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Crack roughness and avalanche precursors in the random fuse model

Stefano Zapperi
INFM UdR Roma 1 and SMC, Dipartimento di Fisica, Universita “La Sapienza,” Piazzale A. Moro 2, 00185 Roma, ltaly

Phani Kumar V. V. Nukala and Srdan Simunévi
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6359, USA
(Received 21 July 2004; revised manuscript received 22 November 2004; published 8 February 2005

We analyze the scaling of the crack roughness and of avalanche precursors in the two-dimensional random
fuse model by numerical simulations, employing large system sizes and extensive sample averaging. We find
that the crack roughness exhibits anomalous scaling, as recently observed in experiments. The roughness
exponents({, {,c) and the global width distributions are found to be universal with respect to the lattice
geometry. Failure is preceded by avalanche precursors whose distribution follows a power law up to a cutoff
size. While the characteristic avalanche size scales,ad.P, with a universal fractal dimensioB, the
distribution exponent differs slightly for triangular and diamond lattices and, in both cases, it is larger than
the mean-fieldfiber bundle value 7=5/2.
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[. INTRODUCTION theories of interface depinning in random media and the
roughness exponent computed by numerical simulations and
Understanding the scaling properties of fracture in disorrenormalization group calculations7,18. Unfortunately,
dered media represents an intriguing theoretical problerthe numerical agreement between this theoretical approach
with some technological implicatiofd]. Experiments have and experiments is quite poft9-21,. ) )
shown that in several materials under different loading con- One aspect missing from the crack line model is the
ditions the fracture surface is self-affifig] and the out of nucleation of voids in front of the main crack, an effect that
plane roughness exponent displays a universal value irrd!@S been shown to occur experimentdp]. In this per-
spective of the material studig@]. In particular, experi- SPective, disordered lattice models appear to be more appro-
ments have been done in metbd, glass[5], rocks[6] and priate to describe the phenomenon. In these models the elas-
ceramicq 7], covering both ductile and brittle materials. ]Eg;iImzd;ﬁggzggzcﬁ':etgebgi?nnﬁet;‘,’[o;k O:oiﬁ)rgggt’iir\:vg? ;aggglr;‘r
It was later shown that the roughness exponent conve : b PP

. . . .ndisplacement, one recovers the random fuse m@aeM)
tionally measured de_scrlbes only t_he local properties, WhII(?/vhere a lattice of fuses with random threshold are subject to
the fracture surface instead exhibits anomalous sc4Biiig

L . ) an increasing external voltagig3—27. The model has been
the global exponent describing the scaling of the crack width, merically simulated to obtain the roughness of the fracture

with the sample size is larger than the local exponent meag rface in two[28,29 and three dimensionf30,31. The
sured on a single sampll®, 10]. Itis thus necessary to define measured roughness exponents are similar to the ones de-
two roughness exponents a global dig and a local one  scribing a minimum energy surfacer a directed polymer in
(dloo)- Only the latter appears to be universal with a valued=2) which would imply that crack formation occurs by an
{oc=0.8[3]. For the purpose of this paper, it is important to optimization process, but the issue is still controversial
mention that experiments performed in quasi-two-[30,31].

dimensional geometries, in wodd1] or paper{12], yield a In addition, the fracture of the RFM is preceded by ava-
self-affine exponent close to the minimum energy surfacéanches of failure events32—-34. These are reminiscent of
result{,,c=2/3. the acoustic emission activity observed in experiments. The

Scaling is also observed in acoustic emission experimentslistribution of avalanche size@.e., the number of bonds
where the distribution of pulses decays as a power law oveparticipating in an avalanchéollows a power law. In previ-
several decades. Experimental observations have been reds simulations the exponent resulted to be close=t6/2
ported for several materials such as w¢ad], cellular glass [32,33, the value expected in the global load sharing fiber
[14], concrete[15] and paper{16], but universality in the bundle mode(FBM) [35,36]. In this model, load is redistrib-
scaling exponents does not appear to be present. uted equally in all the fibers, representing thus a sort of

