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ABSTRACT  

Spin diffusion is a formidable problem when interpreting NMR data of chemical compounds. We 

developed a method to reconstruct the conformational ensemble of flexible molecules displaying 

spin diffusion, which minimizes the subjective bias in the interpretation of experimental data and 

which can be used routinely to obtain sets of structures with the correct thermodynamic weights. 

We showed in the case of a flexible molecule that the correct conformational ensemble is quite 

different from that obtained with standard methods. 
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Introduction 

The determination of the structure of molecules from NMR data can be obtained by a simple 

restraint optimization only in the case they are rigid. Organic compounds often fluctuate in an 

ensemble of conformations displaying different properties and reactivities.  For flexible small 

molecules or macrocycles, restraint optimization produces average structures that are usually not 

representative of any state populated in solution. To have a realistic picture of the system, one then 

needs an ensemble of relevant conformations and their correct statistical weights, given by the 

laws of equilibrium thermodynamics. 

Several techniques have been developed to generate such ensembles of conformations 

compatible with the available NMR data, especially with nuclear Overhauser effect (NOE) 

intensities and, for large molecules like unstructured proteins, with data obtained by paramagnetic 

relaxation enhancement. These techniques include selection of pre-generated structures based on 

the experimental data1,2, the sample-and-select strategy3, replica-averaged molecular dynamics 

simulations4,5, the on-the-fly6 and the iterative7,8 correction of force fields based on the 

experimental data of a specific system. In particular, the last three methods make explicit use of 

the principle of maximum entropy9-11, to guarantee that the algorithm introduce the least amount 

of arbitrary extra-information that is not contained in the data. 

For a large class of molecules, NOE, interpreted in terms of ensemble averages <1/d6> of the 

distances d between the associated pairs of nuclei, is a powerful tool to obtain structural 

information of molecules and to generate ensembles of conformations. However, especially in the 

case of hydrophobic or of large molecules12, the phenomenon of spin diffusion can invalidate this 

interpretation of NOEs, underestimating the distance between nuclei and resulting in 

conformations that appear more structured than what they really are13.  
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Various methods were designed to keep into account correctly the process of spin diffusion14-16, 

but again their purpose was to obtain spatial restraints to be optimized, and thus they are useful for 

rigid molecules. The goal of the present work is to develop an efficient method to generate 

ensembles of conformations compatible with NOE data undergoing spin diffusion and complying 

with the laws of equilibrium thermodynamics, without introducing uncontrolled, subjective 

assumptions. 

The idea is to use NOE intensities to drive a molecular dynamics (MD) simulation to sample the 

ensemble of equilibrium conformations of the molecule through the principle of maximum 

entropy11. For each simulated conformation, the NOE intensity Iij are from the complete solution 

of the relaxation equation 

I"# = exp[−R"+τ-]	I+#0  ,         (1) 

where Rik the multi-spin quantum relaxation matrix, tm is the mixing time of the experiment and 

I0ij are the diagonal intensities extrapolated at zero mixing time17. The map between each simulated 

conformation and its contribution to the predicted signal is called ‘forward model’. The overall 

predicted signal, regarded as an average over ~1023 molecules, is obtained as thermal average 〈I"#〉 

of the forward model of Eq. (1). In this way, one describes correctly the diffusion of magnetization 

across spins, without relying on the small-tm approximation that is usually employed to decouple 

the relaxation of spin pairs and that results in <1/dij6>. 

We showed that the ensemble of conformations generated taking properly into account spin 

diffusion are markedly different from those generated in the usual small-tm approximation. The 

algorithm we propose can then be an efficient tool to interpret NMR data. 

From the algorithmical point of view, we generated the representative ensemble of 

conformations with MD simulations starting from a standard Amber force field and modifying it 
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iteratively to match the experimental NOE within the framework of the principle of maximum 

entropy, to minimize the degree of arbitrary bias inserted in the model. The iterative MD 

simulations were performed to obtain an equilibrium-like distribution of conformations, and 

putative NOE intensities were calculated from these conformations using the full relaxation model 

of Eq. (1). 

Further benefits of the method we propose is that it can keep into account unseen NOEs 

(uNOEs), namely undetected viable NOEs can be exploited as additional source of information to 

determine the conformational ensemble of the molecule, and it solves the problem of the 

ambiguous assignment of overlapping peaks, allowing the use of the overall NOE intensities 

between two groups of atoms to drive the MD simulation. 

 

The method 

The forward model. For any simulated conformation of the equilibrium ensemble of simulated 

molecules, the NOE intensities I"# are calculated from the time propagation of the diagonal 

intensities17 using Eq. (1). The relaxation matrix has the form 

R"# = 3ρ"						if		i = j
σ"#					if 	i ≠ j         (2) 

where 

ρ" = K∑ ;
<=>?

@ ;;0 J(0) +
F
;0 J(ω) +

H
;0 J(2ω)J#       (3) 

and 

σ"# = K ;
<=>?

