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Abstract

In this work, we propose the use of discrete counterparts of the Weibull distribution
along with a copula function for modeling football results, as an alternative to existing
bivariate Poisson regression models and extensions thereof. We expect that the choice of
the marginal distribution and dependence structure, which try to capture known features
of the data, can be beneficial in terms of fitting of the developed models; to check this
conjecture, an application to the Italian Serie A championship is provided.

1 Introduction

Football is by far the most popular participant and spectator sport in the world. In many
countries, especially in Europe, television and internet companies compete strongly to win the
rights to broadcast games. Huge sums of money are involved, from players wages to transfer fees
and sports betting. The simplicity of football’s objectives and rules along with the uncertainty
of games are probably responsible for such an inexhaustible attractiveness. The latter feature
has captured the attentions of statisticians, who have proposed a multitude of stochastic models
for analyzing (and predicting) several events associated with a football game: the first half or
final result (expressed as number of goals scored by the two teams or simply as win-draw-loss),
the number of shots-for and shots-against, the time to the first goal, the number of yellow or
red cards, etc.

In this work, we propose the use of discrete counterparts of the Weibull distribution for
modeling football results, as an alternative to existing bivariate Poisson regression models and
modifications/extensions thereof, such as diagonally inflated or generalized Poisson models.

The simple bivariate Poisson model, with independent components, was the first used in
football data analysis for modeling the outcome of a game (number of goals scored by the two
competing teams) due to its ease of use and interpretation. Later, more complex models allowing
for non-null correlation were explored, since real data often show a slight but non-negligible
positive correlation between the numbers of goals scored by the two teams; or allowing for
overdispersion and excess in draws, which usually characterize football outcomes.

The discrete Weibull distributions derived as analogues of the homonym continuous distri-
bution seem to be more flexible than Poisson, since adjusting their two parameters can model
a variety of different features. The numbers of goals scored by the two teams can be regarded
as a joint observation from a bivariate random vector with discrete Weibull margins, linked
through a copula function that accommodates dependence. The parameters of the distribution
are assumed to depend on covariates such as the attack and defense abilities of the two teams
and the “home effect”. Several discrete Weibull regression models are proposed, by varying the
type of discretization, the copula function, the choice of covariates, and are then applied to the
Italian Serie A championship.

Even if the interpretation of parameters is less immediate than in Poisson models, yet
they represent a suitable alternative, as the application demonstrates, and can be employed
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as a statistical tool for better understanding the performance of teams in order to improve
predictions, from a betting perspective, or to deploy corrective actions, from a managerial
point of view.

The next Section briefly recaps the basic ideas underlying bivariate count regression models
usually employed when analysing football results. In Section 3 we will draw our attention on
alternative marginal distributions derived as discrete counterparts from the continuous Weibull
distribution; in Section 4, we will focus on the choice of the copula function; in Section 5, we
will discuss an application to the Italian Serie A championship.

2 Modelling the Numbers of Goal in a Football Game
through a Count Regression

Focusing on the final result of a football game, many bivariate models have been discussed in
statistical literature. Most of them are an extension of the simple bivariate Poisson model with
independent components. These proposals, taking the cue from the bivariate Poisson model
by Holgate [10] with correlated components, take into account the specific features these data
usually exhibit, namely non-negligible correlation, overdispersion and bivariate zero-inflation,
and propose count regression models where the two count variables are regressed towards co-
variates such as team attack and defence potential, home effect, etc. [16, 15, 6, 7, 11, 12, 1, 13].
More recently, some contributions suggested the use of alternative discrete probability distri-
butions, related to the continuous Weibull random variable [5, 3], and dependence structures,
by naturally considering copula functions.