The experimental observation of scaling behavior sugmean-field limit of the RFM[33]. The load transfer in the
gests an interpretation in terms of critical phenomena, but &FM is long-ranged and is thus possible that RFM and FBM
complete theoretical explanation has not been found. Thedisplay universal behavidB87]. An intermediate case is pro-
motion of a crack front has been modeled as a deformableided by FBM with long-rangepower law load transfer
line pushed by the external stress through a random tougli38]: the difference with the RFM lies in the anisotropic
ness landscape. Deformation of the crack surface is causedirrent transfer functioh37].
by disorder and opposed by the elastic stresses. In certain Numerical simulation of fracture in the RFM is often
conditions, the problem can be directly related to models antiampered by the high computational cost associated with

1539-3755/2005/12)/02610610)/$23.00 026106-1 ©2005 The American Physical Society



ZAPPERI, NUKALA, AND SIMUNOVIC PHYSICAL REVIEW E 71, 026106(20095

solving a new large set of linear equations every time a neveurrent in the fuse exceeds the breaking threshadd the
lattice bond is broken. Previously, this fact has restricted théuse. Periodic boundary conditions are imposed in the hori-
simulations to smaller lattice sizes and fewer statistical samzontal direction to simulate an infinite system and a constant
pling of data, thereby affecting the quality of the results.voltage differenceyV, is applied between the top and the
Here, thanks to the new algorithm discussed in R&f], we  bottom of lattice system bus bars. Numerically, a unit voltage
report results of numerical simulations for large two- difference,V=1, is set between the bus bars and the Kirch-
dimensional latticestriangular and diamondwith extended hoff equations are solved to determine the current flowing in
statistics. Using this numerical algorithm, we were able toeach of the fuses. Subsequently, for each fysthe ratio
investigate damage evolution in larger lattice systéeng.,  between the currenf and the breaking threshotdis evalu-
L=1024, which to the authors knowledge, is so far the larg-ated, and the bongl having the largest value, mai/t;), is

est lattice system used in studying damage evolution usingreversibly removedburnt. The current is redistributed in-
initially fully intact discrete lattice systems. The computa- stantaneously after a fuse is burnt implying that the current
tional complexity of the algorithm in terms of operation relaxation in the lattice system is much faster than the break-
count is described in Ref27], and Table 1 of Ref[27] ing of a fuse. Each time a fuse is burnt, it is necessary to
presents the CPU times necessary for analyzing triangulaecalculate the current redistribution in the lattice to deter-
lattice systems of different sizes. In the final analysis, themine the subsequent breaking of a bond. The process of
algorithm presented in Ref27] results in an overall compu- breaking of a bond, one at a time, is repeated until the lattice
tational benefit of 8000 times when one compares the CPWystem fails completely. At this point we analyze the mor-
times taken for the largest system sizes that were solvephology of the spanning crack.

previously (L=128 and in the current stud{L.=1024. In The same breaking sequence is obtained by raising the
this paper, we concentrate on the roughness of the final cracloltage difference or the total current at an infinitesimal rate.
and the avalanche statistics preceding failure. Doing this one can identify an avalanche as the set of fuses

Using local and global measurements for the roughnesbreaking between two successive increases of the voltage
we find that cracks in the RFM follow anomalous scaliy  the currenk In this paper, we follow Ref[33], considering
The local roughness exponent is found to be in the rangenly current driven avalanches. The avalanche size is defined
£0c=0.70-0.75, while the global exponent falls in the rangeas the number of fuses in an avalanche.

{=0.80-0.85. Although the difference betwegand ¢, is Simulations are performed on two dimensional triangular
small it appears to be systematic. The results are obtaineahd diamond lattices of linear sizes going fram 16 up to
using the local width and the power spectrum methods antl =1024 (for the triangular latticeor up to L=256 (for the
appear to be universal with respect to the lattice type. As aliamond latticeé The total number of bonds in the lattice is
further test, we compute the width distribution that can begiven by N=(3L+1)(L+1) for the triangular lattice and\
collapsed into a unique curve for different lattice sizes and=2L(L+ 1) for the diamond lattice. Several results discussed
types[39]. in the following sections could only be obtained under an

