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Abstract 

Primary platelet secretion defects are heterogeneous group of functional defects characterized by 

reduced platelet granule secretion upon stimulation by different agonists. The clinical and 

laboratory heterogeneity of primary platelet secretion defects warrants a tailored approach. We 

performed a pilot study in order to develop DNA sequence analysis pipelines for gene discovery 

and to create a list of candidate causal genes for platelet secretion defects. Whole-exome 

sequencing analysis of 14 unrelated Italian patients with primary secretion defects and 16 controls 

was performed on Illumina HiSeq. Variant prioritization was carried out using two filtering 

approaches: identification of rare, potentially damaging variants in platelet candidate genes or by 

selecting singletons. To corroborate the results, exome sequencing was applied in a family, in 

which platelet secretion defects and bleeding diathesis were present.  

Platelet candidate gene analysis revealed gene defects in 10/14 patients, which included ADRA2A, 

ARHGAP1, DIAPH1, EXOC1, FCGR2A, ITPR1, LTBP1, PTPN7, PTPN12, PRKACG, PRKCD, RAP1GAP, 

STXBP5L, and VWF. The analysis of singletons identified additional gene defects in PLG and 

PHACTR2 in two other patients. The familial analysis confirmed a missense variant p.D1144N in the 

STXBP5L gene and p.P83H in the KCNMB3 gene as potentially causal. In summary, exome 

sequencing revealed potential causal variants in 12 of 14 patients with primary platelet secretion 

defects, highlighting the limitations of the genomic approaches for causal gene identification in 

this heterogeneous clinical and laboratory phenotype. 
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Introduction 

Disorders of platelet function are characterized by highly variable mucocutaneous bleeding 

manifestations and excessive hemorrhage following surgical procedures or trauma.
1-4

 Primary 

platelet secretion defects (PSD) are the most common platelet functional defects,
5
 which displays 

both clinical and laboratory heterogeneity.
6
 From a clinical standpoint, PSD may be associated 

with mild to severe bleeding tendency.
7
 Thus, due to the heterogeneous nature of platelet 

secretion defects, laboratory testing is limited to specialized laboratories and accurate mechanistic 

diagnosis remains challenging. 

Platelet aggregation and secretion studies with lumi-aggregometry, where dense granule secretion 

is assessed in parallel with traditional light transmission aggregometry (LTA), provide evidence for 

platelet dysfunction.
8, 9

 PSD is characterized by reduced or absent delta granule secretion upon 

stimulation by one or more platelet aggregation agonists either at low or high doses.
8, 9

 However, 

lumi-aggregometry, the gold standard technique for platelet function studies, is not always 

predictive of the molecular mechanisms, rendering mechanistic differentiation of primary PSD 

difficult. 

Multiple inherited alterations of platelet function have been described, including forms with 

different pattern of inheritance.
2, 4, 10

 For conditions where the laboratory phenotype was not 

discriminating, genotyping using the next-generation DNA sequencing (NGS) could be a 

comprehensive and cost-effective strategy for the diagnosis of platelet function disorders.
11-13

 

Indeed, the application of NGS-based approaches, based on the application of whole-exome 

sequencing (WES) or custom gene panels, proved to be successful for the diagnosis of inherited 

platelet defects.
11, 13, 14

 Leo et al. applied WES to study 329 candidate genes involved in platelet 

function defects and identified gene variants in patients with defects in Gi signaling and with 

platelet secretion abnormalities.
15

 WES was also successful in identifying causal mutations in the 

RASGRP2 gene, which encodes a protein required for signaling and platelet activation
16, 17

 or in 

identifying a causal mutation displaying autosomal dominant inheritance located in the THBD 

gene.
18

 However, a standardized pipeline or procedure linking the identified gene defects to the 

specific sub-phenotype of diverse platelet function disorders is still missing.  

Given the positive experience acquired with the use of WES in identifying potentially pathogenic 

genetic variants in the platelet function defects, the use of NGS-based diagnostics provides a great 

opportunity in improving causal gene identification and understanding the underlying clinical 

phenotype. 
19-22

 For this reason, we decided to apply exome sequencing in a well-characterized 
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group of patients with primary PSD and clinically relevant bleeding.
5
 The aim of our pilot study was 

to test whether WES will be an adequate diagnostic tool for causal gene discovery in a 

heterogeneous group of platelet function defects such as primary PSD. 

 

Methods 

Study population 

Fourteen unrelated patients with diagnosis of primary PSD were enrolled among 360 individuals 

with suspected platelet function disorder referred to our outpatient clinic at Ospedale Maggiore 

Policlinico, Milano (IT). 

Patients inclusion criteria were: (i) European ancestry; (ii) platelet count >120.000 /µL; (iii) 

impaired platelet ATP secretion after stimulation with two or more agonists measured by 

lumiaggregometry; (iv) normal expression of platelet glycoprotein (GP) Ib/IX/V and GPIIb/IIIa to 

exclude Bernard-Soulier syndrome and Glanzmann thrombasthenia; (v) absence of any other 

known platelet disorder; and (vi) absence of von Willebrand (VW) disease. 

Four family members of one patient (C740) were also included and studied. 

All studied subjects abstained from drugs affecting platelet function for two weeks before blood 

sampling. All platelet function results were compared with our internal normal range.  

The study was approved by local Ethical Committee of Ospedale Maggiore Policlinico, Milano (IT) 

and carried out according to the Declaration of Helsinki. All participants signed informed consent. 

 

Platelet phenotyping 

Personal and family history, blood tests including complete blood count, prothrombin time (PT) 

and activated partial thromboplastin time (aPTT) by standard methods, VW Factor (F) Antigen and 

VWF Ristocetin cofactor by automated latex enhanced immunoassay (Instrumentation Laboratory, 

Milano, IT)
23

 were collected (On line Supplementary methods). The bleeding severity score (BSS) 

was calculated for each patient according to Tosetto et al.
24

 (v.n.: child<2; men<5; woman<6). 

 

Blood samples were drawn in trisodium citrate for coagulation, VWF measurement, and platelet 

function studies and in K–EDTA for DNA extraction
25

 and blood cell count. 

Platelet aggregation and ATP secretion induced by ADP (4 and 20 μM), collagen (2 μg/mL), 

thrombin receptor activator peptide (TRAP)-14 (10 μM), and thromboxane A2 analogue U46619 

(1μM) were measured in platelet-rich plasma (PRP) by lumiaggregometry (Chrono-log 560, Mascia 
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Brunelli, Milano, IT). 
26

 PRP was prepared as previously reported.
27

 Intraplatelet ADP, ATP, 

serotonin, and fibrinogen content was measured as previously reported
28, 29

 (On line 

Supplementary Methods). 

