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Abstract:We present an extension of the classical theory of calculus of variations to generalized functions.
The framework is the category of generalized smooth functions, which includes Schwartz distributions, while
sharing many nonlinear properties with ordinary smooth functions. We prove full connections between ex-
tremals and Euler–Lagrange equations, classical necessary and sufficient conditions to have aminimizer, the
necessary Legendre condition, Jacobi’s theorem on conjugate points and Noether’s theorem. We close with
an application to low regularity Riemannian geometry.
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1 Introduction and motivations

Singular problems in the calculus of variations have longly been studied both in mathematics and in rele-
vant applications (see, e.g., [7, 18, 25, 43] and references therein). In this paper, we introduce an approach
to variational problems involving singularities that allows the extension of the classical theory with very
natural statements and proofs. We are interested in extremizing functionals which are either distributional
themselves or whose set of extremals includes generalized functions. Clearly, distribution theory, being a
linear theory, has certain difficulties when nonlinear problems are in play.

To overcome this type of problems, we are going to use the category of generalized smooth functions, see
[12–15]. This theory seems to be a good candidate, since it is an extension of classical distribution theory,
which allows the modeling of nonlinear singular problems, while at the same time sharing many nonlinear
propertieswith ordinary smooth functions like the closurewith respect to composition and several non-trivial
classical theorems of calculus. One could describe generalized smooth functions as amethodological restora-
tion of Cauchy–Dirac’s original conception of generalized function, see [8, 24, 28]. In essence, the idea of
Cauchy and Dirac (but also of Poisson, Kirchhoff, Helmholtz, Kelvin and Heaviside) was to view generalized
functions as suitable types of smooth set-theoretical maps obtained from ordinary smooth maps depending
on suitable infinitesimal or infinite parameters. For example, the density of a Cauchy–Lorentz distribution
with an infinitesimal scale parameter was used by Cauchy to obtain classical properties, which nowadays are
attributed to the Dirac delta function, cf. [24].
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In the present work, the foundation of the calculus of variations is set for functionals defined by arbitrary
generalized functions. This in particular applies to any Schwartz distribution and anyColombeau generalized
function (see, e.g., [5, 6]), and hence justifies the title of the present paper.

For example, during the last years, the study of low regular Riemannian and Lorentzian geometry was
intensified andmade a huge amount of progress (cf. [26, 27, 30, 33, 40, 41]). It was shown that the exponen-
tial map is a bi-Lipschitz homeomorphism when metrics g ∈ C1,1 are considered [26, 34], or that Hawking’s
singularity theorem still holds when g ∈ C1,1, see [27]. However, the calculus of variations in the classical
sense may cease to hold when metrics with C1,1 regularity, or below, are considered [19, 29]. This motivates
the search for an alternative. In fact, if p, q ∈ ℝd andΩ(p, q) denotes the set of all Lipschitz continuous curves
connecting p and q, the natural question about what curves γ ∈ Ω(p, q) realize the minimal g-length leads to
the corresponding geodesic equation, but the Jacobi equation is not rigorously defined. To be more precise,
the Riemannian curvature tensor exists only as an L∞loc function on ℝd, and is evaluated along γ. However,
the image Im(γ) of γ has Lebesgue-measure zero if d > 1. Thus, we cannot state the Jacobi equations properly.

In order to present a possible way out of the aforementioned problems, the singularmetric g is embedded
as a generalized smooth function. In this way, the embedding ι(g) has derivatives of all orders, valued in a
suitable non-Archimedean ring ρℝ̃ ⊇ ℝ (i.e., a ring that contains infinitesimal and infinite numbers). Despite
the total disconnectedness of the ground ring, the final class of smooth functions on ρℝ̃ behaves very closely
to that of standard smooth functions; this is a typical step one can recognize in other topics such as analytic
space theory [4, 37] and non-Archimedean analysis, see, e.g., [17] and references therein. We then apply our
extended calculus of variations to the generalizedRiemannian space (ρℝ̃d , ι(g)), and sketch away to translate
the given problem into the language of generalized smooth functions, solve it there, and translate it back to
the standard Riemannian space (ℝd , g). Clearly, the process of embedding the singular metric g using ι(g)
introduces infinitesimal differences. This is typical in a non-Archimedean setting, but the notion of standard
part comes to help: if x ∈ ρℝ̃ is infinitely close to a standard real number s, i.e., |x − s| ≤ r for all r ∈ ℝ>0, then
the standard part of x is exactly s. We then show that (assuming that (ℝd , g) is geodesically complete) the
standard part of the minimal length in the sense of generalized smooth functions is the minimal length in
the classical sense, and give a simple way to check if a given (classical) geodesic is a minimizer of the length
functional or not. In this way, the framework of generalized smooth functions is presented as a method to
solve standard problems rather than a proposal to switch into a new setting.