Next, we consider the distribution of avalanche sizes. Thexxtensive statistical sampling. Due to numerical limitations
avalanche signal is not stationary and as the current is raisaflis could not be achieved for the largest lattice sizes. Each
avalanches becomes larger and larger. The last avalanchegimerical simulation was performed on a single processor of
producing the failure of the sample, is typically much largereagle (184 nodes with four 375 MHz Power3-1l procesgors
than the previous one and it follows a normal distributionsupercomputer at the Oak Ridge National Laboratory. The
with a typical value scaling as,~ L'“[40]. Preceding ava- statistically independeniN,ng NUMber of configurations
lanches are distributed as a power law with a cutoff increaswere simulated simultaneously on number of processors
ing with the current. Integrating the distribution over all the available for computation(The actual values ofggnsig are
values of the current, we find a power law up to a cutoff,50000 forL up to 64, 12000 foilL=128, 1200 forL =256,
scaling with the lattice size ds°, whereD=1.18 does not 200 forL=512 and 10 fot. =1024: see Table 1 of Re#0].)
depend on the lattice type and is thus universal. The expo-
nent describing the decay of the distribution is found instead
to differ for triangular and diamon¢square lattice with 45
degrees inclined bonds to the bus bdadtices with a value After the sample has failed we identify the final crack, an
which is always larger than the FBM value5/2. example of which is reported in Fig. 1. The cracks typically

The paper is organized as follows: in Sec. Il we define thadisplay some limited amount of dangling ends and over-
model, in Sec. lll we report the results on the crack rough-hangs. We remove them and obtain a single valued crack line
ness, Sec. IV is devoted to the avalanche statistics, and i, where the values af € [0,L] depend on the underlying
Sec. V we conclude. lattice topology. Several methods have been devised to char-
acterize the roughness of an interface and their reliability has
been tested against synthetic da48]. If the interface is
self-affine all the methods should yield the same result in the

In the RFM[23], the lattice is initially fully intact with  limit of large samples. For instance, the local widti)
bonds having the same conductance and random breaki@(Ex(yX—(l/I)EXyX)2>1’2, where the sums are restricted to
thresholdst, uniformly distributed between 0 and 1. The regions of lengtH and the average is over different realiza-
burning of a fuse occurs irreversibly, whenever the electrications, should scale as(l)~1¢ for <L and should saturate

Ill. CRACK ROUGHNESS

II. THE RANDOM FUSE MODEL
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1000} ' ‘ ' ‘ ' ‘ ' ' ] detected. Here, thanks to the improved statistics and system
340 size range, we reveal clear indication of anomalous scaling
behavior. In Fig. 2 we report the local width for diamond and
800 320 - 1 triangular lattices for different sizds The curves for differ-
ent system sizes are not overlappinglferL as expected for
300 1 anomalous scaling. The global width scales with an exponent
600 080 | 7 £=0.80+0.02 and/=0.83+0.02 for diamond and triangular
- | lattices, respectively. On the other hand the local width in-
060 ‘ creases with a smaller exponent, that can be estimated for the
4001 150 200 250 300 T larger system sizes d§g,.=0.7 for both lattices. Anomalous
WW scaling implies that we can collapse the curves in Fig. 2 with
an exponent (see Fig. 3 that does not fit local roughness
200~ T curve. Conversely, we cannot collapse the curves using the
local exponent.
A more precise value of the exponents is obtained from
05 500 200 800 800 1000 the power spectrum, which is expected to yield more precise

x estimates[43]. Figure 4 reports the data collapse of the
power spectra for different system sizes. The data are col-
lapsed using—{,.=0.1 and{-{,.=0.13 for diamond and
triangular lattices, respectively. A fit of the power law decay
of the spectrum yields instedg,.=0.7 and{,,.=0.74 for the

) ) two lattices, implying {=0.8 and ¢{=0.87. The results

to a valueW=w(L) ~L¢ corresponding to the global width. are close to the real space estimates and we can attribute
The power spectrum SK)=(yy-, where Vi the differences to the bias associated to the methods
=3 y.exp(2mxk/L), should decay aS(k) ~ k™ (%¢*D, employed[43].