In very general terms, the stochastic model can be structured as follows. Let Y1i be the
number of goals scored by the home team in game i, and Y2i the number of goals scored by
the away team in game i; p1(y;θθθ1i) and p2(y;θθθ2i) are the discrete probability distributions
modelling Y1i and Y2i, belonging to the same parametric family, with θθθ1i and θθθ2i being the
distribution parameters (scalars or, more generally, vectors). These latter, or a transformation
thereof, are expressed as a linear model, for example

gj(θ1ji) = βββ′
1jxxx1ji, gj(θ2ji) = βββ′

2jxxx2ji

with j = 1, . . . , p, where p is the dimension of the parameter vectors θθθ1 and θθθ2; xxx1ji and xxx1ji are
the two corresponding vectors of covariates, not necessarily the same; βββ1j and βββ2j the vector
of regression parameters; i = 1, . . . , n, being n the sample size. For example, if we consider the
Poisson distribution with parameter λ, being p = 1, the model can be written as

{
Y1i ∼ Pois(λ1i), log(λ1i) = βββ′

1xxx1i

Y2i ∼ Pois(λ2i), log(λ2i) = βββ′
2xxx2i

In order to accommodate possible association between the two count variables, we resort to
copulas. The cumulative distribution functions of the two count variables Y1i and Y2i, say F1i

and F2i, are linked through a parametric bivariate copula function C(u1, u2; θ):

F (y1i, y2i) = C(F1i(y1i), F2i(y2i); θ),

so that the joint probability mass function is derived as

P (Y1i = y1i, Y2i = y2i) = F (y1i, y2i)− F (y1i − 1, y2i)− F (y1i, y2i − 1) + F (y1i − 1, y2i − 1).
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3 Marginal Distribution: Discrete Analogue of the Con-
tinuous Weibull Distribution

At least three probability distributions have been derived so far as a discrete counterpart of the
continuous Weibull model.

A first discrete Weibull distribution was introduced by [18] and is usually referred to as ‘type
I discrete Weibull distribution’, in order to distinguish it from two other models proposed later
by [23] (type II discrete Weibull) and [21] (type III discrete Weibull). A continuous Weibull
random variable (rv) T has probability density function given by

ft(t;λ, β) = λβtβ−1e−λtβ t > 0, (1)

with λ, β > 0, and cumulative distribution function (cdf)

Ft(t;λ, β) = 1− e−λtβ . (2)

If we consider the rv Y = �T �, where �T � denotes the largest integer equal to or smaller than
T , it can be easily shown that its probability mass function (pmf), defined on the non-negative
integers only, is given by

p(y; q, β) = Ft(y + 1)− Ft(y) = e−λyβ − e−λ(y+1)β = qy
β − q(y+1)β y ∈ N = {0, 1, 2, . . . }, (3)

with q = e−λ, and then 0 < q < 1. The corresponding cdf is

F (y; q, β) = 1− q(y+1)β y ∈ N. (4)

This distribution retains the expression of the cumulative distribution function of the continuous
Weibull model – just compare Eq.(2) to Eq.(4). The first parameter q has a nice interpretation:
since P (X = 0) = 1 − q, it represents the probability of a positive value. As to the second
parameter β, it does not possess an equally immediate meaning. However, if we define the
hazard rate function of Y as r(y) = p(y)/P (Y ≥ y), it has been shown [18] that r(y) is a
constant function if β = 1 (in this case, (3) reduces to the geometric pmf), an increasing
function if β > 1, a decreasing function if β < 1.

Figure 1 displays the pmf of the type I discrete Weibull rv for several value combinations
of q and β. From here the role of β, for a fixed value of q, clearly emerges: larger values of β
lead to less dispersed distributions, with most of the probability mass concentrated on the first
integer values; smaller values of β lead to more dispersed distributions. The expected value
of the type I discrete Weibull rv cannot be generally computed in a closed form; it is equal

to the infinite sum E(Y ) =
∑∞

y=1 q
yβ

, which leads to a closed-form expression if and only if
β = 1: E(Y ) = q/(1−q). It is clear E(Y ), fixed q, is a decreasing function of β. Its value can be
approximated recalling the result in [14], involving the expected value E(T ) of the corresponding
continuous distribution, which ensures that the value E(Y ) falls between E(T )− 1 and E(T ).

The first parameter of the type I discrete Weibull model can be related to explanatory
variables xxxi through a complementary log-log link function: log(− log(qi)) = ααα′xxxi. Additionally,
even the second parameter β can be related to explanatory variables zzzi, not necessarily the
same as for q, through the following natural link function (remember that β takes only positive
values): log(βi) = γγγ′zzzi.