The structure of the present paper is as follows. We start with an introduction into the setting of gener-
alized smooth functions and give basic notions concerning generalized smooth functions and their calculus
that are needed for the calculus of variations (Section 2). The paper is self-contained in the sense that it con-
tains all the statements required for the proofs of calculus of variations we are going to present. If proofs of
preliminaries are omitted, we clearly give references to where they can be found. Therefore, to understand
this paper, only a basic knowledge of distribution theory is needed.

In Section 3, we obtain some preliminary lemmas regarding the calculus of variations with generalized
smooth functions. The first variation and the notion of critical point will be defined and studied in Section 4.
We prove the fundamental lemma of calculus of variations and the full connection between critical points of
a given functional and solutions of the corresponding Euler–Lagrange equation. In Section 5, we study the
second variation and define the notion of local minimizer. We also extend to generalized functions classical
necessary and sufficient conditions to have a minimizer, and we give a proof of the Legendre condition. In
Section 6, we introduce the notion of Jacobi field and extend to generalized functions the definition of conju-
gate points, so as to prove the corresponding Jacobi theorem. In Section 7, we extend the classical Noether’s
theorem. We close with an application to C1,1 Riemannian geometry in Section 8.

Note that Konjik, Kunzinger and Oberguggenberger [25] already established the calculus of variations in
the setting of Colombeau generalized functions, by using a comparable methodological approach. Indeed,
generalized smooth functions are related to Colombeau generalized functions, and one could say that the
former is a minimal extension of the latter so as to get more general domains for generalized functions, and
hence the closure with respect to composition and a better behavior on unbounded sets. However, there are
some conceptual advantages in our approach.

Authenticated | lorenzo.luperi.baglini@univie.ac.at author's copy
Download Date | 9/25/17 7:07 PM



A. Lecke, L. Luperi Baglini and P. Giordano, Calculus of variations for GF | 3

(i) Whereas generalized smooth functions are closed with respect to composition, Colombeau general-
ized functions are not. This forced the authors of [25] to consider only functionals defined using compactly
supported Colombeau generalized functions, i.e., functions assuming only finite values, or tempered gener-
alized functions.

(ii) The authors of [25] were forced to consider the so-called compactly supported points c(Ω) (i.e., finite
points in Ω ⊆ ℝn), where the setting of generalized smooth functions gives the possibility to consider more
natural domains like the interval [a, b] ⊆ ρℝ̃. This leads us to extend in a natural way the statements of classi-
cal results of calculus of variations. Moreover, all our results still hold when we take as a, b ∈ ρℝ̃ two infinite
numbers such that a < b, or as boundary points two unbounded points p, q ∈ ρℝ̃d.

(iii) The theory of generalized smooth functions was developed to be very user friendly, in the sense
that one can avoid cumbersome “ε-wise” proofs quite often, whereas the proofs in [25] frequently use this
technique. Thus, one could say that some of the proofs based on generalized smooth functions are more
“intrinsic” and close to the classical proofs in a standard smooth setting. This allows a smoother approach
to this new framework.

(iv) The setting of generalized smooth functions depends on a fixed infinitesimal net (ρε)ε∈(0,1] ↓ 0,
whereas the Colombeau setting considers only ρε = ε. This added degree of freedom allows to solve singular
differential equations that are unsolvable in the classical Colombeau setting and to prove a more general
Jacobi theorem on conjugate points.

(v) In [25], only thenotionof globalminimizer is defined,whereaswedefine thenotionof localminimizer,
as in [10], using a natural topology in space of generalized smooth curves.

(vi) We obtain more classical results like the Legendre condition, and the classical results about Jacobi
fields and conjugate points.

(vii) The Colombeau generalized functions can be embedded into generalized smooth functions. Thus,
our approach is a natural extension of [25].

2 Basic notions

The new ring of scalars

In this work, I denotes the interval (0, 1] ⊆ ℝ and we will always use the variable ε for elements of I; we also
denote ε-dependent nets x ∈ ℝI simply by (xε). Byℕ, we denote the set of natural numbers, including zero.

We start by defining the new simple non-Archimedean ring of scalars that extends the real field ℝ. The
entire theory is constructive to a high degree, e.g., no ultrafilter or non-standard method is used. For all the
proofs in this section, see [13–15].

