 20 min 40 min 60 min 80 min 100 min 120 min 140 min Annotation based on

Zhou et al. (2015)

CCNA_R0004 / / 210993 − 5.5 3.9 8.0 4.8 12.8 2.2 3.7 4.2 Cell cycle regulated

CCNA_R0009 / / 708218 + 105.7 136.7 42.0 88.7 64.2 92.4 93.0 58.9 Small non-coding RNA

CCNA_R0016 / / 844332 + 32.2 19.0 43.0 63.0 59.6 28.2 61.4 46.6 Small non-coding RNA

CCNA_R0019 / / 920752 − 11.3 2.9 1.0 1.3 1.0 8.4 1.8 4.2 Stationary phase

CCNA_R0025 3 / 1176006 + 214.0 13.2 262.0 360.4 275.7 10.1 356.7 551.2 Small non-coding RNA

CCNA_R0040 / / 1645202 + 7.8 7.9 16.0 14.3 7.7 20.0 17.9 19.4 Small non-coding RNA

CCNA_R0063 / / 2889177 + 261.6 112.8 312.0 266.9 192.6 215.9 341.6 207.5 Minimal medium

CCNA_R0111 / / 622892 + 0.8 1.4 5.0 0.4 0.0 2.7 0.5 3.9 Small non-coding RNA

CCNA_R0112 / / 626656 + 121.1 143.6 101.0 118.7 109.4 66.8 139.2 74.8 Small non-coding RNA

CCNA_R0134 / / 1294595 + 12.7 42.8 67.0 28.7 64.7 25.8 70.1 70.2 Small non-coding RNA

CCNA_R0137 / / 1387892 − 43.3 45.3 21.0 43.5 20.0 68.8 39.8 63.5 Small non-coding RNA

CCNA_R0141 / / 1607996 − 7.4 0.2 1.0 7.4 0.0 1.0 3.7 7.8 Small non-coding RNA

CCNA_R0142 / / 1682820 + 13.3 16.8 4.0 6.5 3.1 5.3 8.2 15.9 Small non-coding RNA

CCNA_R0145 / / 1911195 + 5.3 10.1 1.0 6.5 10.8 13.8 10.5 11.3 Small non-coding RNA

CCNA_R0147 / / 1986625 + 129.1 31.7 77.0 50.4 66.2 8.2 27.9 14.5 Small non-coding RNA

CCNA_R0170 / / 2778348 + 15.8 15.7 18.0 30.9 23.6 18.1 27.0 21.2 Small non-coding RNA

CCNA_R0171 / / 2800063 + 0.4 5.8 0.0 7.0 8.2 3.4 5.5 3.9 Small non-coding RNA

CCNA_R0173 / / 2967588 − 9.8 16.6 0.0 15.6 10.8 29.0 10.5 13.1 Small non-coding RNA

CCNA_R0174 / / 2977449 + 31.6 40.9 20.0 41.7 12.3 35.9 38.9 25.4 Small non-coding RNA

CCNA_R0182 / / 3288242 + 94.8 93.8 130.0 201.3 120.2 118.0 200.1 115.7 Small non-coding RNA

CCNA_R0183 / / 3294320 + 17.9 1.0 1.0 10.0 2.6 0.0 1.8 2.5 Small non-coding RNA

CCNA_R0188 / / 3462949 + 117.2 86.2 40.0 104.3 70.3 47.3 76.0 104.8 Small non-coding RNA

CCNA_R0193 / / 3699499 + 214.6 72.0 134.0 130.4 118.6 75.3 132.8 121.0 Small non-coding RNA

CCNA_R0018 / G1 920425 + 86.2 24.6 10.0 48.3 49.8 18.8 32.1 25.4 Rich medium

CCNA_R0051 / G1 2404309 + 281.3 162.6 148.0 140.8 102.7 203.6 141.9 91.7 Small non-coding RNA

CCNA_R0095 / G1 4950 − 99.3 6.2 18.0 36.1 22.6 13.5 19.2 12.7 Small non-coding RNA