 

Whole-exome sequencing 

Individual exomes were enriched using a SeqCap EZ Human Exome Library kit v2.0 (Roche 

NimbleGen) and paired-end sequencing was carried out on the HiSeq2000 (Illumina, San Diego, 

CA) at the Beijing Genomics Institute (www.bgi.com). 

The Short Oligonucleotide Analysis Package aligner (soap2.21)
30

 was used to align reads to the 

reference human genome (hg19/GRCh37) and produce individual Binary Alignment Map (BAM) 

files. The Genome Analysis Tool Kit (GATK) was used for quality recalibration, duplicate read 

marking, insertions/deletions (indels) realignment, and BAM sorting to produce merged, sample-

level variant calling file (VCF) (On line Supplementary Methods). 

 

Variant filtering and candidate gene discovery  

Variant filtering and candidate gene discovery were performed on the project level, merged VCF 

file containing 14 unrelated Italian PSD patients and 16 healthy controls by using two different 

filtering strategies: selection of singletons and filtering for the SNVs reported by Leo et al.
15

 (On 

line Supplementary Methods). 

Variant pathogenicity was assigned according to the American College of Medical Genetics and 

Genomics (ACMG) pathogenicity classification.
31

 Platelet gene expression was evaluated using the 

Human Proteome Map (HPM).
32

 (On line Supplementary Methods). 

 

Results 

Clinical characteristics of patients with PSD 

Of 360 patients with suspected platelet disorders investigated at our center, 14 unrelated patients 

(12 females and 2 males; median age 23 years) fulfilled inclusion criteria (Table 1). Patient BSS 

ranged between 0-15 and 64% of the cases resulted abnormal (Table 1). PT, aPTT, plasma 

fibrinogen, and VWF levels were within the normal range (data not shown). Platelet count was 

normal in all PSD patients (median 258 x10
9
/L, min-max 120-357; v.n. 150-450), except for patient 

C749 who had a slightly lower platelet count (120 x10
9
/L). 
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Platelet functions studies 

Platelet aggregation was lower than the normal range in the majority of the patients with all 

agonists tested (Figure 1A) and rapidly reversible in 60% of the cases when induced by ADP (4μM). 

Platelet ATP secretion was absent after stimulation by ADP (4μM) in all patients and lower than 

the normal range in response to the other agonists in the majority of cases (Figure 1B). In 

particular, platelet secretion was impaired with two stimuli in 4/14 patients, with three in 4/14, 

and with more than three in 6/14 (Table 1). These findings confirmed the diagnosis of primary PSD 

in all patients. 

The concentrations of total serotonin, ADP and ATP were normal in all patients including the 

ATP/ADP ratio, which is considered a diagnostic hallmark for δ-storage pool deficiency (On line 

Supplementary Table S1). Similarly, fibrinogen from platelet α-granules was normal. All together, 

these data excluded that the secretion defect of these patients was attributable to the presence of 

α-or δ-storage pool deficiency. 

 

Exome sequencing and candidate gene discovery 

NGS data analysis revealed 101,562 variants that passed quality control and were sequenced with 

an average read depth of 51 over each site. Of those, 96,432 were single nucleotide variants 

(SNVs) and 5,130 were indels. Singletons defined as private variants occurring exclusively in a 

single individual were 11,430 (mean = 762) in PSD cases and 23,564 (mean = 1,473) in controls. In 

addition, we identified 30,973 rare variants with MAF ≤1% and 11,187 of these variants were 

considered novel, i.e., not listed in dbSNP or any other variant database.  

 

Platelet candidate gene filtering approach 

Candidate gene discovery was carried out by two independent filtering approaches: identification 

of variants in platelet candidate genes and by selecting singletons (On line Supplementary Figure 

S1). In the first approach, we selected from PSD patients all rare, potentially deleterious variants 

located in the coding regions of 329 candidate platelet genes listed by Leo et al.
15

 This prioritizing 

strategy revealed 37 gene defects, of which six were novel (On line Supplementary Table S2). Since 

this variant prioritizing strategy yielded multiple SNVs for the following patients C729 (5 SNVs), 

C732 (4 SNVs), C739 (4 SNVs), C740 (7 SNVs), C831 (4 SNVs), we used the ACMG variant 

pathogenicity classification,
31

 which revealed 14 gene defects classified as variants of uncertain 

significance (VUS) in eight patients. To provide functional analysis of these genes, we assessed 
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their expression patterns in platelets using the Human Proteome Map (HPM), which integrates 

mass spectrometry analysis of different human tissues and cell types as part of the human 

proteome project.
32

 This evaluation identified potential gene defects in seven PSD patients: EXOC1 

(C732), DIAPH1 (C739), STXBP5L and PRKACG (C740), PTPN12 (C749), VWF (C831), PRKCD (C1075), 

PTPN7 and PRKCD (C1107). 

 

Singleton filtering approach 

Given that the first approach failed to identify gene defects in six patients, we decided to apply 

another filtering strategy based on the isolation of singletons. To this end, we selected from all 14 

patient private variants, which were rare and possibly deleterious and we obtained 2,875 SNVs in 

2,162 genes. To prioritize these SNVs for their putative role in platelet secretion defects, we 

performed functional annotation using the Database for Annotation, Visualization and Integrated 

Discovery (DAVID).
33

 Significantly associated Gene Ontology (GO) annotations were found for gene 

clusters in the following functional categories: biological process - extracellular matrix organization 

for 48 genes (P=2.1E-07, Bonferroni P=9.9E-04); cellular component - basal lamina containing 10 

genes (P=5.7E-06, Bonferroni P=4.4E-03); molecular function - extracellular matrix structural 

constituent comprising 22 genes (P=5.6E-06, Bonferroni P=8.3E-3). In addition, the KEGG pathway 

analysis (www.genome.jp/kegg/pathway.html) revealed once again a cluster of 26 genes with 

functional annotation associated with extracellular matrix-receptor interactions (P=2.9E-06, 

Bonferroni P=7.9E-04). The extracellular matrix functional category can be defined as any material 

produced by cells and secreted into the surrounding medium, which include collagen, laminin, 

fibronectin proteins and glycosaminoglycans 

(http://www.uniprot.org/keywords/?query=Extracellular%20matrix), indicating that our 

prioritizing method had indeed identified genes potentially affected in platelet secretion defects. 

Functional overlap between the above-mentioned gene clusters was achieved by enriching for 

variants present in genes exhibiting GO terms such as platelets and secretion, platelets and 

granules, platelets and signaling.  

In this way, we identified 70 potential gene defects, of which 68 were missense variants. We also 

found a STOP gain variant in the PHF14 gene (c.G298T, p.E100X) in patient C749 and a frameshift 

deletion in the TBXAS1 gene (c.151_152delGT, p.V51fs) present in patient C831. Importantly, all 37 

missense variants identified by filtering for gene defects in platelet candidate genes were also 
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found in the list of singletons, which together produced a list of 107 candidate gene defects listed 

in the (On line Supplementary Table S2). 