Definition 2.1. Let ρ = (ρε) ∈ ℝI be a net such that limε→0 ρε = 0+.
(i) I(ρ) := {(ρ−aε ) | a ∈ ℝ>0} is called the asymptotic gauge generated by ρ. The net ρ is called a gauge.
(ii) If P(ε) is a property of ε ∈ I, we use the notation ∀0ε : P(ε) to denote ∃ε0 ∈ I, ∀ε ∈ (0, ε0] : P(ε). We can

read ∀0ε as for ε small.
(iii) We say that a net (xε) ∈ ℝI is ρ-moderate and write (xε) ∈ ℝρ if ∃(Jε) ∈ I(ρ) : xε = O(Jε) as ε → 0+.
(iv) Let (xε), (yε) ∈ ℝI . We say that (xε) ∼ρ (yε) if ∀(Jε) ∈ I(ρ) : xε = yε + O(J−1ε ) as ε → 0+. This is a congru-

ence relation on the ring ℝρ of moderate nets with respect to pointwise operations, and we can hence
define

ρℝ̃ := ℝρ/ ∼ρ ,

whichwe callRobinson–Colombeau ring of generalized numbers, see [5, 6, 38].Wedenote the equivalence
class x ∈ ρℝ̃ simply by x := [xε] := [(xε)]∼ ∈ ρℝ̃.

In the following, ρ will always denote a net as in Definition 2.1. The infinitesimal ρ can be chosen depending
on the class of differential equations we need to solve for the generalized functions we are going to introduce,
see [16]. For motivations concerning the naturality of ρℝ̃, see [14].
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We can also define an order relation on ρℝ̃ by saying that [xε] ≤ [yε] if there exists (zε) ∈ ℝI such that
(zε) ∼ρ 0 (we then say that (zε) is ρ-negligible) and xε ≤ yε + zε for ε small. Equivalently, we have that x ≤ y if
and only if there exist representatives [xε] = x and [yε] = y such that xε ≤ yε for all ε. Clearly, ρℝ̃ is a partially
ordered ring. The usual real numbers r ∈ ℝ are embedded in ρℝ̃ by considering constant nets [r] ∈ ρℝ̃.

Even in the case where the order ≤ is not total, we still have the possibility to define the infimum
min([xε], [yε]) := [min(xε , yε)], and analogously the supremum function max([xε], [yε]) := [max(xε , yε)]
and the absolute value |[xε]| := [|xε|] ∈ ρℝ̃. Note, e.g., that x ≤ z and −x ≤ z imply |x| ≤ z. In the follow-
ing, we will also use the customary notation ρℝ̃∗ for the set of invertible generalized numbers. Our nota-
tions for intervals are [a, b] := {x ∈ ρℝ̃ | a ≤ x ≤ b} and [a, b]ℝ := [a, b] ∩ℝ, and analogously for segments
[x, y] := {x + r ⋅ (y − x) | r ∈ [0, 1]} ⊆ ρℝ̃n and [x, y]ℝn = [x, y] ∩ℝn. Finally, we write x ≈ y to denote that
|x − y| is an infinitesimal number, i.e., |x − y| ≤ r for all r ∈ ℝ>0. This is equivalent to limε→0+ |xε − yε| = 0 for
all representatives x = [xε] and y = [yε].

Topologies on ρℝ̃n

On the ρℝ̃-module ρℝ̃n, we can consider thenatural extensionof the Euclideannorm, i.e., |[xε]| := [|xε|] ∈ ρℝ̃,
where [xε] ∈ ρℝ̃n. Even if this generalized norm takes values in ρℝ̃, it shares several properties with usual
norms, like the triangular inequality or the property |y ⋅ x| = |y| ⋅ |x|. It is therefore natural to consider on ρℝ̃n

topologies generated by balls defined by this generalized norm and a set of radiiR.

Definition 2.2. LetR ∈ {ρℝ̃∗≥0,ℝ>0}, c ∈ ρℝ̃n and x, y ∈ ρℝ̃.
(i) We write x <R y if ∃r ∈ R : r ≤ y − x.
(ii) BRr (c) := {x ∈ ρℝ̃n | |x − c| <R r} for each r ∈ R.
(iii) For each r ∈ ℝ>0, BEr (c) := {x ∈ ℝn | |x − c| < r} denotes an ordinary Euclidean ball inℝn.