@− ;
;0 J(0) +

H
;0 J(2ω)J,       (4) 
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where d"# = |r" − r#| is the distance between the ith and the jth proton,  

K = ;
N	O

PQℏST
UV W

N
,          (5) 

where µ0 is magnetic permeability in vacuum, ℏ is the reduced Planck constant and γ is the 

gyromagnetic ratio of the proton. For our spectrometer, it takes the value K = 0.56 nm6/ms2, and 

the spectral density is, under the assumption of isotropic tumbling 

J(ω) = ]^
;_`T]T̂,          (6) 

where τa is the rotational correlation time. 

Given an ensemble of conformations {r"} the predicted NOE intensities are calculated as the 

thermal average of the intensities of the single conformations 

〈I"#〉 = ∑ def[gh({i=})/+k]
l 	exp[−R"+({r"})	τ-]	I+#0{i} .      (7) 

where U is the energy of the system, T is the temperature, k is the Boltzmann constant, Z is the 

partition function and the sum is over the conformations of the ensemble. If the ensemble of 

conformations is the result of a MD simulation at constant temperature T, the conformations of the 

ensemble {r"m}n are automatically weighted with the correct Boltzmann weight, and the predicted 

NOEs are simply 

〈I"#〉 = ∑ 	exp[−R"+({r"m})	τ-]	I+#0{i}o .       (8) 

Operatively, the matrix exponential is calculated exactly with the linear algebra functions of GNU 

Scientific Library v. 2.4.2, avoiding the standard small-τ- expansion. 
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The principle of maximum entropy. The goal of the algorithm is to find a model for the molecule 

whose equilibrium properties match the experimental data and that is minimally biased, in the 

sense that the minimum amount of arbitrary hypotheses is used to build the model. This goal can 

be achieved with the principle of maximum entropy6,18-20, which states that such optimal model 

can be found maximizing the entropy of the probability distribution p(r) of its conformations {r} 

under the constraints given by the experimental data. Analogously, if one has some prior 

information on the probability distribution, in the form of a distribution p0(r) that is known to 

approximate p(r), the fairest model is the one that, while matching the experimental data, 

minimizes the Kullback-Leibler divergence. 

It can be shown (cf. Section S1 in the SI) that if one assumes the system to be at equilibrium, the 

maximum-entropy model interacts with a potential that displays the same functional form as the 

forward model I"#(r), 

U(r) = U0(r) + ∑ λ"#	I"#(r)"r# ,        (9) 

where s0(t) is an approximated potential known a priori and uvw are the numerical energy 

parameters that define fully the potential. 

The iterative MD scheme. The implementation of the principle of maximum entropy (or, 

equivalently, of Kullback-Leibler-divergence minimization) is obtained through an iterative MD 

scheme7,21. We start from a standard force field s0(t) and perform a MD simulation to sample the 

conformational space of the biomolecule. From the point of view of Eq. (S16), the initial 

simulation is performed setting all uvw = 0. 

At the end of the sampling, the values of uvw are then adjusted to minimize the xN between the 

NOE intensities calculated from the simulation by Eq. (8) and the experimental ones, defined as 
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xN = ;
y(yg;) ∑

O〈z{|〉g}{|
~�ÄW

T

ÅT
y
vrw ,        (10) 

where Ç is the experimental error, calculated from a triplicate experiment, and É is the number 

of hydrogens. Thus, the contribution of each NOE is weighted by the inverse error associated to 

it. To avoid a lengthy resampling after each step of the xN minimization, we employed the 

reweighting scheme of ref. 22, which consists in calculating the averages of Eq. (8) after each 

energy change s → s′ as 

〈Üvw〉 = á
áà ∑ 	Üvw(t)	âäã @− åç(é)gå(é)

èê J{é}ë ,       (11) 

where  

í′ = ∑ exp	[−s′(t)/ìî]{é}ë         (12) 

and {t}ï is the ensemble of conformations sampled with the original potential U.  

When the modified potential has become too different from the one used for the sampling, the 

sampled conformations are no longer representative of the equilibrium state of the new potential 

and a new sapling is carried out with the new potential. This procedure is iterated till the xN 

converges to a low value. The target of the iteration is to reach xN = 1, that is a model such that 

the difference between calculated and experimental NOE is comparable with the experimental 

error, avoiding an overfit. Since the experimenta errors Ç weight the different terms of the  xN, 

performing the NOESY experiment in triplicate is a necessary step of the present procedure. 

The computational details are given in Sect. S2 of the SI. The averages are calculated with the 

relaxation model of Eq. (1); it is important to stress that this reweighting scheme is only compatible 

with an approximated calculation of the spectral density as that defined by Eq. (6). However, in 

the calculation we correct the two-body dispersion terms and the Ryckaert-Bellemans torsional 

terms of the potential, regarded as approximations of the many-body potential suggested by the 
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forward model (cf. Eq. (9)), and consequently we are satisfying only an approximated version of 

the principle of maximum entropy. The reason for this choice is that most NOEs are associated 

with pairs of atoms of type 1-4 (i.e., separated by 3 covalent bonds). In usual force fields, the 

relative positions of these atoms is controlled essentially from the torsional terms of the potential, 

rather than from Lennard-Jones terms. Thus, since we are not satisfying exactly the principle of 

maximum entropy, we cannot guarantee the unicity of the optimized parameters, and their 

dependence on the specific optimization run has to be checked a posteriori. 