Similar to the previous filtering strategy, the singleton approach revealed an excess of potential 

gene defects in several patients (On line Supplementary Table S2). To be able to assign causality, 

further reduction in the number of SNVs was necessary. To this end, we once again used the 

ACMG variant pathogenicity classification,
31

 which resulted in the identification of 22 putative 

gene defects classified as VUS in 10 patients with primary PSD. However, only 13 of these variants 

were located in genes expressed in human platelets according to the HPM
32

 (Table 2). In summary, 

this variant prioritization approach provided candidate gene defects for four patients C696, C708, 

C797 and C847, for whom the previous strategy was ineffective. It is interesting to note that 

several of these gene defects were missing from the list of Leo et al.,
15

 indicating that these 

genomic loci could potentially become novel candidate genes associated with PSD. 

 

Family analysis of patient C740 

Only one notable pedigree, case C740, was investigated. The distribution of PSD phenotype and 

BSS in his relatives are reported in Figure 2 (father C1300, mother C1301, and two sisters C1302 

and 1304). WES was performed in all four individuals and the variant filtering steps were based on 

MAF≤1%, selecting SNVs with potentially damaging consequences and assuming disease 

transmission present in affected and absent in unaffected family members (On line Supplementary 

Figure S2). Upon classification according to the ACMG,
31

 four SNVs were confirmed in 

heterozygous state in PSD affected C740 and father C1300, suggesting an autosomal dominant 

transmission of the disease. Two of those, p.D1144N in the STXBP5L gene and p.P83H in the 

KCNMB3 gene, classified as VUS (Table 3) may be involved in secretion process, thus being the 

most probable gene defects responsible for the PSD phenotype in this family. 

 

Discussion 

In this pilot study, we performed WES in 14 unrelated Italian patients diagnosed with primary PSD 

and 16 healthy controls. We selected a group with common phenotype characterized by impaired 

platelet aggregation and secretion with two or more stimuli as assessed with lumi-aggregometer 

and a normal platelet content of the granules, confirming the diagnosis of PSD. In our previous 

study, we demonstrated that PSD is the most abundant diagnosis with a prevalence of almost one 

fifth of patients with mild bleeding diathesis.
5
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To identify causal genes underlying these defects, we carried out two prioritizing approaches, 

which were based on the identification of rare, potentially deleterious variants present in 329 

platelet candidate genes listed by Leo et al.
15

 or by selecting singletons (On line Supplementary 

Figure S1). These strategies revealed a number of plausible candidate gene defects explaining 

phenotypical defects of primary PSD. For instance, patient C740 carries a missense variant 

p.D1144N in the STXBP5L gene (Table 2). In a recent report, another missense variant was 

identified in this gene as potentially causal in platelet secretion abnormalities.
15

 Since STXBP5, a 

paralog of STXBP5L, promotes platelet secretion,
34, 35

 perhaps also STXBP5L may play a role in this 

process. Another interesting candidate is the KCNMB3 gene that carries the p.P83H missense 

variant. This gene encodes the Calcium-Activated Potassium Channel Subunit Beta-3 protein 

involved in a pathway activated in response to elevated platelet cytosolic Ca
2+

. 

For patient C732, a gene defect was found in EXOC1, which is another candidate gene that 

influences platelet granule exocytosis. This gene encodes the Exocyst Complex Component 1 

protein that functions as part of the exocyst complex and is required for targeting exocytic vesicles 

to specific docking sites on the plasma membrane.
36

 

We also found a missense variant p.A464P in the RAP1GAP gene for patient C831. This variant has 

been classified as likely benign and for this reason, it was excluded from Table 2. Importantly, the 

Rap1GAP protein plays a regulatory role in platelet aggregation,
37

 suggesting that this missense 

variant may have a functional role. 

As previously reported, PSD can be associated with proteins acting at different levels: signal 

transduction, platelet activation, degranulation, or exocytosis.
4
 Indeed, we found potential gene 

defects in proteins involved in all of these processes (Table 2). Importantly, several patients in our 

study had multiple defects in the above-mentioned genes and gene pathways, which may explain 

the complex and heterogeneous nature of primary PSD. This indicates that an in-depth functional 

analysis of platelet receptor and signaling pathways will be necessary to discriminate differences 

in clinical and laboratory phenotypes of affected individuals. 

 

Study limitations 

Following a positive experience with the application of WES to identify gene defects underlying 

inherited platelet function disorders, 
19-22

 we chose to investigate primary PSD using the same 

technique, hoping that genomic approach will be effective in identifying causal variants in a 

heterogeneous clinical and phenotypic such as primary PSD. However, exome sequencing followed 
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by two independent variant prioritization approaches yielded inconclusive results. The primary 

reason for this is undoubtedly the heterogeneous clinical and laboratory phenotype of primary 

PSD, which may have led to the identification of genes not necessarily associated with the disease. 

For instance, 20 missense variants were detected in the TTN gene in 11 PSD patients, of which 

eight are VUS. However, TTN is one of the most frequently mutated genes in the human 

genome,
38

 implying that the variation found in this gene is probably to the size of its coding 

regions (363 exons). 

Another limitation of this study was perhaps the choice of the variant prioritization strategy. We 

applied a generally accepted filtering method based on the selection of rare (MAF>1%), potentially 

damaging variants. This approach revealed great abundance of variants for most patients, which 

required further selection based on the ACMG pathogenic classification of SNVs (Table 2). This 

revealed 34 putative gene defects classified as VUS in 12 patients with primary PSD, of which 24 

were located in genes expressed in human platelets according to the HPM (Table 2). However, it is 

possible that many potentially causal SNVs, which were classified as likely benign or benign, were 

excluded due to a lack of supporting evidence or that the gene defects may only manifest at the 

level of megakaryocyte development or platelet maturation. 

In addition, some of the functional defects might have been located in the non-coding parts of the 

genome such as promoters, intronic sequences or enhancers, which were not covered by exome 

sequencing. Finally, since the identification of gross chromosomal aberration such as copy number 

variation (CNV) from the WES data remains a technical challenge, it is likely that these structural 

variants would not have been detected. Although several bioinformatics methods have been 

developed for CNV analysis from the WES data, they require uniform coverage and high resolution 

of the sequencing data across all exons/coding regions as well as specialized bioinformatics 

pipeline of data analysis validated against the whole-genome data.
39

 For this reason, the whole-

genome sequencing is the only sure means for identifying the CNVs alongside SNVs and small 

indels. 

In conclusion, we carried out an exome sequencing in 14 patients with primary PSD and 16 

healthy controls, followed by two variant prioritization strategies. Our analysis identified potential 

gene defects in 12 patients, implying that the NGS-based diagnostic strategies for causal gene 

identification in such heterogeneous clinical and laboratory phenotype as primary PSD may be 

ineffective. In this cases, a well-defined, common disease phenotyping and properly established 

pipeline for variant analysis are necessary. The difficulty in assigning causality can be overcome by 
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genetic screening of affected and unaffected family members, which allows the identification of 

gene defects that segregate with the clinical phenotype or by functional studies.  