The relation <R has better topological properties compared to the usual strict order relation a ≤ b and a ̸= b
(that we will never use) because for R ∈ {ρℝ̃∗≥0,ℝ>0} the set of balls {BRr (c) | r ∈ R, c ∈ ρℝ̃n} is a base for a
topology on ρℝ̃n. The topology generated in the case R = ρℝ̃∗≥0 is called sharp topology, whereas the one
with the set of radii R = ℝ>0 is called Fermat topology. We will call sharply open set any open set in the
sharp topology, and large open set any open set in the Fermat topology; clearly, the latter is coarser than
the former. The existence of infinitesimal neighborhoods implies that the sharp topology induces the dis-
crete topology on ℝ. This is a necessary result when one has to deal with continuous generalized func-
tions which have infinite derivatives. In fact, if f �(x0) is infinite, we have f(x) ≈ f(x0) only for x ≈ x0, see
[11, 12]. With an innocuous abuse of language, we write x < y instead of x <ρℝ̃∗≥0

y, and x <ℝ y instead of
x <ℝ>0 y. For example, ρℝ̃∗≥0 = ρℝ̃>0. We will simply write Br(c) to denote an open ball in the sharp topology
and BFr (c) for an open ball in the Fermat topology. Also open intervals are defined using the relation <, i.e.,
(a, b) := {x ∈ ρℝ̃ | a < x < b}.

The following result is useful to deal with positive and invertible generalized numbers (cf. [35]).

Lemma 2.3. Let x ∈ ρℝ̃. Then the following are equivalent:
(i) x is invertible and x ≥ 0, i.e., x > 0.
(ii) For each representative (xε) ∈ ℝρ of x, we have ∀0ε : xε > 0.
(iii) For each representative (xε) ∈ ℝρ of x, we have ∃m ∈ ℕ, ∀0ε : xε > ρmε

We will also need the following result.

Lemma 2.4. Let a, b ∈ ρℝ̃ such that a < b. Then the interior int([a, b]) in the sharp topology is dense in [a, b].

Internal and strongly internal sets

A natural way to obtain sharply open, closed and bounded sets in ρℝ̃n is by using a net (Aε) of subsets
Aε ⊆ ℝn. We have two ways of extending the membership relation xε ∈ Aε to generalized points [xε] ∈ ρℝ̃.
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Definition 2.5. Let (Aε) be a net of subsets ofℝn.
(i) [Aε] := {[xε] ∈ ρℝ̃n | ∀0ε : xε ∈ Aε} is called the internal set generated by the net (Aε). See [36] for an

introduction and an in-depth study of this notion in the case ρε = ε.
(ii) Let (xε) be a net of points of ℝn. We say that xε ∈ε Aε, and we read it as (xε) strongly belongs to (Aε), if

∀0ε : xε ∈ Aε, and if (x�ε) ∼ρ (xε), thenalso x�ε ∈ Aε for ε small. Also,we set ⟨Aε⟩ := {[xε] ∈ ρℝ̃n | xε ∈ε Aε},
and we call it the strongly internal set generated by the net (Aε).

(iii) We say that the internal set K = [Aε] is sharply bounded if there exists r ∈ ρℝ̃>0 such that K ⊆ Br(0). Anal-
ogously, a net (Aε) is sharply bounded if the internal set [Aε] is sharply bounded.

Therefore, x ∈ [Aε] if there exists a representative [xε] = x such that xε ∈ Aε for ε small, whereas this mem-
bership is independent from the chosen representative in the case of strongly internal sets. Note explicitly
that an internal set generated by a constant net Aε = A ⊆ ℝn is simply denoted by [A].

The following theorem shows that internal and strongly internal sets have dual topological properties:

Theorem 2.6. For ε ∈ I, let Aε ⊆ ℝn and let xε ∈ ℝn. Then the following hold:
(i) [xε] ∈ [Aε] if andonly if ∀q ∈ ℝ>0, ∀0ε : d(xε , Aε) ≤ ρqε . Thus, [xε] ∈ [Aε] if andonly if [d(xε , Aε)] = 0∈ ρℝ̃.
(ii) [xε] ∈ ⟨Aε⟩ if and only if ∃q ∈ ℝ>0, ∀0ε : d(xε , Acε) > ρ

q
ε , where Acε := ℝn \ Aε. Hence, if (d(xε , Acε)) ∈ ℝρ,

then [xε] ∈ ⟨Aε⟩ if and only if [d(xε , Acε)] > 0.
(iii) [Aε] is sharply closed and ⟨Aε⟩ is sharply open.
(iv) [Aε] = [cl(Aε)], where cl(S) is the closure of S ⊆ ℝn. On the other hand, ⟨Aε⟩ = ⟨int(Aε)⟩, where int(S) is

the interior of S ⊆ ℝn.

Generalized smooth functions and their calculus

Using the ring ρℝ̃, it is easy to consider a Gaussian with an infinitesimal standard deviation. If we denote
this probability density by f(x, σ), and if we set σ = [σε] ∈ ρℝ̃>0, where σ ≈ 0, we obtain the net of smooth
functions (f(−, σε))ε∈I . This is the basic idea we are going to develop in the following.