The back-calculated NOEs can be compared individually with the experimental ones in Eq. (10), 

or in the case that the multiple experimental peaks cannot be distinguished, can be summed 

together and compared with the overall height of the experimental peak, to avoid an arbitrary 

division of the peak into (usually equal) contributions. Moreover, one can extend the sum in Eq. 

(10) to unobserved NOEs (uNOEs), that is to bias pairs of protons that surely do not display a 

detectable intensity to display a 〈Üvw〉 equal to 0. 

Calculation of the rotational correlation time. The calculation of the forward model (1) requires 

the knowledge of the rotational correlation time óò, under the assumption of isotropic tumbling. 

For this purpose, we performed both a NOESY and a ROESY experiment on the molecule with a 

short mixing time óô = 50 ns. In this way, not all the peaks are detectable, but we are in a regime 

in which spin diffusion is negligible. Thus, 

Ivwöõú = âäã[−ùvèóô]	Üèw0 ≈ −ùvèóô	Üèw0        (13) 

and    

Ivwüõú = âäã†−ùvèüõúóô°	Üèw0 ≈ −ùvèüõúóô	Üèw0 .      (14) 

In the NOESY experiment, the off-diagonal relaxation rates are those of Eq. (4), while for the 

ROESY experiment they are17  
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Çvwüõú¢£ = § ;
•{|?

@ N;0 ¶(0) +
F
;0 ¶(ß)J.       (15) 

The ratio between the NOE and the ROE intensities can be obtained from Eqs. (13-15) and (4), 

and reads 

r	 = }{|®©™

}{|´©™
= (;_¨T≠ÆT)(ØgU¨T≠ÆT)

(;_U¨T≠ÆT)(Ø_N¨T≠ÆT)
,        (16) 

that is independent of the diagonal elements 	Üvw0  and of the averages 〈∞gH〉 which characterize 

the conformational ensemble of the molecule. From the measured values of r one can obtain the 

relaxation times as 

óò = ;
¨ ±

F≤FHéT_Ué_≥¥µ/Tg	NNé_;
∂(;_Né) ∑

;/N
.       (17) 

Results 

We applied the computational strategy described above to the calculation of the ensemble of 

equilibrium conformations of the peptide LIVNYL23, as an example of flexible molecule, 

populating at equilibrium multiple conformations. A set of NOESY experiments are carried out at 

different mixing times tM as described in Sect. S3 of the SI.  Each experiment is carried out in 

triplicate, to be able to assign to each signal a standard error. 

As reported in Fig. 1, the NOE intensities of several hydrogen pairs are not linear functions of 

the mixing time, suggesting that the system displays spin diffusion beyond mixing times of 400 

ms. For guiding the simulation, we used the spectrum acquired at 700 ms, because it allows the 

assignment and the measurement of the intensities of the largest set of cross peaks (see Table S1 

in the SI). 

While the standard procedure of turning NOE intensities into spatial restraints and minimizing 

them 24 gives a quite homogeneous ensemble of conformations, with an average root mean square 
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deviation (RMSD) from each other of 0.31 nm, there is no theoretical reason to believe that this 

ensemble represents the thermodynamic fluctuations of the peptide at equilibrium. Moreover, it is 

not able to reproduce the experimental data unless a treatment of quantum relaxation involving the 

time-propagation of magnetization, as in Eq. (1), is employed (cf. Fig. S2 in the SI). In fact, this 

calculation gives c2=73.2, indicating that the NOEs back-calculated from the minimized 

conformations keeping into account spin diffusion are different from the experimental values by 

very many standard errors.  

A different strategy, that of performing unbiased MD simulations with standard force fields in 

water cannot reproduce to a quantitative grade the experimental intensities (cf. gray bars in Fig. 2) 

as well, resulting in a c2=56.3 between the simulated and the experimental NOEs.  

To improve the results, we have applied the iterative MD approach, employing Eq. (1) to back-

calculate the NOEs from the simulation, as described in the Methods. We performed some tens of 

iterations of the algorithm; in each iteration a 50ns replica-exchange simulation is carried out in 

implicit solvent, and afterwards the potential is adjusted to minimize the c2 between the back-

calculated and the experimental NOEs. The trend of the c2 along the iterations is reported in Fig. 

S3 of the SI and, despite strong oscillations, decreases from »30 for the initial Amber force field 

to a minimum of 3.7. The comparison between the calculated and the experimental NOEs is 

reported in Fig. 2 (cf. blue and green bars). Of the 21 available NOEs, in 18 cases are within the 

error bars of the experimental values and in 3 cases they are just outside. 

A question which requires investigation is the robustness of the results. We performed two 

independent iterations, both starting from the Amber force field, and reaching a c2 of 3.7 and 4.0, 

respectively. In both cases the agreement between the calculated and the experimental NOEs is 

good, but the sets of parameters optimized in the independent runs give poorly correlated results 
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(cf. Fig. S4 in the SI). This could be caused by the fact that the optimization is not fully at 

convergence in such a large parameter space, by the approximation of a Lorentzian spectral 

density, or because the principle of maximum entropy guarantees the unicity of the result if only 

the parameters of the potential scaling as 1/d6 like the forward model (see Sect. 2 in the SI), while 

we had to update also the torsional terms to allow the i-(i+4) NOEs to match the experimental data. 