CCNA_R0123 / G1 921719 − 9.2 4.6 1.0 3.9 2.6 1.4 0.5 4.2 Small non-coding RNA

CCNA_R0176 / G1 3091482 − 231.0 41.2 8.0 3.9 2.6 10.1 23.8 16.6 Small non-coding RNA

CCNA_R0199 / G1 3987216 + 89.0 15.4 14.0 28.3 21.1 16.6 23.4 52.2 Small non-coding RNA

CCNA_R0025 1 G1-G2 1176026 + 139.7 81.3 59.0 83.9 86.8 49.9 131.0 150.3 Small non-coding RNA

CCNA_R0025 2 G1-G2 1176040 − 500.6 58.7 3.0 12.2 42.1 56.9 254.1 392.0 Small non-coding RNA

CCNA_R0164 / G1-G2 2608458 − 34.3 26.2 10.0 12.2 22.6 46.8 40.8 26.8 Small non-coding RNA

CCNA_R0050 / G1-S 2397735 + 105.5 700.9 385.0 306.0 167.9 99.2 103.9 64.2 Cell cycle regulated

CCNA_R0117 / G1-S 772628 + 30.6 84.5 70.0 110.0 49.8 49.7 62.7 73.4 Small non-coding RNA

CCNA_R0104 / G2 362212 − 4.5 0.2 0.0 4.8 7.7 6.0 17.4 22.6 Small non-coding RNA

CCNA_R0165 / G2 2672357 − 25.2 10.8 2.0 10.9 18.5 42.2 78.8 43.8 Small non-coding RNA

CCNA_R0093 / S 3781500 − 8141.7 16080.3 26189.0 16986.4 21895.1 19086.7 20603.8 15762.8 Minimal medium

CCNA_R0094 / S 182 − 55.0 15.4 2.0 46.1 181.3 314.6 176.3 118.9 Small non-coding RNA

CCNA_R0116 / S 757263 − 11.1 276.7 480.0 793.3 448.8 325.5 180.9 190.9 Small non-coding RNA

CCNA_R0124 / S 938932 + 98.9 180.7 268.0 390.4 297.3 309.6 220.7 290.8 Small non-coding RNA

CCNA_R0126 / S 1081336 − 1.4 5.5 6.0 15.6 10.3 12.8 9.6 4.9 Small non-coding RNA

CCNA_R0139 / S 1523958 + 5.7 16.9 25.0 19.6 22.6 16.6 27.9 18.7 Small non-coding RNA

CCNA_R0152 / S 2086425 + 447.7 526.2 416.0 1091.9 547.4 439.4 580.6 777.0 Small non-coding RNA

CCNA_R0159 / S 2434068 + 1.0 12.3 15.0 25.6 14.9 16.9 18.3 15.2 Small non-coding RNA

CCNA_R0163 / S 2560042 − 4.9 84.7 108.0 134.3 78.0 56.0 30.2 55.0 Small non-coding RNA

CCNA_R0172 / S 2940670 − 51.7 71.5 210.0 159.5 181.3 146.0 173.5 109.0 Small non-coding RNA

Coordinates of the Transcriptional Start Site (TSS) and classification of the cell cycle regulated phase are listed.
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therefore allowed us to select 44 ncRNAs for further analysis.
Among them, as previously described in the introduction,
two ncRNAs were already characterized and named CrfA
(Landt et al., 2008, 2010) and GsrN (Tien et al., 2017). In
conclusion 42 ncRNAs were the object of this study (Figure 1 and
Table 1).

By studying the expression patterns of the selected ncRNA in
synchronized cells, we classified those 42 ncRNAs based on their
expression levels during cell cycle. Specifically, we identified 23
ncRNAs whose expression changes during the cell cycle: 6 are
expressed in G1, 2 at the onset of the S phase (noted as G1-S),
CCNA_R0025 and CCNA_R0164 are expressed in G1 and G2
phases, while 10 are expressed in S-phase (noted as S) and 2
are toward the end of the cell cycle (G2). The latter genes may
be reflecting the accumulation in a specific cell type, as we will
discuss later. The observation that some ncRNAS genes are cell
cycle regulated, may suggest a putative function associated to
regulation of functions that are required at a specific phase (Laub
et al., 2000).