Contrary to the Poisson rv, which cannot adequately model count data whose variance
differs from the mean, which is a circumstance often occurring in practice, the type I discrete
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Figure 1: Graphs of the probability mass function of the type I discrete Weibull distribution
for some combinations of its parameters q and β

Weibull rv can model both under-dispersed and over-dispersed data [8]. This distribution can
also handle count data presenting an excess of zeros, arising in many physical situations (see
again [8]); just remember that the probability of 0 is controlled by the q parameter only.

In regard to point and interval estimation of the parameters of the type I discrete Weibull
distribution, one can refer to [2] and references therein, where several inferential procedures
are considered and discussed and applicability issues are raised. The type I discrete Weibull
model is implemented in the R environment [24] through the packages DiscreteWeibull [4]
and DWreg [25].

As for the type II discrete Weibull rv, its distribution is derived by imposing that its hazard
function has the same expression as the hazard function of the continuous Weibull rv. The
resulting discrete distribution may have a finite or infinite support according to the value taken
by the second parameter β of the continuous distribution. Such an odd feature depends on
the fact that the hazard rate for a discrete model is bounded between 0 and 1, whereas this
restriction is not needed for the hazard rate of a continuous distribution. For more details, we
address the reader to the original paper [21].

As for the type III discrete Weibull rv, its pmf can be expressed as

P (Y = y; c, β) = e−c
∑y

j=1 jβ [1− e−c(y+1)β ], y ∈ N, (5)

letting by convention
∑y

j=1 j
β = 0 if y = 0; with c > 0 and β ≥ −1. Note that P (Y =

0) = 1 − e−c. Despite its unequivocal name, the type III discrete Weibull rv is not similar in
functional form to any of the functions describing a continuous Weibull distribution, although
the negative exponential terms in (5) reminds us of an analogous term in (1).

These latter two discrete models have not attracted much attention so far, due to the complex
expression of their pmf, which makes parameter estimation not straightforward. However, their
use in a count regression model can be still feasible, although some care has to be devoted to
the choice of the link functions for their parameters.

4 Dependence Structure: the Clayton Copula

Lack of independence/incorrelation between the number of goals scored by the two teams in a
football match was first claimed by [6]; in [17] the use of copulas for modeling two correlated
count distributions related to football games was suggested perhaps for the first time. As

4
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Figure 2: Graphs of the probability mass function of the type III discrete Weibull distribution
for some combinations of its parameters c and β

anticipated in Section 2, we assume that the random variables modeling the number of goals
scored by home and away teams, Y1i and Y2i, are no longer statistically independent, given the
covariates; we model their dependence structure through a specific copula family.

Copulas represent a very flexible tool for modeling dependence among rvs. A bivariate
copula is a joint cumulative distribution function in [0, 1]2 with standard uniform margins U1

and U2:

C(u1, u2) := P (U1 ≤ u1, U2 ≤ u2). (6)

Sklar’s theorem [22] states that if F is a joint distribution function with margins F1 and F2,
then there exists a copula C : [0, 1]2 → [0, 1] such that, for all x1, x2 in R̄ = [−∞,+∞],

F (x1, x2) = C(F1(x1), Fd(x2)).

If the margins are continuous, then C is unique, otherwise C is uniquely determined on
Ran(F1) × Ran(F2), with Ran(Fj) denoting the range of Fj . Conversely, if C is a copula
and F1, F2 are univariate cdfs, then the function F defined in (6) is a joint distribution function
with margins F1, F2. If the margins are continuous, the unique copula C is given by

C(u1, u2) = F (F−1
1 (u1), F

−1
2 (u2)),

where F−1
j denotes the generalized inverse of the marginal cdf Fj , i.e., F

−1
j (t) = inf {x ∈ R : Fj(x) ≥ t}.