The perils of genetic data sharing with patients may involve ethical concerns, lack of 

confidence in assessing the causality of identified variants, and the implication of some inherited 

platelet pathologies with other risks.
40

 For these reasons, sharing genetic data with patients is still 

an opened issue that requires further discussion.   
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Table 1. Clinical and biological characteristics of 14 unrelated PSD patients.  

ID Sex Age BSS 
Parents 

consang. 

First-grade family  

bleeding history 

Platelet secretion stimulus 

ADP  

4 μM 

ADP  

20 μM 

Collagen 

2 μg/mL 

U46619 

1 μM 

TRAP  

10 μM 

C696 F 34 4 no No + - - + - 

C708 F 36 5 no Mother (mild PSD) + + + + - 

C729 F 3 2 no No + + - - n/p 

C732 F 25 15 no No + + - + - 

C739 M 5 0 no Mother + + - - n/p 

C740 M 19 10 no 

Father (mild PSD),  

Sister (mild bleeding 

diathesis without 

PSD) 

+ + + + + 

C749 F 55 9 no 

Mother and sister 

with 

thrombocytopenia 

+ + + - + 

C783 F 63 13 no Mother + + - - - 

C797 F 31 5 no No + + - + - 

C831 F 20 7 no Mother + - + - + 

C847 F 19 7 no Mother + + - + + 

C862 F 3 7 no No + + - + n/p 

C1075 F 52 15 no Brother + + + - + 

C1107 F 60 8 no No + + - + + 

 

BSS – bleeding severity score; (+) indicates defective platelet secretion response to the stimulus;  

(-) indicates response within the normal range; n/p – data not present. 
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Table 2. Putative causal variants identified by WES in 12/14 patients with primary PSD according to Leo et al.
15

 classification or by selecting 

singletons (Online Supplementary Figure S1).  

All variants were heterozygous. 

ID Gene 
Nucleotide 

change 
dbSNP 

Amino acid 

change 

MAF 

1000G 

MAF 

ESP 

MAF 

ExAC 
SIFT 

Poly 

phen2 

Mutation 

Taster 

CADD 

C 

score 

Platelet 

expression 

(*) 

Assess. 

(**) 

C696 COL24A1 c.G4673A - p.G1558E - - - D D D 25 - VUS 

C708 TTN c.G106955A rs200497615 p.R35652Q - 0.0007 0.0003 B B D 25 + VUS 

 CSRNP1 c.C673T rs142034027 p.R225W - 0.0007 0.0001 D D D 32 - VUS 

 NRP1 c.G620A rs148308681 p.R207H - 0.0001 0.0001 D D D 33 - VUS 

C729 TTN c.C104564A - p.S34855Y - - - D D D 20 + VUS 

 ITGA2 c.G305A rs41392746 p.S102N - - 3.01E-05 B B B 20 + VUS 

 MYO3A c.T1525C rs150793986 p.Y509H - 0.0003 0.0002 D D D 27 - VUS 

 MUC2 c.G6931A rs200823008 p.V2311I - 0.0001 0.0008 - - - - - VUS 

C732 EXOC1 c.G2009A rs35001804 p.G670E 0.003 0.0086 0.009 D D D 32 + VUS 

C739 DIAPH1 c.T3227G rs143763573 p.F1076C - - 0.0001 D D D 26 + VUS 

 ITPR3 c.C5720T - p.T1907M - - - D D D 33 + VUS 

C740 TTN c.C72358T rs372309164 p.L24120F - 0.0002 0 B D D 18 + VUS 

 TTN c.G1895A rs150231219 p.G632D - 0.0002 0 D B B 19 + VUS 

 SLC2A7 c.C670T rs35776221 p.R224C 0.006 0.01 0.008 D D D 27 - VUS 

 STXBP5L c.G3430A rs139176240 p.D1120N - 0.0001 0.0001 B D D 25 + VUS 

 KCNMB3 c.C248A rs61734056 p.P83H - 1.50E-05 0.0001 D D D 27 - VUS 

 LCN1 c.G298C rs117638349 p.G100R 0.006 0.008 0.004 D D B 23 - VUS 

 PRKACG c.C280T - p.R94C - - - D D B 23 + VUS 

 MUC2 c.G2594A - p.S865N - - - - - - - - VUS 

 MUC2 c.A5038G rs371137719 p.T1680A 0.01 0.0024 0 - - - - - VUS 

C749 LYST c.G8806A rs2753327 p.V2936I 0.001 0.0009 0.0009 B B D 22 - VUS 

 TTN c.G49413T rs202094100 p.W16471C - 0.0008 0.0006 D D D 24 + VUS 

 PHF14 c.G298T - p.E100X - - - - - D 38 - VUS 

 PTPN12 c.C1066T rs752211731 p.P356S - - 0 D D D 27 + VUS 
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C797 TTN c.C17T rs201490999 p.P6L - - - D D D 24 + VUS 

 EGF c.G3073A - p.A1025T - - - B B D 15 + VUS 

C831 TTN c.T15768A rs138826545 p.H5256Q - 0.0002 0.0002 B B D 12 + VUS 

 EGF c.G1723A rs115396821 p.G575R 0.008 0.0024 0.0027 D D D 26 + VUS 

 TBXAS1 c.151_152del - p.V51fs - - - - - - - + VUS 

 VWF c.G8171A - p.C2724Y - - - D D D 26 + VUS 

C847 TTN c.C91384T rs373623340 p.R30462W - - 3.01E-05 D D D 26 + VUS 

 PHACTR2 c.G1360C - p.D454H - - - D D D 26 + VUS 

 NOS3 c.C3385T rs774447524 p.R1129C - - 2.31E-05 D D D 34 - VUS 

C1075 PRKCD c.A1043G rs33911937 p.N348S - 0.0015 0.0016 B B D 15 + VUS 

C1107 PTPN7 c.G425A rs115136927 p.R142Q 0.003 0.0072 0.0062 B D D 27 + VUS 

 PRKCD c.G868T - p.A290S - - - B D D 25 + VUS 

 MMRN1 c.G3680T rs147451161 p.R1227L 0.003 0.0031 0.0036 D D D 28 + VUS 

 

 

dbSNP – Database of Single Nucleotide Polymorphisms v.138. MAF – minor allele frequency (MAF from European populations is shown). 1000G – 

the 1000 Genomes Project. ExAC – the Exome Aggregation Consortium. ESP – the Exome Sequencing Project. SIFT – Sorting Intolerant From 

Tolerant. PolyPhen2 – Polymorphism Phenotyping v2. Mutation Taster, prediction scores: D – Damaging, B – Benign.  