Prediction of Target Genes Regulated by
ncRNAs
Although experimental validation is absolutely required to
identify targets of ncRNAs, predictive tools may be useful to
suggest candidate target genes and therefore give a glance
about the functions regulated by a set of sRNAs. This is
particularly valid in case of a systematic analysis as the
experimental validation/identification of targets is not easily

scalable. In order to reconstitute the whole ncRNAs network
connected to cell cycle, we used three different available
tools, mainly RNApredator (Eggenhofer et al., 2011) but
then as confirmation also CopraRNA (Backofen et al., 2014;
Wright et al., 2014) and TargetRNA2 (Kery et al., 2014).
Each analysis provides specific features and it is able to
predict classes of targets. By using PredatorRNA we predicted
the first 100 targets that were retained for the analysis
(Supplementary Table 1).

Genes coding for factors playing a role in cell cycle regulation
were suggested as probable targets of some of the ncRNAs
(Table 2). In particular we considered genes annotated as of cell
cycle/cell division regulators. In order to evaluate the predictions,
we performed an additional analysis based on the following
consideration: regions that are complementary to the target RNA
should be located within open regions (loops) of the ncRNA
molecule and not to paired regions (stems) to ensure accessibility.
Therefore, we aimed to understand in silico how those putative
small RNAs were structured and whether targets were interacting
with the same loop regions. We used RNAfold (Gruber et al.,
2008) and mFold (Zuker, 2003) in order to identify loop regions
that would be more accessible for the interaction with target
genes.

We asked whether among cell cycle-regulated ncRNAs target
genes were more likely being cell cycle regulators with respect
to non-cell cycle regulated ncRNAs. Among the 22 ncRNAs that
showed dynamic expression during the cell cycle, we found 13

TABLE 2 | Prediction based on PredatorRNA, confirmed by Copra and/or

TargetRNA2 (regions targeted by ncRNAs are defined in

Supplementary Table 1).

CCNA Cell cycle

phase G1,

S, G2

Functions: Significant genes

(genes for

“flagellum” are not

listed):