We recall that for any copula C the following constraint holds for any (u1, u2) ∈ [0, 1]2:

max(0, u1 + u2 − 1) ≤ C(u1, u2) ≤ min(u1, u2); (7)

the left and right members of the inequality are called Fréchet lower bound and Fréchet upper
bound, respectively [9]. M(u1, u2) = min(u1, u2) is itself a copula, named “comonotonicity
copula”, as well asW (u1, u2) = max(0, u1+u2−1), the bivariate “countermonotonicity copula”.

From among the multitude of parametric bivariate copulas, we pick Clayton’s copula, be-
longing to the so-called Archimedean family. The expression of the one-parameter Clayton
copula is

C(u1, u2) = max
{
(u−θ

1 + u−θ
2 − 1)−1/θ, 0

}
, θ ∈ (−1,+∞) \ {0} . (8)

5
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The Clayton copula is interesting as it can model various kinds of dependence, ranging from
comonotonicity in the limit as θ → +∞, independence if θ → 0, and countermonotonicity if
θ → −1.

The values of the θ parameter can be better interpreted resorting to the expression of
Kendall’s correlation ρτ for the Clayton copula (valid however for continuous margins only;
see [19]):

ρτ =
θ

2 + θ
.

Moreover, the Clayton copula is also able to capture lower tail dependence. For a bivari-
ate absolutely continuous rv (X1, X2), with marginal cdfs F1 and F2, and generalized inverse
functions F←

1 and F←
2 , respectively, the coefficient of lower tail dependence is defined as

λL = lim
u→0+

P (X2 ≤ F−1
2 (u)|X1 ≤ F−1

1 (u)) = lim
u→0+

C(u, u)/u,

and for the Clayton copula with θ > 0, we have that

λL = 2−1/θ > 0.

Other well-known one-parameter bivariate copulas, such as the Gauss, the Plackett, and the
Frank, do not meet this feature, being all asymptotically lower and upper tail independent. In
Figure 3, the bivariate density plot of the Clayton copula is displayed for θ = 2, along with the
scatter plot of a bivariate random sample generated from the same copula (size n = 5, 000).
Thus, the Clayton copula may be a suitable candidate for modelling dependence between the
numbers of goals scored in football games in a football championship, usually presenting a
frequency of 0− 0 draws higher than that which is caught by standard stochastic models.

[20] considered the Clayton-copula model with negative binomial marginals for modelling
simultaneous spike-counts of neural populations, whereas, for computational reason, they are
typically modeled by a Gaussian distribution. In [17], the Clayton copula is cited as a possible
dependence structure for modelling the numbers of shots-for and shots-against a team in a
football game.

5 Empirical Analysis: Italian Serie A Championship

We focus on the main Italian football championship, called “Serie A”, a professional league
competition for football clubs located at the top of the Italian football league system. Since
2004-05, there have been 20 clubs playing in Serie A and as in most of the European countries
a true round-robin format is used. During the season, each club plays each of the other teams
twice; once at home and once away, eventually totaling 38 games. In the first half of the season,
called the “andata”, each team plays once against each league opponent, for a total of 19 games.
In the second half, called the “ritorno”, the teams play in the same exact order that they did
in the first half of the season, the only difference being that home and away situations are
switched. Since the 1994-95 season, teams earn three points for a win, one point for a draw
and no points for a loss.

Here we are interested in analysing and modeling the final result for all the 380 games
played throughout the season. For game i, 1 ≤ i ≤ 380, we denote with y1i the number of goals
scored by the home team, hi, and with y2i the number of goals scored by the away team, ai.
Based on these data, one can estimate all the parameters involved in the regression model of
Section 2, by using the maximum likelihood method, and for each game construct a theoretical

6
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Figure 3: Clayton copula with parameter θ = 2: contour density plot (on the left) and scatter
plot of a random sample of size 5, 000 (on the right)

joint probability table providing the probability of any possible outcome. As an overall result,
by aggregating all the single theoretical outcomes, one can reconstruct the theoretical final
scoreboard and compare it with its real counterpart.