CADD C score – Combined Annotation Dependent Depletion score.
41

 VUS – variant of uncertain significance. 

(*) Platelet gene expression evaluated by the Human Proteome Map (HPM) (http://www.humanproteomemap.org);
32

 

(**) Assess. – Assessment of variant pathogenicity assigned according to the American College of Medical Genetics and Genomics pathogenicity 

classification.
31
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Table 3. Putative causal variants identified by WES in the family of patient C740 (Online Supplementary Figure S2). 

 

dbSNP – Database of Single Nucleotide Polymorphisms v.138. MAF – minor allele frequency (MAF from European populations is shown). 1000G – 

the 1000 Genomes Project. ExAC – the Exome Aggregation Consortium. ESP – the Exome Sequencing Project. SIFT – Sorting Intolerant From 

Tolerant. PolyPhen2 – Polymorphism Phenotyping v2. Mutation Taster, prediction scores: D – Damaging, B – Benign.  

CADD C score – Combined Annotation Dependent Depletion score.
41

 VUS – variant of uncertain significance. 

(*) Platelet gene expression evaluated by the Human Proteome Map (HPM) (http://www.humanproteomemap.org);
32

 

(**) Assess. – Assessment of variant pathogenicity assigned according to the American College of Medical Genetics and Genomics pathogenicity 

classification.
31

 

 

 

Gene dbSNP 
Nucl. 

change 

Amino 

acid 

change 

C740 C1300 C1301 C1302 C1304 
MAF 

1000G 

MAF 

ExAC 

MAF 

ESP 
SIFT 

Poly 

phen2 

Mutation 

Taster 

CADD 

C score 

PLT 

Exp. 

(*) 

Assess 

(**) 

SLC2A7 rs35776221 c.C670T p.R224C het het - - - 0.006 0.01 0.008 D D D 27 - VUS 

STXBP5L rs139176240 c.G3430A p.D1144N het het - - - - 0.0004 0.0001 B D D 25 + VUS 

KCNMB3 rs61734056 c.C248A p.P83H het het - - - - 1.50E-05 0.0001 D D D 27 - VUS 

LCN1 rs117638349 c.G298C p.G100R het het - - - 0.006 0.008 0.004 D D B 23 - VUS 
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Figure legends 

 

Figure 1. Dot plots of platelet aggregation (A) and secretion (B) of 14 unrelated PSD patients.  

Figure 1 legend. Boxes indicate our internal range of normality (5th -95thpercentiles).  

 

Figure 2. Pedigree of patient C740. 

Figure 2 legend. Black and white symbols indicate affected by PSD and unaffected family 

members, respectively. The arrow indicates the proband C740.  

BSS – bleeding severity score 
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Supplementary Tables 

 

Table S1. ADP, ATP, serotonin, and fibrinogen platelet content. 

 

 

 

 

 

 

 

 

 

 

*Median (min-max) 

** (5th-95th percentiles) 

 

  

 
PSD patients 

N=14* 

Internal reference 

range** 

Delta granules   

ADP (nmoles/108 platelets) 2.26 (1.19-4.15) 1.30-2.88 

ATP (nmoles/108 platelets) 5.00 (3.20-9.40) 3.17-7.07 

ATP/ADP 2.42 (1.83-2.84) 1.55-3.42 

Serotonin (nmoles/108 platelets) 0.37 (0.25-0.64) 0.19-0.40 

Alpha granules   

Fibrinogen (mg/109 platelets ) 0.06 (0.04-0.13) 0.03-0.19 
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Table S2. Single-nucleotide variants (n=107) identified in 14 PSD patients by WES followed by two prioritizing approaches, according to Leo et al.1 

classification or by selecting singletons.  

All variants were heterozygous. Variant filtering steps are reported in Figure S1. 

ID Gene 
Nucleotide 

change 
dbSNP 

Amino acid 

change 

MAF 

1000G 

EUR 

MAF ESP 

EA 

ExAC  

NFE 
SIFT Polyphen2 

Mutation 

Taster 

CADD  

C-score 

Platelet 

expression 

Leo et 

al (JTH, 

2015) 

ACMG 

C696 COL24A1 c.G4673A . p.G1558E . . . D D D 25.2 - - VUS 

C696 LTBP1 c.G3011A rs141080282 p.R1004Q 0.005 0.0067 0.0059 D P D 24.2 + + LB 

C696 PLEK c.A322C rs34515106 p.K108Q . 0.0007 0.0016 T P D 22.4 + - LB 

C696 MERTK c.A2305G rs147899488 p.I769V . 0.0001 0.0004 T B D 16.37 - - LB 

C696 TUBA3D c.G331A rs550660894 p.G111S . . 4.5E-05 . D D 27.5 - - LB 

C696 TTN c.T99179C rs763888823 p.I33060T . . . T B D 20.7 + - LB 

C696 TTN c.G63309T . p.M21103I . . . T B D 19.1 + - LB 

C696 TTN c.A24973G rs72648984 p.K8325E 0.008 0.0076 0.0093 T B D 13.41 + - LB 

C696 TTN c.A15563C rs72648930 p.Q5188P 0.001 0.0021 0.0015 T D D 15.15 + - LB 

C696 CSRNP1 c.G401A rs757921966 p.R134H . . 1.5E-05 T B N 23.5 - - LB 

C696 MMRN1 c.G1546T rs141872900 p.V516L 0.007 0.0084 0.0073 T B N 0.575 + - LB 

C696 DGKI c.G553A rs779164061 p.V185I . . 0.000015 D P D 23 + - LB 

C708 QSOX1 c.G1060A rs148353050 p.V354M . 0.0008 0.0003 T P N 10.24 + - LB 

C708 TTN c.G106955A rs200497615 p.R35652Q . 0.0007 0.0003 T B D 24.6 + - VUS 

C708 TTN c.G97760A rs55704830 p.R32587H 0.003 0.0038 0.0056 T D D 25.5 + - LB 

C708 SERPINE2 c.G622C rs375757013 p.V208L . 0.0002 1.5E-05 T B N 0.135 + + LB 

C708 COL4A4 c.G2630A rs150979437 p.R877Q . 0.0033 0.0038 T B N 9.424 - - LB 

C708 ITPR1 c.C5098T rs540818757 p.P1700S . . . T . D 9.375 + + LB 
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C708 CSRNP1 c.C1389G . p.S463R . . . D D N 25.9 - - LB 