While numerical estimates with the two methods above Although the value off-{ is small, it is significantly
could yield different results, it is also possible that the scalHarger than zero so that we would conclude that anomalous
ing is anomaloug8]. This has been observed not only in scaling is present. One should notice that the main argument
various growth model$8] but also in fracture surfaces in in favour of anomalous scaling does not come from the com-
granite[9] and wood samplegl0]. Anomalous scaling im- parison of two power law fits, but rather on the fact that the
plies that the exponent describing the system size depemrefactor of the widti{and power spectrujscales as ¢ ioc,
dence of the surfacdiffers from the local exponent mea- We cannot exclude, however, the possibility that this is in-
sured for a fixed system size In particular, the local width  stead just a logarithmic growth. While the local exponent is
scales asw(l) ~|4ocL ¢4, 50 that the global roughnes®  close to the directed polymer valye2/3, theglobal value
scales as.? with £>{,.. Consequently, the power spectrum is higher. In addition, the presence of anomalous scaling
scales as(k) ~ k™(octD| 2(¢=dioc), would invalidate universality between directed polymers and

Previous measurements of the crack roughness in the twdracture, as directed polymers should not display anomalous
dimensional random fuse model have been obtained studyirggcaling. As for the question of universality of the random
the global roughness and anomalous roughness could not figsse model crack roughness exponents, the values measured

FIG. 1. The final crack in a triangular lattice of size1024(a
detail is shown in the insptThe crack displays some dangling ends
and overhangs that are removed before performing the analysis.
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FIG. 2. The local widthw(l) of the crack for different lattice sizes in log-log scale. A lines with the local expofjgnt0.7 is plotted for
reference. The global width displays an exponént{,,.. Data are shown for diamon(eft) and triangularright) lattices.
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FIG. 3. The best collapse of the local widi¥{l) of the crack yields an exponef¢=0.89 that does not fit the scaling with(left).
Collapsing the data witl§,;=0.7 is not possibléright). Triangular(diamond lattice data are displayed with emptfull) symbols.

above are quite close to each other and the differences could IV. AVALANCHES
be due to size effects. In order to have a further confirmation . ) L
of this, we have analyzed the distributi®W) of the crack The qualitative behavior of the avalanche statistics is well

global width. This distribution has been measured for varioué'nderl‘e’tOOOI in glob_al load sharin? 'TE’M WhiCh ca]:n Ee Sg\éi/?
interfaces in models and experiments and typically rescaleS¥@ctly representing a mean-field version of the
as[39] 33,36. The FBM can be formulated as a parallel set of
fuses, with random breaking threshold, under a constant ap-
plied currentl. Thus each fuse carries the same currignt
P(W) = POWKW)/(W), (1) =1/n, wheren is the number of intact fuses. The FBM has

been solved exactly and it is known that there is a critical
where(W) ~ L¢ is the average global width. The crack width valuel =1, at which the bundle fails through a macroscopic

distribution has been measured for the random fuse modévalanche. For<I. fuses burn in smaller avalanches, whose
with limited statistical sampling. We show in Fig. 5 that the Sizes are distributed as

distributions can be collapsed well using Eg). for diamond

and triangular lattices. The plot in Fig. 6 shows that the col- p(s,1") =sh(gls), (2
lapsed distribution for the two lattices superimpose, which

we consider as a further indication of universality. Finally, with y=3/2, andh(x) is a cutoff function. The cutoff size’

the width distributions are well fit by a log-normal distribu- increases with the current and close ltodiverges ass’
tion as shown in Fig. 6. ~(Ie=1)"Y7 with o=1. One can then integrate the distribu-
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FIG. 4. The power spectrum of the cragkk,L) for different lattice sizes in log-log scale. The slope defines the local exponent as

—(20c+1). The spectra for all of the different lattice sizes can be collapsed indicating anomalous scaling. Data are shown for(litimond
and triangularright) lattices.
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FIG. 5. The distribution of crack width for different lattice sizes can be collapsed using their average value. Data are shown for diamond
(left) and triangular(right) lattices.

tion over all the values of the current, obtainingP4s) (3)
~s " with 7=y+0=5/2.