CCNA_R0004 / Pilus, flagellum, cell division CpaE, maf

CCNA_R0009 / Flagellum

CCNA_R0016 / Cell cycle hdaA

CCNA_R0019 / Flagellum

CCNA_R0025 / Flagellum, ppGpp spoT

CCNA_R0040 / Cell division ftsK

CCNA_R0063 / Cell division ftsH

CCNA_R0111 / Flagellum, pilus, cell division cpaE, cpaF, ftsK

CCNA_R0112 / /

CCNA_R0134 / Chromosome partitioning,

cell division

mipZ, ftsY

CCNA_R0137 / /

CCNA_R0141 / Cell division, cell cycle ftsH, tipN

CCNA_R0142 / /

CCNA_R0145 / Cell cycle, flagellum hdaA, divL

CCNA_R0147 / Cell division ftsE

CCNA_R0170 / Cell cycle, flagellum hdaA

CCNA_R0171 / Cell cycle, cell division, pilus divJ, cpdR, mraZ, cpaD

CCNA_R0173 / Cell cycle podJ

CCNA_R0174 / Flagellum

CCNA_R0182 / /

CCNA_R0183 / Cell division, flagellum ftsI

CCNA_R0188 / Pilus, cell cycle cpaE, divL, hdaA

CCNA_R0193 / Flagellum

CCNA_R0018 G1 Flagellum, cell division ftsW

CCNA_R0051 G1 Flagellum

CCNA_R0095 G1 Pilus, flagellum, cell cycle,

cell division, Chromosome

partitioning

parA, cckA, ftsH, cpaE

CCNA_R0123 G1 Cell cycle, flagellum dnaA

CCNA_R0176 G1 Cell cycle dnaA, divJ

CCNA_R0199 G1 Stalk shkA

CCNA_R0025 G1-G2 Flagellum, ppGpp spoT

CCNA_R0025 G1-G2 Flagellum, ppGpp spoT

CCNA_R0164 G1-G2 Flagellum

CCNA_R0050 G1-S Cell cycle, flagellum divJ, pleD, tipN

CCNA_R0117 G1-S Flagellum

CCNA_R0104 G2 Cell cycle dnaA,cenR

CCNA_R0165 G2 Cell cycle, flagellum, ppGpp popZ, spoT

CCNA_R0093 S Cell cycle divL

CCNA_R0094 S Cell cycle dnaA

CCNA_R0116 S Stalk shkA

CCNA_R0124 S Cell cycle hdaA

CCNA_R0126 S /

CCNA_R0139 S Pilus, Flagellum, cell cycle cpaF, divL, tacA, pleD

CCNA_R0152 S /

CCNA_R0159 S Cell cycle dnaA

CCNA_R0163 S Cell cycle kidO

CCNA_R0172 S Cell cycle chpT
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TABLE 3 | Prediction of DnaA and CtrA binding sites, GcrA ChIPseq peaks and CcrM methylation sites.

region* = TSS − 100; TSS + 50

Name TSS position CtrA Full CtrA half CcrM DnaA GcrA peaks (ChIpseq) (Fioravanti et al., 2013)

CCNA_R0004 210993 − 0 1 0 0 0

CCNA_R0009 708218 + 0 4 0 0 1

CCNA_R0016 844332 + 0 0 0 1 0

CCNA_R0018 920425 + 0 0 0 0 0

CCNA_R0019 920752 − 0 0 0 0 1

CCNA_R0025 1176006 + 1 2 0 0 0

CCNA_R0025 1176026 + 1 2 0 0 0

CCNA_R0025 1176040 − 0 1 1 0 0

CCNA_R0040 1645202 + 0 0 2 0 0

CCNA_R0050 2397735 + 0 0 0 0 0

CCNA_R0051 2404309 + 0 1 0 0 0

CCNA_R0063 2889177 + 0 0 0 0 0

CCNA_R0093 3781500 − 0 0 0 0 1

CCNA_R0094 182 − 2 4 1 0 0

CCNA_R0095 4950 − 0 0 0 0 0

CCNA_R0104 362212 − 0 2 0 0 0

CCNA_R0111 622892 + 0 0 0 0 0

CCNA_R0112 626656 + 0 1 1 0 0

CCNA_R0116 757263 − 0 1 3 0 1

CCNA_R0117 772628 + 0 0 1 0 0

CCNA_R0123 921719 − 0 0 0 0 0

CCNA_R0124 938932 + 0 3 0 0 0

CCNA_R0126 1081336 − 0 0 1 0 0

CCNA_R0134 1294595 + 0 0 0 0 0

CCNA_R0137 1387892 − 0 1 0 0 0

CCNA_R0139 1523958 + 0 0 0 1 0

CCNA_R0141 1607996 − 0 0 0 0 0

CCNA_R0142 1682820 + 0 0 0 0 0

CCNA_R0145 1911195 + 0 0 1 0 0

CCNA_R0147 1986625 + 0 0 0 0 0

CCNA_R0152 2086425 + 0 1 2 0 0

CCNA_R0159 2434068 + 0 0 2 1 0

CCNA_R0163 2560042 − 0 1 2 0 1

CCNA_R0164 2608458 − 0 0 0 0 0

CCNA_R0165 2672357 − 0 1 2 0 0

CCNA_R0170 2778348 + 0 0 2 0 0

CCNA_R0171 2800063 + 2 4 0 0 0

CCNA_R0172 2940670 − 0 0 1 1 0

CCNA_R0173 2967588 − 0 1 0 1 0

CCNA_R0174 2977449 + 0 0 0 0 1

CCNA_R0176 3091482 − 0 0 1 0 0

CCNA_R0182 3288242 + 0 0 0 0 0

CCNA_R0183 3294320 + 0 0 0 0 0

CCNA_R0188 3462949 + 0 0 0 0 0

CCNA_R0193 3699499 + 0 0 0 1 0

CCNA_R0199 3987216 + 0 2 1 2 0

*Opposite for genes annotated on the minus strand.
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FIGURE 2 | Network of ncRNAs and master regulators of cell cycle. Integrated view of control on selected ncRNAs by DnaA, CtrA, CcrM, and GcrA and of ncRNA on