C708 CSRNP1 c.C673T rs142034027 p.R225W . 0.0007 0.0001 D D D 32 - - VUS 

C708 MYLK4 c.A1286G rs35211631 p.Q429R . 0.0021 0.0011 T B N 15.14 - - B 

C708 PLG c.T2045A rs147175166 p.I682N 0.001 0.0008 0.0009 T D D 24.8 + - LB 

C708 NRP1 c.G620A rs148308681 p.R207H . 0.0001 0.0001 D D D 33 - - VUS 

C729 FCGR2A c.A836C rs146883516 p.D279A 0.002 0.0017 0.002 D B N 22.6 + + LB 

C729 TTN c.C104564A . p.S34855Y . . . D D D 19.45 + - VUS 

C729 TTN c.A13364G rs142304137 p.K4455R 0.002 0.0001 0.0003 D P D 8.924 + - LB 

C729 ITGA2 c.G305A rs41392746 p.S102N . . 3.01E-05 T B N 19.85 + + LB 

C729 ITPR3 c.G2056A . p.E686K . . . T P D 23.7 + - LB 

C729 MYO3A c.T1525C rs150793986 p.Y509H . 0.0003 0.0002 D D D 27.4 - + VUS 

C729 MUC2 c.G6931A rs200823008 p.V2311I . 0.0001 0.0008 . . . . - + VUS 

C729 ARHGAP1 c.C787T rs144801476 p.L263F 0.006 0.01 0.0076 D P D 23.3 + + LB 

C732 COL24A1 c.C314T rs372813075 p.P105L . 0.0001 1.5E-05 T P D 13.79 - - LB 

C732 LEFTY2 c.A613G rs770500519 p.T205A . . 3.22E-05 D P D 23.5 - - LB 

C732 ITPR1 c.C4236G rs61757110 p.H1412Q 0.003 0.0015 0.0012 D D D 22.9 + + LB 

C732 EXOC1 c.G2009A rs35001804 p.G670E 0.003 0.0086 0.0086 D D D 32 + + VUS 

C732 AP3S1 c.A368G rs199536113 p.N123S . . 0.0005 T B D 13.77 + + LB 

C732 BRPF3 c.A3055G rs145016452 p.S1019G 0.001 0.0031 0.003 T B D 17.5 - - LB 

C732 PLG c.T1380A rs116573785 p.S460R 0.001 0.0017 0.0027 T B N 7.855 + - LB 

C732 GNB2 c.A367G rs771355621 p.I123V . . 1.53E-05 T B D 11.45 + + LB 

C739 RAP1GAP c.A1904G rs147394161 p.Y635C 0.0099 0.013 0.014 T P D 27.8 + + B 

C739 ABCG5 c.A1567G rs140899003 p.I523V . 0.0024 0.002 T B N 0.001 - + LB 

C739 TTN c.G21202C . p.A7068P . . . T B D 20.5 + - LB 

C739 DGKQ c.C2596G rs376714052 p.R866G . 0.0001 3.37E-05 T B D 27.7 - - LB 
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C739 APC c.A398G . p.Y133C . . . D D D 23.9 - + LB 

C739 DIAPH1 c.T3227G rs143763573 p.F1076C . . 0.0001 D D D 26 + + VUS 

C739 ITPR3 c.C5720T . p.T1907M . . . D D D 33 + - VUS 

C740 TTN c.C72358T rs372309164 p.L24120F . 0.0002 0 T D D 17.65 + - VUS 

C740 TTN c.G1895A rs150231219 p.G632D . 0.0002 0 D B N 18.85 + - VUS 

C740 STXBP5L c.G3430A rs139176240 p.D1120N . 0.0001 0 T D D 25.1 + + VUS 

C740 SLC2A7 c.C670T rs35776221 p.R224C 0.006 0.01 0.008 D D D 27 - - VUS 

C740 LCN1 c.G298C rs117638349 p.G100R 0.006 0.008 0.004 D D B 23 - - VUS 

C740 APC c.C6821T rs34919187 p.A2274V . 0.0015 0 T B N 16.24 - + LB 

C740 DNAH11 c.A9935T rs72657389 p.D3312V 0.008 0.004 0 T P D 23.6 - + LB 

C740 PRKACG c.C280T . p.R94C . . . D D N 22.6 + + VUS 

C740 ADRA2A c.G116A rs539511086 p.R39Q . . 0 D B N 22.6 + + LB 

C740 MUC2 c.G2594A . p.S865N . . . . . . . - + VUS 

C740 MUC2 c.A5038G rs371137719 p.T1680A 0.0099 0.0024 0 . . . . - + VUS 

C749 F5 c.C3438G rs6005 p.H1146Q . 0.0003 6E-05 D P N 1.962 + - LB 

C749 LYST c.G8806A rs2753327 p.V2936I 0.001 0.0009 0.0009 T B D 22 - + VUS 

C749 LYST c.A8224C rs766760874 p.M2742L . . 1.51E-05 T B N 16.27 - + LB 

C749 TTN c.G49413T rs202094100 p.W16471C . 0.0008 0.0006 D D D 23.5 + - VUS 

C749 COL4A3 c.T4421C rs200302125 p.L1474P 0.003 0.0041 0.0046 D D D 23.4 - - LB 

C749 DGKG c.T1524G . p.F508L . . . T B N 0.172 + - LB 

C749 PDGFC c.A113G rs139145392 p.Q38R 0.008 0.0066 0.007 T B D 0.016 + - LB 

C749 CSF1R c.T2876C . p.I959T . . . T B N 0.001 - - LB 

C749 PHF14 c.G298T . p.E100X . . . . . D 38 - - VUS 

C749 PTPN12 c.C1066T rs752211731 p.P356S . . 0 D D D 27 + + VUS 

C783 PLAT c.G1481C rs61755432 p.G494A . 0.0007 0.001 T D D 23.4 - - LB 
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C797 TTN c.C88394T rs146181116 p.S29465F 0.007 0.0045 0.0039 T D D 22.5 + - LB 