Here we study the statistical properties of the avalanche@hereD represents the fractal dimension of the avalanches.
in the RFM. We can use the scaling laws established for thd0 take into account the different lattice geometries, it
FBM as a reference, with additional complications due tolS convenient to express scaling plots in termsNofather
finite size effects. In Fig. 7 we report the integrated avathanL
lanche distribution obtained for different lattice sizes. We
observe a power law decay culminating with a peak at large P(s,N) = s7g(s/N""?). (4)
avalanche sizes. As in the FBM, the peak is due to the last A powerful method to test these scaling laws, extracting
catastrophic event which can thus be considered as an outlighdD, is provided by the moment analy$#2]. We compute
and analyzed separately. When the last avalanche is removgge gth moment of the distributioM = (s% and plot it as a

P(s,L) =sg(s/LP),

from the distribution the peak disappedsge Fig. 7.
The avalanche size distribution, once the last event is exne data follow Eq.(4) then o,=0 for q<7-1 and o
cluded, is a power law followed by an exponential cutoff at—p(q+1-7)/2 for > r-1. In or?jer to measure,, we cor?-

large avalanche sizes. The cutoff siggis increasing with

function of N. This defines an exponent; as M~ N7a. If

sider lattice sizes fronh=16 to L=128 since the statistical

the lattice size, so that we can describe the distribution by @ampling for larger sizes is not adequate to estimate correctly

scaling form

2

P(w)<w>

0
10

10° 10
w/<w>

1

the cutoffs,. The data displayed in Fig. 8 show that indeed
gq is linear inq at largeq and vanishes for smati. The
curves for triangular and diamond lattice do not coincide: the
two lines are parallel, indicating thd& is similar, but the
intersection with thex axis differs. By a linear fit we obtain
7=2.75 andD/2=0.59 for diamond lattices ang-=3.05 and
D/2=0.585 for triangular lattices. To confirm these results
we perform a data collapse using the estimated values of the
exponents and the result is reported in Fig. 9. While the data
collapse for diamond lattice is nearly perfect, some devia-
tions are noticeable for the triangular lattice.

From the analysis discussed above, we would conclude
that the avalanche fract® dimension is universal, but a
significant difference is present for the exponenthis dif-
ference could be due to lattice finite size effect as we will
discuss later. In addition, the value ofappears to be larger
than the mean-field resutt=5/2 obtained in the FBM. On
the basis of less accurate results, it was conjectured in Ref.
[33] that avalanches in the random fuse model are ruled by
mean-field theory. The present results seem to rule out this

FIG. 6. The distribution of crack width is universal for diamond Possibility.
and triangular lattices since all the curves can be collapsed together. So far we have considered avalanche statistics integrating
A fit with a lognormal distribution is shown by a dashed line.

the distribution over all the values of the current. We have
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FIG. 7. The distribution of avalanche sizes for triangular lattices of different sizes. The peak at large size is due to the last avalanche,
corresponding to catastrophic failugght). On the left figure we show the same distribution without the last event and with logarithmic
bins.

noticed, however, that the avalanche signal is not stationaryve normalize the current by its peak valljeand divide the
as the current increases so does the avalanche size. In pér=1/l, axis into 20 bins. We then compute the avalanche
ticular, the last avalanche is much larger than the others. Itsize distributionp(s,1*) for each bin and average over differ-
typical size grows as,~ NP, with b=0.7, see Fig. 14 of ent realizations of the disorder. In Fig. 11 we report this
Ref. [40] (s, is referred asii—n, in that papey, while the  distribution for a diamond lattice of siZe=128. The distri-
distribution is approximately Gaussian as shown from thebution follows a law of the type
data collapse reported in Fig. 18ee alsd41]). The signifi- . .
cantly different nature of the last avalanche with respect to p(s,|’) =s7exp(-s/s), (5
the precursors is thus revealed both by the distribution typg i y=1.9, while in the FBMy=3/2, which is not sup-
(Gaussian or power lavand by its characteristic value, scal- ported by our resultésee Fig. 11
ing as =1.4 orD=1.18. This difference reflects the fact = |, order to extract the dependence of the cughfon I,
that the last avalanche is a catastrophic event corresponding, compute the second moment of the distributigh. Ac-
o unstabl rack grouh,whe precrsors et metasablng t0 £q/5) s shold scale o) =(5 7 Assum-