Anyway, the conformational properties (discussed below) appear similar for the two sets, 

suggesting that they correspond two different ways of decomposing the potential between 

Lennard-Jones and torsional terms. 

With the present algorithm is possible to include uNOEs in the simulation, that is two bias pairs 

of hydrogens to display zero intensity. Consequently, uNOEs are treated by the algorithm as any 

other NOE, setting their target intensity to zero. We implemented the 780 uNOEs corresponding 

to all the peaks not observed in the experimental spectrum, with a standard error set to the 

conventional value of 1000, corresponding to the order of magnitude of the error bars of observed 

NOEs. The c2 calculated only on the observed NOEs slightly increases to 4.1 from 3.7. The results 

are reported in Fig. S5 of the SI. The number of erroneously observed uNOE remains around 10, 

and their maximum intensity decreases from 6700 to 2900. The effect of uNOEs in the 

optimization of this molecules seems then marginal. 

One should pay attention that, especially in the case of molecules more complex that this small 

peptide, there can be many reasons not related with the associated interatomic distance why a NOE 

is not observed, like e.g. a high exchange rate with the solvent. In the present case, we showed that 

the use of uNOE essentially does not affect the results at all; thus, including pairs that are absent 

from the spectrum for these distance-independent reasons has no consequences. For other 

molecules the situation could be different and one should be careful in selecting uNOEs. 
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From the optimized simulation one can study the equilibrium ensemble of conformations of the 

molecule. A cluster analysis based on the RMSD highlights three major clusters of conformations 

displaying different equilibrium probabilities and mutually exclusive interactions (cf. Fig. 3). The 

most populated cluster (45% of the conformations) displays a hydrogen bond between the OC of 

6LEU and the HN of 3VAL and its aromatic ring is exposed; the least-populated (14%) one 

displays a hydrogen bond between the O of 1LEU and the HN of 4ASN; the middle one (31%) has 

no hydrogen bonds and the aromatic rings packs against the other hydrophobic residues. 

The distribution of radii of gyration of the molecule is less broadened than that obtained from a 

simulation run with the uncorrected force field, as displayed in the lower panel of Fig. 3.  The two 

independent simulations give results that are comparable with each other. 

We also performed a maximum-entropy optimization disregarding spin diffusion and using as 

forward model the conformational average <1/d6> for each pair of hydrogens, as in refs. 7,8. The 

agreement with the experimental data is worse than that obtained modelling spin diffusion 

(c2=16.4, see Fig. S6 in the SI). Not unexpectedly, in this case the equilibrium conformations are 

much more compact and structured (see cyan curve in Fig. 3), similarly to what is known to happen 

when interpreting NOEs as distance restrains in presence of spin diffusion25. 

From the calculation one can also calculate the free energy of the system as a function of any 

variable of interest. Based on the cluster analysis described above, we used the distance between 

the OC of 6LEU and the HN of 3VAL, that make a hydrogen bond in a fraction of the sampled 

conformations, and the radius of gyration. The result, displayed in Fig. 4, gives a perspective which 

is different from that of the cluster analysis. There are three thermodynamic states, two of them 

displaying low values of the distance between the hydrogen and the oxygen, and thus making the 

hydrogen bond that characterizes the most populated cluster, but with a different degree of 



 14 

compactness. In the other state this hydrogen bond is not formed, and the radius of gyration is 

intermediate between those of the other two states. This latter state then seems to contain the two 

least-populated clusters discussed above.  

This richness of structure is quite different from the case of the peptide optimized without taking 

into account spin diffusion (cf. Fig. S7 in the SI). In this case, there is essentially one state that is 

compact but does not display the hydrogen bonds between 3VAL and 6LEU. 

 

Discussion and Conclusions 

The principle of maximum entropy is implemented through an iterative MD scheme, that starts 

from a tentative force field in implicit solvent and corrects it so that the NOE spectrum calculated 

from the simulated ensemble through the forward model that accounts for spin diffusion and 

through a thermodynamic reweighting22 matches the experimental one within the experimental 

error bars. Error bars are calculated as standard deviation of NOE intensities in a triplicate 

experiment. This scheme7,11,21 has the advantage with respect to other algorithms4,6,9,10,20 that still 

implement the principle of maximum entropy not to require the calculation of the forward model 

at each MD step, a calculation that would be lengthy in the case of the matrix operations of Eq. 

(1).  

The present approach is applied to an equilibrium ensemble of conformations, that displays 

relevant conformational fluctuations, and provides results that are compatible with the laws of 

equilibrium thermodynamics. The forward model is much more realistic than the standard <1/dij6> 

model at long mixing times, giving results that are quite different than those obtained with that 

model. The main assumption in this calculation is that of isotropic tumbling, whose correlation 

time is obtained comparing NOE with ROE intensities.  
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The possibility of comparing the summed contribution of different atom pairs with the height of 

a peak given by the superposition of different overlapping NOEs avoids the arbitrary splitting of 

such peaks in its contributions. The algorithm also allows one to take into account unobserved 

NOEs, although we showed that, at least with the molecule under study here, the results are rather 

insensitive to this further information. 