C797 TTN c.T62996G . p.F20999C . . . T P N 2.844 + - LB 

C797 TTN c.C17T rs201490999 p.P6L . . . D D D 23.8 + - VUS 

C797 EGF c.G3073A . p.A1025T . . . T B D 15.3 + - VUS 

C797 PDGFRB c.G946A rs41287112 p.V316M 0.003 0.0046 0.0088 T B N 14.92 - - LB 

C831 PRKCZ c.G1109A rs147033679 p.R370K . . 1.53E-05 T B D 7.976 - - LB 

C831 RAP1GAP c.G1390C . p.A464P . . . T B N 23.1 + + LB 

C831 WNT3A c.G527A rs779729203 p.R176Q . . 1.58E-05 T D D 29.1 - - LB 

C831 TTN c.T15768A rs138826545 p.H5256Q . 0.0002 0.0002 T B D 11.85 + - VUS 

C831 FN1 c.A751T rs55822567 p.N251Y 0.001 0.0017 0.0026 D P N 23.7 + - LB 

C831 FARP2 c.G1552A rs746757859 p.G518R . . 9.36E-05 T P N 7.731 - + LB 

C831 MMRN1 c.A3251G rs201761344 p.N1084S . . 0.0001 D P N 22.8 + - LB 

C831 EGF c.G1723A rs115396821 p.G575R 0.008 0.0024 0.0027 D D D 26 + - VUS 

C831 PHF14 c.G2431A rs61996285 p.V811I 0.003 0.0016 0.0017 T B D 19.69 - - LB 

C831 DNAH11 c.A4282G rs72657315 p.T1428A 0.002 0.0028 0.0043 D B N 22.3 - + LB 

C831 DGKI c.C457T rs61757580 p.L153F 0.0099 0.0073 0.0078 T P D 14.82 + - B 

C831 TBXAS1 c.151_152del . p.V51fs . . . . . . . + - VUS 

C831 VWF c.G8171A . p.C2724Y . . . D D D 26 + + VUS 

C847 CASP9 c.A220G rs145118493 p.M74V . 0.0014 0.0013 T B N 7.542 + - LB 

C847 F5 c.G43A rs9332485 p.G15S 0.001 0.0002 0.0006 D D D 29.2 + - LB 

C847 TTN c.C91384T rs373623340 p.R30462W . . 3.01E-05 D D D 25.7 + - VUS 

C847 TTC37 c.C3253G rs202214985 p.Q1085E . 0.0001 0.0002 T B D 10.55 + + LB 

C847 APC c.G3949C rs1801166 p.E1317Q 0.006 0.0093 0.0057 T B A 7.737 - + LB 

C847 F13A1 c.G1861T rs145180358 p.A621S . . 0.0007 T B D 23.8 + - LB 

C847 PHACTR2 c.G1360C . p.D454H . . . D D D 25.8 + - VUS 
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dbSNP – Database of Single Nucleotide Polymorphisms v.138. MAF – Minor allele frequency (MAF from European populations are shown). 1000G – 
the 1000 Genomes Project phase 3 populations. ESP – the Exome Sequencing Project; ExAC – the Exome Aggregation Consortium; SIFT – Sorting 
Intolerant From Tolerant; PolyPhen2 – Polymorphism Phenotyping v2; Mutation Taster: prediction scores: D – Damaging, B – Benign; CADD C score – 
Combined Annotation Dependent Depletion score; VUS – variant of uncertain significance; LB – likely benign.

C847 NOS3 c.C3385T rs774447524 p.R1129C . . 2.31E-05 D D D 34 - - VUS 

C847 PDGFRL c.C1046A rs146087994 p.T349K . . 1.5E-05 T D D 27.8 - - LB 

C862 APC c.C3511T rs201830995 p.R1171C 0.001 0.0002 0.0003 D B N 24.1 - + LB 

C1075 TTN c.A53717G rs727503606 p.K17906R . . 0.000015 T B N 7.856 + - B 

C1075 TTN c.T14477G . p.L4826R . . . D P N 1.837 + - LB 

C1075 PRKCD c.A1043G rs33911937 p.N348S . 0.0015 0.0016 T B D 15.06 + + VUS 

C1075 STX11 c.G799A rs45574234 p.V267M 0.0089 0.0092 0.0079 D D D 24 + + LB 

C1107 COL11A1 c.G3847T rs150669855 p.V1283L 0.001 0.0014 0.0013 T B N 0.012 - - LB 

C1107 PTPN7 c.G425A rs115136927 p.R142Q 0.003 0.0072 0.0062 T D D 26.9 + + VUS 

C1107 TTN c.T40931C rs770248490 p.V13644A . . 1.57E-05 T B N 17.24 + - LB 

C1107 PRKCD c.G868T . p.A290S . . . T D D 24.5 + + VUS 

C1107 MMRN1 c.G3680T rs147451161 p.R1227L 0.003 0.0031 0.0036 D D D 27.8 + - VUS 

C1107 ADCY2 c.C3167T rs779183904 p.T1056M . . 6E-05 T B N 18.2 - - LB 
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Supplementary Figures 

Figure S1. Filtering steps for single nucleotide variants (SNVs) identified by WES in 14 PSD patients 

and 16 healthy controls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SNV – Single Nucleotide Variant; MAF – Minor Allele Frequency; 1000G – the 1000 Genomes Project; 
EVS – the Exome Variant Server; ExAC – the Exome Aggregation Consortium; DAVID – the Database 
for Annotation, Visualization and Integrated Discovery; ACMG – the American College of Medical 
Genetics and Genomics. 

Filtering for SNVs located in 
platelet candidate genes  

(329 candidate genes from Leo et 
al. J Thromb Haemost. 2015) 

1,935 SNVs identified  
in 14 PSD cases and 16 controls 

 Selecting SNVs in PSD cases  

371 SNVs identified 

 Selecting SNVs with MAF ≤1% 

in European populations from  

1000G, EVS, ExAC 

245 SNVs identified 

 Selecting SNVs with potentially 

damaging consequences  

(STOP gain, Frameshift, indels, 

missense, spice donor/acceptor 

etc.) 

37 SNVs identified 

101,562 SNVs identified in 30 exomes 

(14 with PSD cases and 16 controls) 

Selecting singletons in PSD cases 

SNVs identified in a single individual 

11,928 SNVs identified 

 

 Selecting SNVs with MAF≤1% 

in European populations from  

1000G, EVS, ExAC 

4,825 SNVs identified 

Functional Annotation using 

DAVID (v6.8) 

Selecting genes with Gene 

Ontology terms: platelet and 

secretion, platelet and granules, 

platelet and signaling. 

107 SNVs identified 

 Selecting SNVs with potential 

damaging consequences  

(STOP gain, Frameshift, indels, 

missense, spice donor/acceptor 

etc.) 

Supplementary Table S1 

107 SNVs identified 

Crossed reference of variants 

against the controls 

(Contains 37 SNVs identified by 

platelet candidate gene analysis) 

Table 1 

36 variants identified 

Variant pathogenicity was assign 

according to the ACMG 

classification and non-benign 

variants were selected. 
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Figure S2. Filtering steps for SNVs identified by WES in four family members of PSD patient C740. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SNV – Single Nucleotide Variant; MAF – Minor Allele Frequency; 1000G – the 1000 Genomes 
Project; EVS – the Exome Variant Server; ExAC – the Exome Aggregation Consortium; DAVID – the 
Database for Annotation, Visualization and Integrated Discovery; SIFT – Sorting Intolerant From 
Tolerant;2 PolyPhen2 – Polymorphism Phenotyping v2.3 Mutation Taster 
(www.mutationtaster.org); CADD C- score – Combined Annotation Dependent Depletion score.4  
 
 

 

  

36,311 SNVs identified in 5 exomes 

  Removing low quality SNVs  

33,873 SNVs identified 

 Selecting SNVs with MAF≤1% 

in European populations from  

1000G, EVS, ExAC 

2,089 SNVs identified 

 Selecting SNVs with potentially 

damaging consequences  

(STOP gain, Frameshift, indels, 

missense, spice donor/acceptor 

etc.) 