9 : X pp .___ing that for large systems ~ (1-1")"Y (in the FBM this

In Fig. 11 we report the distribution of avalanche sizes o . S
sampled at different values of the currénEor each sample, holds witho=1), we expect that the singularity is rounded at

smallL as
5 T 4 LD
' P
+ diamond ’Z/ ] S 1-1"HYb+c’ ©®
A triangular 8 )
4r | =275 D12=0.590 s 7 whereC is a constant. The second moment can be collapsed
—-- 1=3.05D12=0.585 ;} ] very well under this finite size scaling assumption with
Y 1/0=1.4 andD=1.18 as shown in Fig. 12 for the diamond
3 ./:/ 1 lattice. The data collapse is consistent with the finite size
. A scaling of the integrated distribution with a cutoff increasing
© ‘,.'-;‘:/ ] assy~LP. In fact integrating Eq(5) we obtain
A
2r ‘,,..;'Zf/ : 1 P(s,L) ~ s7*9 exd - sCLP], 7)
s which implies 7= y+ 0. Using the estimated data we would
1+ :/A/ . obtain y+o0=2.6 in reasonable agreement with the inte-
A& grated distribution result=2.75.
A ] We have performed the same analysis for the triangular
ol o o ® xr . . . . . . lattice, where we find similar scaling laws with=2 and
0 2 4 6 8 10 »=1.3. This would giver=2.7 that is quite off from the

integrated distribution result=3.05. These variations could
FIG. 8. The exponenir, ruling the scaling of thejth moment indicate some systematic error present in the triangular lat-

for triangular and diamond lattice. The shift in the lines indicates atice results. We notice that while in the diamond lattice, at

difference in the value of. the beginning of the simulation, all fuses carry the same
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FIG. 9. Data collapse of the avalanche size distributions. The exponent used for the collaps@.@eandD=1.18 for the diamond
lattice (left) and 7=3.05 andD=1.17 for the triangulafright) lattice.

current, in the triangular lattice only two thirds of the fuseslattice coordination numbez, we performed simulations of
carry a current. As fuses break the current is redistributethe RFM in a square lattice with next-nearest neighbors con-
becoming inhomogeneous so that at breakdown this latticaections, corresponding td@=8. In this case we findr
effect should not be visible. In fact scaling exponents com=3.2, indicating that the estimated exponeircreases with
puted at failure, like the roughness exponent or the avalanchi&e coordination number. Th&dependence of the avalanche
cutoff, do not depend on the lattice type. On the other handdistributions is apparent from Fig. 13, where we also report a
the integrated avalanche distribution is affected by the entirgimulation of a global load sharing FBM using a similar
rupture process and the estimated exponent could thus battice size and sampling statistics.

biased.

A further possibility can be obtained from the analogy
with the FBM. The avalanche distribution could be explained
by the interplay between local and a global interaction. In the In this paper we have revised some statistical properties
FBM with local load sharing one finds an apparent powerof fracture in the random fuse model using an improved sta-
law scaling in a limited regime, with an effective exponenttistical sampling and larger lattices than what was previously
around7=4.5[36]. Numerical results from long-range load done in the past. We have analyzed the roughness of the final
transfer FBM interpolate between the mean-field results crack for diamond and triangular lattices. The local rough-
=5/2 andhigher exponents valug88]. It could be that the ness exponent is found to l4g,=0.72+0.03 and appears to
RFM follows a similar behavior due to local current en- be different from the global roughness exponent which turns
hancements close to the crack tips. In order to investigateut to be {=0.83+0.04. These results have been obtained
further the dependence of the avalanche distribution on th&om the local width and the power spectrum methods and

V. CONCLUSIONS

0.5 . v . 05 . . .
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FIG. 10. Data collapse of the distribution of the last avalanche for dianfleftdl and triangular(right) lattice.
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FIG. 11. The avalanche size distributions sampled over a small bin of the reduced tufoerd diamond lattice of size =128 (left).
The distribution for the bin closest 16=1 is well fit according to Eq(5) with y=1.9. A fit with the mean-field valug=1.5 yields a poor
result(right).