The main approximation used in the present approach is that of using the expression of a rigid 

molecule which tumbles isotropically to calculate the spectral density in Eq. (6). This 

approximation allowed us to perform replica-exchange simulation instead of fixed-temperature 

MD simulations that would be required to calculate explicitly the spectral density. 

To check the validity of this approximation, we performed two  plain-MD simulations at constant 

temperature for 10 µs from two different initial conformations with the (same) optimized potential, 

and back-calculated the correlation functions responsible for the NOEs, as described in ref. 26 (for 

all the details see Sect. S5 of the SI). The tumbling of the molecule is found to be approximately 

isotropic, with a correlation time which is independent on the initial conformation; the overall 

correlation function Call , whose Fourier transform gives the spectral density J(w) that controls the 

transition rates of Eqs. (3-4), is approximately single-exponential, suggesting that the flexibility of 

the molecule does not necessarily invalidate Eq. (6); however, curves obtained from simulations 

starting from different initial conformations gives different results. This fact suggests that even 

long fixed-temperature simulations are not able to explore all the relevant conformational space 

available to this peptide. Consequently, the replica-exchange strategy is really necessary to 

guarantee an equilibrium sampling, even if this computational technique does not give realistic 

kinetic trajectories, preventing the calculation of the time correlation functions and obliging one 

to resort to the approximated Eq. (6).  
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Nonetheless, the NOE intensities calculated from the plain-MD simulation with and without the 

rigid-body approximation of the spectral density give comparable results, within the experimental 

error. These intensities are different from the experimental ones because the simulated rotational 

correlation time is smaller than the experimental one, probably due to the implicit character of the 

solvent used in the simulation (cf. Sect. S5 in the SI). These results, although stressing again that 

plain MD simulations cannot be used to calculated the NOEs for this molecule, suggest that the 

approximation of using a rigid-body spectral density for a system that is definitely not rigid is not 

dramatic if the correct time parameter is used. 

Another approximation of the present treatment is that spin transfer and diffusion to the solvent 

is neglected. However, accounting for it would require both an explicit-solvent simulation and a 

much heavier forward model, features that would make the computational cost of the optimization 

extremely high.  

Thus, the present strategy of modelling flexible molecules from NOEs undergoing spin diffusion 

is a fair trade-off between correctness of the model and computational cost. It allows one to go 

beyond the standard algorithms based on restraint minimizations, which can be misleading for 

flexible molecules, and to keep into account spin diffusion, whose neglection largely overestimate 

the degree of structure of the molecule. 
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Figure 1: The structure of the peptide under study, where the numeration of the hydrogen atoms 
associated with the detected NOEs is indicated (above panel). The intensity of some NOEs, as a 
function of the mixing time tM (below panel). 
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Figure 2: The NOE intensities obtained applying Eq. (1) to MD simulation in explicit water with 

the Amber03 force field, those obtained with the maximum-entropy correction and the 

experimental ones. The error bars in the experimental bars indicate the standard deviation of the 

triplicate experiment; those in the simulated bars indicate their fluctuations over the 

conformational ensemble. 
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Figure 3: The representative structures of the three more populated clusters of molecule 

conformations with their equilibrium probabilities (above). The distribution of radius of gyration 

obtained from two independent optimizations, from the original Amber03 potential and for the 

optimization performed disregarding spin diffusion (below). 
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Figure 4: The free energy of the peptide, calculated as a function of the distance between the OC 

of 6LEU and the HN of 3VAL and the gyration radius. 
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S1. Obtaining a force field from the principle of maximum entropy 
If one already has a a priori model for the system which provides a probability distribution !"($), a 
way of defining the minimum-biased model is that of minimizing the Kullback-Leibler divergence 
between the two distributions 

&'([!|!"] = ∑ !($) log 1(2)
13(2){2}  .       (S1) 

that can be constrained so that the averages performed with the model  〈789〉 = ∑ 789($)!($)	{2} match 
the experimental data I89=>1 with the method of Lagrange multipliers. One has then to minimize the 
function 

∑ !($) log 1(2)
13(2)

− ∑ @89A∑ !($)789($) −{2} I89=>1B89{2}      (S2) 

obtaining 

!($) = !"($) =>1CD
∑ EFGHFG(2)FG I
JK ,        (S3) 

where Z’ is the normalizing partition function. If p and p0 are equilibrium distributions following 
Boltzmann statistics 

!($) = L
J MN! O−

P(2)
QR S         (S4) 

and 

!"($) = L
J3
MN! O− P3(2)

QR S,         (S5) 

with T = ∑ exp	[−X($)/Z[]{2} ,  then Eq. (S11) becomes 

X($) = X"($) + Z[∑ @89789($)89 .        (S6) 