Definition 2.7. Let X ⊆ ρℝ̃n and Y ⊆ ρℝ̃d be arbitrary subsets of generalized points. We say that f : X → Y
is a generalized smooth function if there exists a net fε ∈ C∞(Ωε ,ℝd) defining f in the sense that X ⊆ ⟨Ωε⟩,
f([xε]) = [fε(xε)] ∈ Y and (∂α fε(xε)) ∈ ℝdρ for all x = [xε] ∈ X and all α ∈ ℕn. The space of generalized smooth
functions (GSF) from X to Y is denoted by ρGC∞(X, Y).

Let us note explicitly that this definition statesminimal logical conditions to obtain a set-theoreticalmap from
X into Y, defined by a net of smooth functions. In particular, the following theorem states that the equality
f([xε]) = [fε(xε)] is meaningful, i.e., that we have independence from the representatives for all derivatives
[xε] ∈ X Ü→ [∂α fε(xε)] ∈ ρℝ̃d, α ∈ ℕn.

Theorem 2.8. Let X ⊆ ρℝ̃n and Y ⊆ ρℝ̃d be arbitrary subsets of generalized points. Let fε ∈ C∞(Ωε ,ℝd) be a
net of smooth functions that defines a generalized smooth map of the type X → Y . Then the following hold:
(i) ∀α ∈ ℕn , ∀(xε), (x�ε) ∈ ℝnρ : [xε] = [x�ε] ∈ X ⇒ (∂αuε(xε)) ∼ρ (∂αuε(x�ε)).
(ii) ∀[xε] ∈ X, ∀α ∈ ℕn , ∃q ∈ ℝ>0, ∀0ε : supy∈BEεq (xε)|∂

αuε(y)| ≤ ε−q.
(iii) For all α ∈ ℕn, the GSF g : [xε] ∈ X Ü→ [∂α fε(xε)] ∈ ℝ̃d is locally Lipschitz in the sharp topology, i.e.,

each x ∈ X possesses a sharp neighborhood U such that |g(x) − g(y)| ≤ L|x − y| for all x, y ∈ U and some
L ∈ ρℝ̃.

(iv) Each f ∈ ρGC∞(X, Y) is continuous with respect to the sharp topologies induced on X, Y .
(v) Assume that the GSF f is locally Lipschitz in the Fermat topology and that its Lipschitz constants are

always finite, i.e., L ∈ ℝ. Then f is continuous in the Fermat topology.
(vi) f : X → Y is a GSF if and only if there exists a net vε ∈ C∞(ℝn ,ℝd) defining a generalized smooth map of

type X → Y such that f = [vε(−)]|X .
(vii) Subsets S ⊆ ρℝ̃s with the trace of the sharp topology, and generalized smooth maps as arrows form a

subcategory of the category of topological spaces. We will call this category the category of GSF, and
denote it by ρGC∞.
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The differential calculus for GSF can be introduced by showing existence and uniqueness of another GSF
serving as incremental ratio.

Theorem 2.9 (Fermat–Reyes theorem for GSF). Let U ⊆ ρℝ̃n be a sharply open set, let v = [vε] ∈ ρℝ̃n, and let
f ∈ ρGC∞(U, ρℝ̃) be a generalized smooth map generated by the net of smooth functions fε ∈ C∞(Ωε ,ℝ). Then
the following hold:
(i) There exists a sharp neighborhood T of U × {0} and a generalized smooth map r ∈ ρGC∞(T, ρℝ̃), called the

generalized incremental ratio of f along v, such that f(x + hv) = f(x) + h ⋅ r(x, h) for all (x, h) ∈ T.
(ii) Any two generalized incremental ratios coincide on a sharp neighborhood of U × {0}.
(iii) We have r(x, 0) = [ ∂fε∂vε (xε)] for every x ∈ U and we can thus define Df(x) ⋅ v := ∂f

∂v (x) := r(x, 0), so that
∂f
∂v ∈ ρGC∞(U, ρℝ̃).

If U is a large open set, then an analogous statement holds by replacing sharp neighborhoods by large neigh-
borhoods.

Note that this result permits the consideration of the partial derivative of f with respect to an arbitrary gen-
eralized vector v ∈ ρℝ̃n which can be, e.g., infinitesimal or infinite. Using this result, we can also define sub-
sequent differentials Dj f(x) as j-multilinear maps, and we set

Dj f(x) ⋅ hj := Dj f(x)(h, . . . , h⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
j

).