transcripts. Violet squares represent ncRNAs. CtrA, DnaA, CcrM, and GcrA (Upper Case) represent proteins, while the same factors (lower case) represent targets of

ncRNAs. For CtrA blue arrows represent “half sites” while green arrows represent “full sites” (whenever a full site is present, we don’t indicate half sites).

out of 22 directly acting on cell cycle regulators (ca 60%), while
only 7 out of 23 (30%) of the remaining ncRNAs, not showing
cell cycle regulation, have targets with a role in the cell cycle.
This observation suggests that ncRNAs may be indeed cell cycle-
regulated as they act on functions that need to be activated only
at specific phases of cell cycle progression. But can we identify
whether ncRNAs are regulated by one of the master regulators of
the cell cycle?

Presence of DnaA and CtrA Boxes or
Methylation Sites Upstream Cell
Cycle-Regulated ncRNAs
In order to understand how ncRNAs are regulated by the cell
cycle we explored the presence of known binding sites in their
promoter regions. Specifically promoters were scanned for the
presence of DnaA, CcrM (GAnTC) or CtrA putative DNA
binding sites (both “half” and “full” binding sites) (Ouimet
and Marczynski, 2000; Brilli et al., 2010). We also analyzed
the presence of GcrA binding sites using previously published
Chromatin Immunoprecipitation-deep sequencing (ChIP-seq)
data (Fioravanti et al., 2013; Murray et al., 2013). Those
four regulators represent the core transcriptional machinery
responsible for cell cycle progression and for the coordinated
expression of all the cell cycle-dependent functions. The analysis

revealed that many of those ncRNAs are potentially regulated by
master regulators of cell cycle (Table 3). In particular ncRNAs
expressed in S-phase appear to possess binding sites of master
regulators, justifying their cell regulated expression. Although
the expression pattern may be the result of combinatorial
regulation, this enrichment of cell cycle regulators binding motifs
is intriguing and asks for experimental validation.

In order to understand the full picture of interconnection
between ncRNAs and master regulators, we integrated the data
of Table 2 (cell cycle targets of ncRNAs) with those in Table 3

(master regulators regulating ncRNAs) and we represent the
regulations as a network (Figure 2). This network represents
ncRNAs that are potentially regulated by master regulator of cell
cycle and that are eventually connected to cell cycle regulator
genes.

CONCLUSIONS AND PERSPECTIVES

Our comprehensive analysis of C. crescentus ncRNAs has
revealed that many of those factors potentially play important
roles during the cell cycle. In particular, our predictions show
that many of them target the UTRs of dnaA or hdaA. Initiation
of DNA replication is a fundamental event during the cell cycle
and for this reason, it likely justifies multiple regulation levels.
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DnaA has been shown to be subject to multiple regulatory
layers (Felletti et al., 2018), including a ncRNA named SsrA,
or tmRNA, a ncRNA interacting with ribosomes to regulate
protein degradation (Keiler and Shapiro, 2003). Here we indicate
for the first time several ncRNAs able to potentially regulate
dnaA.

However the extent of ncRNAs regulation on the cell cycle is
even vaster (Figure 2). Clearly, CtrA and CcrM seem to play a
major role in coordinating the expression of many genes, while
dnaA seems to be a major target of at least four ncRNAs. Several
ncRNAs seem to be controlled by two master regulators and
R0116 is controlled by CcrM, GcrA, and CtrA, suggesting an
important role for this ncRNA.

Although this analysis is based on predictions and every
connection must be validated experimentally, the amplitude
of all connections revealed by this bioinformatic predictions
strongly suggests that ncRNAs are indeed playing a major
role in cell cycle regulation of C. crescentus. Next years will
reveal whether this preliminary analysis grasped this important
role.
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