Consequently, one can correct any potential U0 to match the experimental data in a minimally-biased 
way, with a correction that has the same functional dependence on the conformation of the system as 
that of the forward model. Here two problems arise. First, the correcting potential obtained 
substituting Eq. (1) in Eq. (S6) is not two-body, but the interaction between pairs of atoms depend on 
the position of all other atoms, like in polarizable force fields. Moreover, the relation 

] ^_` J
]EFG

= I89=>1          (S7) 

that relates the Lagrange multipliers, which now act as parameters of the potential, to the experimental 
NOEs is an implicit equation involving the partition function, and thus is of little practical use. 
The former problem is solved assuming a two-body functional form, as usually done by standard 
force fields (but still calculating the forward model, as described in the next Section, with the many-
body Eq. (1)), that is using 

X($) = X"($) + ∑ EKFG
(2FD2G)a89 ,        (S8) 

where @′89 includes the Lagrange multipliers, the thermal contribution kT and the contribution of the 
forward model, assumed constant. The numerical values of @′89 are calculated minimizing the 
cd	between the NOE intensities calculated from the simulation and the experimental ones, as 
described in the next Section, thus avoiding the use of Eq. (S7). The use of a correction to the potential 
that has the same functional form of the forward model guarantees that we are searching among 
parametrizations that minimize the Kullback-Leibler divergence; the minimization of the 
cdguarantees that the Lagrange multipliers are satisfying the constraints on the thermodynamic 
averages. Since the expression in Eq. (S2) is convex, it displays a unique solution; thus, if one is able 



to find a distribution  !($) that minimizes the Kullback-Leibler divergence and matches the 
experimental averages, this will be the only possible solution. 
 
S2. Computational details 
 
The initial potential X"($) is the Amber 03 force field in implicit solvent, modelled with GBSA. At 
each iteration, replica-exchange MD simulations at four temperatures (T=300K, 330K, 370K and 
420K) are performed to sample the conformational space for 50 ns each replica, recording 5000 
conformations at 300K. Calculations are carried out with a tailor-made code calling Gromacs 4.5.5 
for the replica-exchange part. 
At the end of the sampling, the parameters of the interactions between the pairs of hydrogen atoms 
and of heavy atoms bound to the hydrogen atoms and the involved in the NOE signals undergo 500 
random updates, accepting only the changes that decrease the cd between the calculated and the 
experimental NOE intensities. The same kind of update is applied to the parameters of the Ryckaert-
Bellemans torsional potential associated with the observed i-(i+4) NOE, that were added to the 
potential with all parameters set to zero at the beginning of the simulation. A new MD simulation is 
then started with the new potential, starting from the last conformation of the previous run. 
The simulation is explicit solvent used as comparison are performed in 990 TIP/3P water molecules. 
The code is freely available at https://github.com/guidotiana/ffoptim . 
 
S3. NOESY experiments 
 
All NMR spectra were registered on Bruker Avance III 400 MHz using a solution 3.5 mM of the 
peptide in water (with 10% D2O). The water suppression war carried out by excitation sculpting. The 
assignment was performed through one- and two-dimensional 1H-NMR spectra by standard method. 
The assignment of the molecule is reported in Table S3. For the conformational analysis three 
independent NOESY spectra (with 32 scans and 256 increments) were collected using a mixing time 
of 700 ms (Figure S1) and the intensities of cross peaks were measured. To obtain the NOE build up 
curves, NOESY spectra with 100, 200, 400 700 and 1000 ms were used (Figure 1). The cross-peaks 
intensities were calculated and plotted as function of mixing time. Diagonal intensities are 
extrapolated at zero mixing time with a least-square cubic fit. 
   
 
S4. Calculation of the rotational correlation time 

In Table S1 we report the intensities obtained for six crosspeaks of the peptide. The value of ef, 
although being of the same order of magnitude, is different for each pair, because it is affected not 
only by the rotational motion of the molecule as a whole, but also the internal motion of the single 
groups, since the molecule is flexible. Not being able to find the value of ef for each pair, because 
not all crosspeaks can be detected at such a low mixing time, we used for the forward model the 
average of the values reported in Table S2, that is ef = 135 ps. 
 
S5. Approximation of the spectral density function  
The main approximation used in the present approach is that of using the expression of a rigid 
molecule which tumbles isotropically to calculate the spectral density in Eq. (6). This approximation 
allowed us to perform replica-exchange simulation instead of fixed-temperature MD simulations that 
would be required to calculate explicitly the spectral density. 



To check the validity of this approximation, we performed two independent 10 µs simulations from 
two different initial conformations with the (same) optimized potential, and back-calculated the 
correlation functions responsible for the NOEs, as described in ref. 26. 
The first result is that the tumbling of the molecule is found to be approximately isotropic, with a 
correlation time which is independent on the initial conformation and has the same order of magnitude 
of the experimental one (see Fig. S8 in the SI). The rotational correlation time tc»25 ps is smaller 
than those obtained experimentally (cf. Sect. S4 above). This is not completely unexpected due to the 
fact that simulations are done in implicit solvent. 
Moreover, we calculated the NOE intensity without approximating the spectral density as in Eq. (6) 
but calculating it explicitly from 

jkll(e) = 〈mn(o_pqr,rtu)2v(w)2v(wxy)〉,        (S9) 