The set of all the j-multilinear maps (ρℝ̃n)j → ρℝ̃d over the ring ρℝ̃ will be denoted by Lj(ρℝ̃n , ρℝ̃d). For
A = [Aε(−)] ∈ Lj(ρℝ̃n , ρℝ̃d), we set |A| := [|Aε|], the generalized number defined by the operator norms of the
multilinear maps Aε ∈ Lj(ℝn ,ℝd).

The following result follows from the analogous properties for the nets of smooth functions defining f
and g.

Theorem 2.10. Let U ⊆ ρℝ̃n be an open subset in the sharp topology, and let v ∈ ρℝ̃n and f, g : U → ρℝ̃ be
generalized smooth maps. Then the following hold:
(i) ∂(f+g)

∂v = ∂f
∂v +

∂g
∂v .

(ii) ∂(r⋅f)
∂v = r ⋅ ∂f∂v for all r ∈

ρℝ̃.
(iii) ∂(f⋅g)∂v = ∂f

∂v ⋅ g + f ⋅
∂g
∂v .

(iv) For each x ∈ U, the map df(x) ⋅ v := ∂f
∂v (x) ∈

ρℝ̃ is ρℝ̃-linear in v ∈ ρℝ̃n.
(v) LetU ⊆ ρℝ̃n andV ⊆ ρℝ̃d be open subsets in the sharp topology, and let g ∈ ρGC∞(V, U)and f ∈ ρGC∞(U, ρℝ̃)

be generalized smooth maps. Then, for all x ∈ V and all v ∈ ρℝ̃d, we have ∂(f ∘g)
∂v (x) = df(g(x)) ⋅ ∂g∂v (x).

We also have a generalization of the Taylor formula.

Theorem 2.11. Let f ∈ ρGC∞(U, ρℝ̃) be a generalized smooth function defined in the sharply open set U ⊆ ρℝ̃n.
Let a, x ∈ ρℝ̃n be such that the line segment [a, x] belongs to U. Then, for all n ∈ ℕ, we have

∃ξ ∈ [a, x] : f(x) =
n
∑
j=0

Dj f(a)
j! ⋅ (x − a)j + D

n+1f(ξ )
(n + 1)! ⋅ (x − a)n+1. (2.1)

If we further assume that all the n components (x − a)k ∈ ρℝ̃ of x − a ∈ ρℝ̃n are invertible, then there exists
ρ ∈ ρℝ̃>0, ρ ≤ |x − a|, such that

∀k ∈ Bρ(0), ∃ξ ∈ [a − k, a + k] : f(a + k) =
n
∑
j=0

Dj f(a)
j! ⋅ kj + D

n+1f(ξ )
(n + 1)! ⋅ kn+1, (2.2)

Dn+1f(ξ )
(n + 1)! ⋅ kn+1 ≈ 0. (2.3)

Formula (2.1) corresponds to a direct generalization of Taylor formulas for ordinary smooth functions with
Lagrange remainder. On the other hand, in (2.2) and (2.3), the possibility that the differential Dn+1f may be
infinite at some point is considered, and the Taylor formulas are stated so as to have infinitesimal remainder.

The following local inverse function theorem will be used in the proof of Jacobi’s theorem (see [13] for a
proof).
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Theorem 2.12. Let X ⊆ ρℝ̃n and f ∈ ρGC∞(X, ρℝ̃n), and suppose that for some x0 in the sharp interior of X,
Df(x0) is invertible in L(ρℝ̃n , ρℝ̃n). Then there exists a sharp neighborhood U ⊆ X of x0 and a sharp neighbor-
hood V of f(x0) such that f : U → V is invertible and f−1 ∈ ρGC∞(V, U).

We can define right and left derivatives as, e.g., f �(a) := f �+(a) := limt→a,a<t f �(t), which always exist if
f ∈ ρGC∞([a, b], ρℝ̃d). The one-dimensional integral calculus of GSF is based on the following.

Theorem 2.13. Let f ∈ ρGC∞([a, b], ρℝ̃) be a generalized smooth function defined in the interval [a, b] ⊆ ρℝ̃,
where a < b. Let c ∈ [a, b]. Then there exists one and only one generalized smooth function F ∈ ρGC∞([a, b], ρℝ̃)
such that F(c) = 0 and F�(x) = f(x) for all x ∈ [a, b]. Moreover, if f is defined by the net fε ∈ C∞(ℝ,ℝ) and
c = [cε], then F(x) = [∫

xε
cε
fε(s)ds] for all x = [xε] ∈ [a, b].

Definition 2.14. Under the assumptionsof Theorem2.13,wedenoteby∫(−)
c f := ∫

(−)
c f(s)ds ∈ ρGC∞([a, b],ρℝ̃)

the unique generalized smooth function such that

c

∫
c

f = 0 and (

(−)

∫
u

f)
�

(x) = d
dx

x

∫
u

f(s)ds = f(x) for all x ∈ [a, b].