the error bars above merely represent the spread of the esti- We have also analyzed the scaling of failure precursors,
mated exponents using various methods and lattice typesomputing the distribution of avalanche sizes. The extensive
The data suggest that anomalous scaling is present, as akatistical sampling employed allowed us to observe a power
ready found in fracture experimen®@]. The numerical value law decay up to a cutoff, which was not visible in previous
of the local exponent is in reasonable agreement with theimulationg32,33. The cutoff size is found to increase with
experiments on quasi two-dimensional materfdls, 12. As  the lattice size as,~ LP, where the exponerid=1.18 de-

a further test for universality, we have also evaluated thepends very little on the lattice size. It is interesting to notice
width distribution[39] that can be collapsed into a single that for self-affine lines of roughness,one expects a fractal
curve for different lattice sizes and types. From the theoretdimensionD=2-/ [44]. If we plug into this expression the
ical point of view, our results seem to exclude the minimumglobal roughness results obtained above for the final crack,
energy surface exponent $£2/3. While the local exponent we obtainD=1.13—1.20. This could imply that the geo-
is close to that value, the global exponent is definitely highermetrical properties of the precursors are the same as that of
In addition anomalous scaling is not expected for that modelthe final crack. On the other hand, the exponent of the ava-
Thus the origin of measured roughness exponents and itanche size distribution displays significant variations with

ical explanation remains still open. the lattice type(i.e., 7=2.75 and7r=3.05 for diamond and
10° 1 S ' '
‘ T g = 107 e
L=32 1
)
o s L=128
10" - 2 : 10°F S I
a 10 AN
N RN
T ’ s =
% j\o 3 A 1 T, o 10_5- 7
N/\ 10-2 VN\‘7 £ ! 1
¥ 10" - : 1 A
\% S8y, .
ﬁi}% Zt% 107} B
10° | .
10 10", 10°
10_3 3 2 1 0 -9
B g s 10 :
10 10 oy 10 10 b 10 2000
(1-1)L s

FIG. 12. The second moment of the avalanche size distribution FIG. 13. The avalanche size distributions for 128 and differ-
as a function of the reduced current i for diamond lattices of  ent values of the coordination numbers are compared with the result
different sizeq(inse). The curves can be collapsed using the finite of the FBM with global load sharing. FBM simulations are done on
size scaling assumption reported in Ef) with y=1.9,D=1.18, a latttice of N=128 sites and are averaged OV fig= 10000
and lio=1.4. realizations.
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triangular lattices, respectivehand is significantly different lar scenario is characteristic of first-order phase transitions
from the mean-field result=5/2 that was conjectured to be occurring close to a spinodal. In that case spinodal scaling is
valid in [33]. only seen in mean field or with long range interact[dg)].

The integrated avalanche distribution is due to the convoThe fact that the exponents deviate from mean-field ones and
lution of the avalanche distribution measured at different Va'-apparenﬂy depend on the coordination number is prob|em-
ues of the current. We have shown that the nonintegrategtic. Analogy with critical phenomena normally implies that
distribution is given by a power law with an exponential the exponents are universal with respect to microscopic de-
cutoff that increases with the current. The combined analysigyjis such as the lattice structure. The deviations we observe
of the distribution with respect to current and lattice size can. ;|4 pe due to very strong finite size effects, or logarithmic

be performed using finite size scaling. The behavior of theC : . - :
= . . orrections and universality would then be obtained only as-
model is similar to the FBM, as noticed in R¢83], but the ptotically. Given the persistence of these effects up to

{;l:timcinvﬁl (\elstlilsr?::t of_t{\z Z)r(]%m_elntj w&ggteﬁngere igll?irsno latively large sizes a numerical resolution of this question
&=_-2 ande=21.4, y will be difficult to achieve.

y=3/2 ando=1. Similar results hold for the triangular lat-
tice although the scaling there appears to be less clear.

It would be interesting to understand these results theo- ACKNOWLEDGMENTS
retically by the renormalization group, using the mean-field
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current redistribution function makes the problem very hardsupported by the Mathematical, Information and Computa-
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