Where zd(N) = {
d Nd −

L
d is the second-order Legendre polynomial and |w,wxy is the angle between the 

inter-spin vectors at the two times. The spectral function J(w) is the calculated as Fourier transform 
of Eq. (S9). It is important to note that this approach requires a real, fixed-temperature MD simulation 
to calculate the time correlation functions, while cannot be used with trajectories obtained from a 
replica-exchange simulation, as those used in the main part of our work. 
The correlation functions jkll(e) for the two contacts 60-74 and 48-82, taken respectively as 
representative of short-range and long-range contacts, are displayed in Fig. S9. Also, the value of the 
NOEs calculated by Eq. (S9) is indicated in the figure.  The overall correlation function jkll(e) (cf. 
Fig. S9 in the SI), whose Fourier transform gives the spectral density J(w) that controls the transition 
rates of Eqs. (3-4), is approximately single-exponential, suggesting that the flexibility of the molecule 
does not necessarily invalidate Eq. (6) 
The two correlation functions calculated for each contact in the two independent simulations appear 
quite different from each other. This difference can be better appreciated noticing that the associated 
NOE intensities (estimated in the small-tm limit, neglecting spin diffusion) are markedly different 
from each other, more than typical error bars. This difference suggests that plain MD simulations at 
fixed temperature, at variance with replica-exchange simulations, cannot reach thermodynamic 
equilibrium and thus are affected by a strong dependence on the initial conditions. In other words, 
although the calculation of NOEs from a plain MD simulation using Eq. (S9) is in principle more 
correct than using the approximation of Eq. (6) with a replica-exchange simulation, in practice a plain 
MD simulation is not able to calculate the thermodynamic average that appears in Eq. (S9). 
Nonetheless, we tested the approximation of the spectral density on the plain-MD data, at least to 
verify internal consistency. For this purpose, we postulated that the plain-MD trajectories described 
the thermodynamic equilibrium of the system (something which is clearly not true, see above), and 
calculated the NOE intensities both with the true spectral density of Eq. (S9) and with the 
approximated one of Eq. (6), using in the latter case the rotational correlation time obtained from Fig. 
S8. The calculated values are listed in Table S4. The difference between the NOE intensities 
calculated from the exact and the approximated spectral densities is of the order of 10%, comparable 
with the experimental error bars. 
The NOEs calculated in this way are approximately one order of magnitude smaller than the 
experimental ones. The reason for that lies in the low value of the simulated rotational correlation 
time. In fact, calculating the NOEs from the same plain-MD simulations with the spectral density of 
Eq. (6), but using now the experimental value of the rotational correlation time gives values (cf. Table 
S4) that display the same order of magnitude of the experimental ones (still being different in the two 
independent simulations and different from the experimental values, for the reason explained above). 
 



Supporting Tables 
 
 
 
 

atom i atom j average Iij sij 

6 23 26400 1734 
25,44 42 20600 2224 

27 23 23200 692 
36-38 23 12100 1209 
36-38 80,89 6732 1536 

44 58 21200 1907 
46 58 7833 929 
46 42 13033 1069 

48-50 58 9021 944 
48-50 42 22633 2253 

48-50 82,87 11298 1476 
60 58 11966 379 
60 72 24333 2190 
58 62,63 13500 1768 

74,95 93 24900 1650 
80,89 74 28666 4700 
80,89 76,77 44500 4500 
76,77 82,87 0 1000 
76,77 72 13400 2300 

72 80,89 10046 4030 
93 97,98 30232 2400 

 
Table S1: The average and standard deviation over three replicate experiments of the NOE intensities 
recorded at a mixing time of 700 ms. The overlapping spins are indicated in an aggregated way. 
 
 
 
 
 
 
 
 
 

Atom i Id Atom j Id 789}~� 789Ä~� r ef [ps] 

HA1 6 HN2 23 8100 29764 0.27 181 

HA3 44 HN4 58 5566 29814 0.18 212 
HN3 42 HB3 46 5845 8253 0.7 83 

HN2 23 HB2 27 8261 12984 0.63 96 
HB5 76,77 HB7 97,98 12264 30044 0.41 143 

HN6 93 HB7 97,98 8261 12984 0.63 96 
Table S2: The crosspeak intensities for selected pairs in the NOESY and in the ROESY experiments 
at 50 ns. Their ratio r allows one to calculate the rotational time ef through Eq. (S24). 
  



 
 NH Ha Hb Hg Hd Other 

L  3.93(6) 1.59 1.48 0.82-077  
I 8.50 (23) 4.13 (25) 1.69 1.4-1.09 (27) 0.75 (36-38)  
V 8.22 (42) 3.95 (44) 1.81 (46) 0.66 (48-50 

and 52-54) 
  

N 8.32 (58) 4.57 (60) 2.59 (62,63)   NH2 6.73-7.46 

Y 8.04 (72) 4.43 (74) 2.79-2.94 
(76,77) 

  7.04 (80,89) 
6.74 (82,87) 

L 8.12 (95) 4.24 (95) 1.53 (97,98) 1.42 0.78-0.81  
 
 
Table S3: NMR assignment of peptide LIVNYL in water. The number reported in bracket correspond 
to the numeric id of some of the hydrogens used to discuss the results. 
 