All the classical rules of integral calculus hold in this setting:

Theorem 2.15. Let f ∈ ρGC∞(U, ρℝ̃) and g ∈ ρGC∞(V, ρℝ̃) be generalized smooth functions defined on sharply
open domains in ρℝ̃. Let a, b ∈ ρℝ̃, with a < b, and c, d ∈ [a, b] ⊆ U ∩ V . Then
(i) ∫

d
c (f + g) = ∫

d
c f + ∫

d
c g,

(ii) ∫
d
c λf = λ ∫

d
c f for all λ ∈ ρℝ̃,

(iii) ∫dc f = ∫
e
c f + ∫

d
e f for all e ∈ [a, b],

(iv) ∫dc f = −∫
c
d f ,

(v) ∫
d
c f

� = f(d) − f(c),

(vi) ∫dc f
� ⋅ g = [f ⋅ g]dc − ∫

d
c f ⋅ g.

Theorem 2.16. Let f ∈ ρGC∞(U, ρℝ̃) and ϕ ∈ ρGC∞(V, U) be generalized smooth functions defined on sharply
open domains in ρℝ̃. Let a, b ∈ ρℝ̃, with a < b, such that [a, b] ⊆ V, ϕ(a) < ϕ(b) and [ϕ(a), ϕ(b)] ⊆ U. Finally,
assume that ϕ([a, b]) ⊆ [ϕ(a), ϕ(b)]. Then

ϕ(b)

∫
ϕ(a)

f(t)dt =
b

∫
a

f [ϕ(s)] ⋅ ϕ�(s)ds.

Embedding of Schwartz distributions and Colombeau functions

We finally recall two results that give a certain flexibility in constructing embeddings of Schwartz distribu-
tions. Note that both the infinitesimal ρ and the embedding of Schwartz distributions have to be chosen de-
pending on the problemwe aim to solve. A trivial example in this direction is theODE y� = y/dε, which cannot
be solved for ρ = (ε), but it has a solution for ρ = (e−1/ε). As another simple example, if we need the prop-
erty H(0) = 1/2, where H is the Heaviside function, then we have to choose the embedding of distributions
accordingly. See also [16, 32] for further details.

If ϕ ∈ D(ℝn), r ∈ ℝ>0 and x ∈ ℝn, we use the notations r ⊙ ϕ for the function x ∈ ℝn Ü→ 1
rn ⋅ ϕ( xr ) ∈ ℝ and

x ⊕ ϕ for the function y ∈ ℝn Ü→ ϕ(y − x) ∈ ℝ. These notations permit to highlight that ⊙ is a free action of the
multiplicative group (ℝ>0, ⋅ , 1) on D(ℝn) and ⊕ is a free action of the additive group (ℝ>0, +, 0) on D(ℝn).
We also have the distributive property r ⊙ (x ⊕ ϕ) = rx ⊕ r ⊙ ϕ.

Lemma 2.17. Let b ∈ ρℝ̃ be a net such that limε→0+ bε = +∞. Let d ∈ (0, 1). There exists a net (ψε)ε∈I ofD(ℝn)
with the following properties:
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(i) supp(ψε) ⊆ B1(0) for all ε ∈ I.
(ii) ∫ψε = 1 for all ε ∈ I.
(iii) ∀α ∈ ℕn , ∃p ∈ ℕ : supx∈ℝn |∂αψε(x)| = O(b

p
ε ) as ε → 0+.

(iv) ∀j ∈ ℕ, ∀0ε : 1 ≤ |α| ≤ j ⇒ ∫ xα ⋅ ψε(x)dx = 0.
(v) ∀η ∈ ℝ>0, ∀0ε : ∫|ψε| ≤ 1 + η.
(vi) If n = 1, then the net (ψε)ε∈I can be chosen so that ∫

0
−∞ ψε = d.

In particular, ψbε := b−1ε ⊙ ψε satisfies (ii)–(v).

It is worth noting that the condition (iv) of null moments is well known in the study of convergence of numer-
ical solutions of singular differential equations, see, e.g., [9, 21, 42] and references therein.

Concerning the embeddings of Schwartz distributions, we have the following result, where

c(Ω) := {[xε] ∈ [Ω] | ∃K ⋐ Ω, ∀0ε : xε ∈ K}

is called the set of compactly supported points in Ω ⊆ ℝn.