We will start from a basic copula-based model, where the margins are assumed to follow
the type I discrete Weibull distribution (3) and the dependence structure is induced by the
Clayton copula (8). The two q parameters of the Weibull distribution are related to covariates
as follows (see [3]):

{
log[− log(q1i)] = μ(q) + home(q) + att

(q)
hi

+ def(q)ai

log[− log(q2i)] = μ(q) + att
(q)
ai + def

(q)
hi

where μ(q) is a constant term, home(q) is the “home effect”, att
(q)
k and def

(q)
k are the “attack”

and “defence” parameters associated to q for team k. Note that apart from the constant term,
the covariates for q are all dummy variables. The parameter β for the marginal distributions
and the parameter θ of Clayton copula are assumed to be constant. Estimates for all parameters
can be numerically obtained by maximizing the joint log-likelihood function. For the Italian
Serie A championship, season 2015/16, the parameter estimates of the model above and their
significance are reported in Table 1. Note the value of the estimate of β (1.866 > 1), which
highlights how the distribution of scored goals is quite concentrated on the first integers; and
the value of the estimate of θ (0.142), denoting a very slight correlation between the numbers
of scored and conceded goals.

Additional models can be constructed by considering the other two discrete Weibull distri-
bution, alternative copula functions, and different sets of covariates for the distribution param-
eters.

7
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team att(q) def(q)

Atalanta 0.230 0.089
Bologna 0.322. 0.087
Carpi 0.314. −0.250
Chievo 0.121 0.056
Empoli 0.184 0.030
Fiorentina −0.334∗ 0.217
Frosinone 0.287. −0.622∗∗∗
Genoa 0.122 −0.058
Inter 0.072 0.243
Juventus −0.557∗∗∗ 0.975∗∗∗
Lazio −0.138 −0.094
Milan 0.000 0.097
Napoli −0.712∗∗∗ 0.400∗
Palermo 0.334∗ −0.378∗
Roma −0.714∗∗∗ 0.153
Sampdoria −0.022 −0.285.
Sassuolo −0.020 0.226
Torino −0.117 −0.134
Udinese 0.283. −0.387∗
other parameters

μ(q) −1.037∗∗∗
home(q) −0.385∗∗∗
β 1.866∗∗∗
θ 0.142.

Table 1: Parameter estimates for the model applied to Italian Serie A championship 2015/2016.
Attack and defense parameters satisfy the sum-to-zero constraint; so, for the last team in
alphabetical order, Verona, we have att(q) = 0.346 and def(q) = −0.364.
Significance codes for p-values: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “” 1
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[10] Philip Holgate. Estimation for the bivariate Poisson distribution. Biometrika, 51(1-2):241–287,
1964.

[11] Dimitris Karlis and Ioannis Ntzoufras. Analysis of sports data by using bivariate Poisson models.
Journal of the Royal Statistical Society: Series D (The Statistician), 52(3):381–393, 2003.

[12] Dimitris Karlis and Ioannis Ntzoufras. Bayesian modelling of football outcomes: using the Skel-
lam’s distribution for the goal difference. IMA Journal of Management Mathematics, 20(2):133–
145, 2009.

[13] Dimitris Karlis and Ioannis Ntzoufras. Robust fitting of football prediction models. IMA Journal
of Management Mathematics, 22(2):171–182, 2011.

[14] Muhammad S. Ali Khan, Abdul Khalique, and Abdulrehman M. Abouammoh. On estimating
parameters in a discrete Weibull distribution. IEEE Transactions on Reliability, 38(3):348–350,
1989.

[15] Alan J Lee. Modeling scores in the premier league: is Manchester United really the best? Chance,
10(1):15–19, 1997.

[16] Michael J Maher. Modelling association football scores. Statistica Neerlandica, 36(3):109–118,
1982.

[17] Ian McHale and Phil Scarf. Modelling soccer matches using bivariate discrete distributions with
general dependence structure. Statistica Neerlandica, 61(4):432–445, 2007.

[18] Toshio Nakagawa and Shunji Osaki. The discrete Weibull distribution. IEEE Transactions on
Reliability, 24(5):300–301, 1975.

[19] Roger B. Nelsen. An Introduction to Copulas. New York, Springer-Verlag, 1999.
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