 
 
 I, true J(w) 

from MD 
I, rigid J(w) 
from MD 

I, rigid J(w) 
from MD with 
experimental tc 

I, rigid J(w) 
from rep-ex 

60-72 (replicate 1) 2.83´103 3.01´103 1.82´104 2.52´104 
60-72 (replicate 2) 5.82´103 6.13´103 4.21´104  
48-82 (replicate 1) 9.42´102 9.96´102 5.74´103 2.57´103 
48-82 (replicate 2) 2.14´103 2.84´103 1.84´104  

 
Table S4: In the second column, the NOE intensities calculated from the plain MD simulations for a 
short-range pair of protons (60-72) and for a long range one (48-82) using the exact spectral density 
and Eq. (S9); in the third column, the NOEs calculated with the rigid-body spectral density of Eq. (6) 
and the isotropic rotational correlation time obtained from the simulation (cf. Fig. S8); in the fifth 
column, the NOEs calculated from the rigid-body spectral density using the experimental correlation 
time (cf. Sect. S4); in the fifth column, the NOEs calculated from the replica-exchange simulations 
with the algorithm suggested in the main text.  



 
 
Supporting Figures 
 

 
 

 
 
Figure S1: Finger print region of NOESY spectrum (mixing time = 700ms) of peptide LIVNYL in 
water. The spectrum is recorded on a Bruker Avance III operating at 400 MHz at 298K.   
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Figure S2: (above) The comparison between the NOE intensities calculated with Eq. (1) from the 
ensemble of conformation obtained by restraint minimization with Dyana, and the experimental ones 
(giving a c2=73.2). (Below) The distribution of RMSD between each pair of conformations among 
the 20 that minimize restraint violations (conformations shown in the inset). 
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Figure S3: The cd between the calculated and the experimental NOEs as a function of the number 
of iterations of the optimization algorithms for two independent runs, starting from the Amber03 
force field in implicit solvent. 
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Figure S4: Scatter plots of the C6 parameters defining the Lennard-Jones potential (above) and of 
the parameters Cn defining the Ryckaert-Bellemans torsional potentials (below) obtained in two 
different optimizations. The correlation coefficients are 0.37 and 0.18, respectively. 
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Figure S5: (above) Comparison between calculated and experimental NOE intensity for a simulation 
in which, in addition to the optimization of the observed NOEs, uNOE are optimized to be zero, with 
error bars set to a conventional value of 1000. Only observed NOEs are plotted here. The overall cd  
is 0.26, while that restricted to observed NOEs is 4.1. (Below) The distribution of uNOE obtained by 
the simulation with standard Amber in explicit solvent and for the optimized potential. The dashed 
line indicates the width of the error bar. There are 8 erroneously observed (i.e., above 1000) uNOE 
in the Amber03 simulation and 10 in the optimized simulation. 
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Figure S6: Comparison of the NOE intensities of Fig. 1 with those obtained disregarding spin 
diffusion, that is using as forward model for each pair of spin the quantity  〈1/ÅÇ〉, where d is the 
interatomic distance. The cd between the calculated and the experimental NOEs is 16.4. 
 
 
 
 

 
 
Figure S7: The free energy of the system interacting with the potential optimized without taking into 
account spin diffusion. 
 
 
 
 

0
5000
10000
15000
20000
25000
30000
35000
40000
45000
50000

6-23
(25,44)-42

27-23
(36,37,38)-23

(36,37,38)-(80,89)

44-58
46-58

46-42
(48,49,50)-58

(48,49,50)-42

(48,49,50)-(82,87)

60-58
60-72

58-(62,63)

(74,95)-93

(80,89)-74

(80,89)-(76,77)

(76,77)-(82,87)

(76,77)-72

72-(80,89)

93-(97,98)

N
O
E
in
te
ns
ity

atom pair

no spin diffusion
corrected

experimental



 
 

 
 
Figure S8: The rotational correlation times along the three Cartesian axes (solid colored lines) 
calculated from two fixed-temperature MD simulations starting from two initial conditions (upper 
and lower panel, respectively) with the (same) optimal potential found by the iterative algorithm. 
Dashed lines indicate the single-exponential fits used to obtain the correlation times indicated in the 
plots. 
 
 
 
 

0
0.2
0.4
0.6
0.8
1

0 50 100 150 200

τx=20.8325
τy=31.7071
τz=32.4739C

ro
t

τ [ps]

0
0.2
0.4
0.6
0.8
1

0 50 100 150 200

τx=23.1057
τy=27.6943
τz=21.8244C

ro
t

τ [ps]



 
 
 
 
 
 
 
 
 
Figure S9: The overall correlation time (solid curve) calculated with Eq. (26) of ref. 25 in the two 
replicated fixed-temperature MD simulations for contact 60-74 and 48-82. The dashed lines indicate 
the single-exponential fit. To appreciate the difference between the various behaviors, in each plot is 
indicated the NOE intensity I that would be obtained averaging the full correlation function on the 
two trajectories. 
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