484 SNVs identified 

Variant filtering assuming disease 

transmission  

(present in cases, absent in controls 

13 SNVs identified) 

Table 1 

4 variants identified 

Variant pathogenicity was assign 

according to the ACMG classification  

and non-benign variants were 

selected. 

http://www.mutationtaster.org/
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Supplementary Methods 

 

Materials 

Adenosine diphosphate (ADP), adenosine triphosphate (ATP), thromboxane/prostaglandin 

endoperoxide analogue 9,11-dideoxy-11,9-epoxymethano-prostaglandin F2 (U46619), thrombin 

receptor activating peptide (TRAP; Ser-Phe-Leu-Leu-Arg-Asn-Pro-Asn-Asp-Lys-Tyr-Glu- Pro-Phe) 

were from Sigma Aldrich (St. Louis, MO, USA). Horm collagen was from Mascia Brunelli (Milano, 

IT). Commercial preparations of luciferin/luciferase reagent and protein kinase (Roche Diagnostic, 

Monza, IT) were used to measure the platelet ATP and ADP contents (ATP Assay Kit, Promega 

Italia, Milano, IT). 

Commercial preparations of luciferin/luciferase (Chrono-lume; Chrono-log Corp, Havertown, PA, 

USA) were used to measure the platelet ATP released concurrently with platelet aggregation. 

 

Blood sampling 

Blood samples were drawn and 3 mL of blood were collected into commercial K-EDTA tubes for 

complete blood count analysis (ABX Micros 60, Horiba, Milano, IT). Platelet rich plasma (PRP) was 

prepared from trisodium citrate (129 mM, 1/9 v/v) anticoagulated whole blood samples by 

centrifugation at 200 x g at room temperature for 15 min.5, 6 Platelet poor plasma (PPP) was 

obtained by centrifugation at 1400 x g at room temperature for 15 min of samples from which PRP 

had been removed. Native platelet count of PRP was not modified.7  

 

Platelet aggregation and secretion by lumiaggregometry 

Platelet aggregation was measured in a lumi-aggregometer (Chrono-log, 560, Mascia Brunelli, 

Milano, IT) according to International Society on Thrombosis and Haemostasis recommendations.5 

ATP secretion from platelet dense granules was assessed simultaneously with aggregation by using 

the luciferase/Luciferin reagent (Chrono-lume) added to the PRP Secreted ATP levels were 

calculated by measuring the maximal amplitude of luminescence during the aggregation. Results 

were expressed as maximal increase (%) in light transmission for platelet aggregation and in ATP 

nmoli/108 plt for secretion within 3 minutes after platelet stimulation with the agonists: ADP (4 

and 20 μM), collagen (2 μg/mL), thrombin receptor activator peptide (TRAP)-14 (10 μM), and 

thromboxane A2 analogue U46619 (1 μM). 
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Measurement of adenine nucleotides, serotonin and fibrinogen platelet content 

Total platelet ADP and ATP content was measured with a luminometer (LKB 1250, Bio-Orbit Oy, 

Turku, Finland) by the firefly luciferin/luciferase method.8 Platelet serotonin (5-HT) content was 

measured by the o-phthaldialdehyde method.8 Fibrinogen was measured in washed platelets by a 

home-made enzyme-linked immunosorbent assay, using a polyclonal anti-fibrinogen antibody as 

previously reported.8 

 

Whole-exome sequencing and variant annotation 

Details of DNA extraction and preparation methods have been described elsewhere.9  

Following variant alignment and calling, variants not meeting the following quality control criteria 

were removed: variants with more than 3 mismatches, variants-to-read ratio >0.1, variant reads 

mapping to single strand, total coverage <10 and Qual >30.  

Next, variants were annotated onto dbSNPvs138,10 ClinVar,11 Sorting Intolerant FromTolerant 

(SIFT),2 Polymorphism Phenotyping v2 (Polyphen-2),3 Mutation Taster,12 and the Combined 

Annotation Dependent Depletion (CADD).4 Minor allele frequencies (MAFs) were obtained from 

the Exome Variant Server (EVS); (http://evs.gs.washington.edu/EVS/), the 1000 Genomes Project 

phase 3 populations (1KG)13 and the Exome Aggregation Consortium (ExAC).14 In addition, 

functional annotation of each variant identifying synonymous, non-synonymous, intronic, and 

spice region variants etc. was performed using the Variant Effect Predictor.15 

 

Variant filtering and candidate gene discovery  

Exome sequencing of healthy controls was carried out to perform analysis-by-exclusion, which 

involves prioritizing of rare variants with potential damaging consequences henceforth referred to 

as deleterious (e.g. missense, STOP gain/loss, insertions/deletions [indels], exon-intron 

boundaries) that are present exclusively in PSD patients, assuming that if present in controls, by 

definition, they could not be causal. All variant filtering steps were carried out using VCFtools.16 

To select singletons, we filtered for private variants in PSD patients, followed by the selection of 

rare variants with minor allele frequency (MAF) ≤1% in the European populations from the 1KG, 

EVS and ExAC. Rare variants were further filtered by selecting those with putative functional 

consequences henceforth referred to as deleterious as described above. Next, functional 

annotation analysis was carried out using the Database for Annotation, Visualization and 

Integrated Discovery (DAVID v.6.8; www.david.ncifcrf.gov),17 which allowed enrichment of genes 

carrying the Gene Ontology (GO) terms such as platelet secretion and signalling in biological 

http://www.david.ncifcrf.gov/
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process, cellular component and molecular function, followed by identification of relevant 

annotation categories. Statistical significance of annotation terms was based on a DAVID 

Expression Analysis Systematic Explorer Score, which is based on a Modified Fisher Exact test. 

Gene clusters were considered significant with a Bonferroni P<0.05. GO terms such as platelets 

and secretion, platelets and granules, and platelets and signaling were used to select potential 

candidate genes. 

The candidate platelet gene analysis was performed exploiting a list of 329 putative genes affected 

in individuals with platelet function disorders previously described.1 In this part of analysis, we 

selected all variants present in the coding regions, 100 base pairs (bp) of 5’ and 3’ untranslated 

regions and 10 bp exon-intron boundaries of the 329 candidate genes in PSD cases. Rare variants 

were selected on the bases of MAF ≤1% followed by selection of putatively deleterious variants as 

described above.  

Variants identified in both filtering strategies were pulled together in one table and cross-

referenced against the controls and only SNVs present in PSD patients were selected.  

Supporting information was gathered using the UniProt Consortium18 and the ClinVar 

(www.ncbi.nlm.nih.gov/clinvar/).  

 

Sanger sequencing was performed to confirm NGS results.  

http://www.ncbi.nlm.nih.gov/clinvar/
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