Theorem 2.18. Under the assumptions of Lemma2.17, letΩ ⊆ ℝn be an open set and let (ψbε )be the net defined
in Lemma 2.17. Then the mapping

ιbΩ : T ∈ E�(Ω) Ü→ [(T ∗ ψbε )(−)] ∈ ρGC∞(c(Ω), ρℝ̃)

uniquely extends to a sheaf morphism of real vector spaces

ιb : D� → ρGC∞(c((−)), ρℝ̃),

and satisfies the following properties:
(i) If b ≥ dρ−a for some a ∈ ℝ>0, then ιb|C∞

(−) : C
∞(−) → ρGC∞(c((−)), ρℝ̃) is a sheaf morphism of algebras.

(ii) If T ∈ E�(Ω), then supp(T) = supp(ιbΩ(T)).
(iii) limε→0+ ∫Ω ι

b
Ω(T)ε ⋅ ϕ = ⟨T, ϕ⟩ for all ϕ ∈ D(Ω) and all T ∈ D�(Ω).

(iv) ιb commutes with partial derivatives, i.e., ∂α(ιbΩ(T)) = ι
b
Ω(∂

αT) for each T ∈ D�(Ω) and α ∈ ℕ.

Concerning the embedding of Colombeaugeneralized functions,we recall that the special Colombeaualgebra
on Ω is defined as the quotient Gs(Ω) := EM(Ω)/Ns(Ω) ofmoderate nets over negligible nets, where the former
is

EM(Ω) := {(uε) ∈ C∞(Ω)I !!!! ∀K ⋐ Ω, ∀α ∈ ℕn , ∃N ∈ ℕ : sup
x∈K

|∂αuε(x)| = O(ε−N)}

and the latter is

Ns(Ω) := {(uε) ∈ C∞(Ω)I !!!! ∀K ⋐ Ω, ∀α ∈ ℕn , ∀m ∈ ℕ : sup
x∈K

|∂αuε(x)| = O(εm)}.

Using ρ = (ε), we have the following compatibility result.

Theorem 2.19. A Colombeau generalized function u = (uε) +Ns(Ω)d ∈ Gs(Ω)d defines a generalized smooth
map u : [xε] ∈ c(Ω) → [uε(xε)] ∈ ℝ̃d, which is locally Lipschitz on the same neighborhood of the Fermat topol-
ogy for all derivatives. This assignment provides a bijection of Gs(Ω)d onto ρGC∞(c(Ω), ρℝ̃d) for every open set
Ω ⊆ ℝn.

2.1 Extreme value theorem and functionally compact sets

For GSF, suitable generalizations of many classical theorems of differential and integral calculus hold such
as the intermediate value theorem, mean value theorems, a sheaf property for the Fermat topology, local
and global inverse function theorems, the Banach fixed point theorem and a corresponding Picard–Lindelöf
theorem, see [13–15, 31].

Even though the intervals [a, b] ⊆ ℝ̃, a, b ∈ ℝ, are neither compact in the sharp nor in the Fermat topol-
ogy (see [15, Theorem 25]), analogously to the case of smooth functions, a GSF satisfies an extreme value
theorem on such sets. In fact, we have the following theorem.

Authenticated | lorenzo.luperi.baglini@univie.ac.at author's copy
Download Date | 9/25/17 7:07 PM



A. Lecke, L. Luperi Baglini and P. Giordano, Calculus of variations for GF | 9

Theorem 2.20. Let f ∈ GC∞(X, ℝ̃) be a generalized smooth function defined on the subset X of ℝ̃n. Let
0 ̸= K = [Kε] ⊆ X be an internal set generated by a sharply bounded net (Kε) of compact sets Kε ⋐ ℝn. Then

∃m,M ∈ K, ∀x ∈ K : f(m) ≤ f(x) ≤ f(M). (2.4)

We shall use the assumptions on K and (Kε) given in this theorem to introduce a notion of “compact subset”
which behaves better than the usual classical notion of compactness in the sharp topology.

Definition 2.21. A subset K of ℝ̃n is called functionally compact, denoted by K ⋐f ℝ̃n, if there exists a net (Kε)
such that
(i) K = [Kε] ⊆ ℝ̃n,
(ii) (Kε) is sharply bounded,
(iii) ∀ε ∈ I : Kε ⋐ ℝn.
If, in addition, K ⊆ U ⊆ ℝ̃n, then we write K ⋐f U. Finally, we write [Kε] ⋐f U if (ii), (iii) and [Kε] ⊆ U hold.

Wemotivate the name functionally compact subset by noting that on this type of subsets, GSF have properties
very similar to those that ordinary smooth functions have on standard compact sets.

Remark 2.22. (i) By [36, Proposition 2.3], any internal set K = [Kε] is closed in the sharp topology. In par-
ticular, the open interval (0, 1) ⊆ ℝ̃ is not functionally compact since it is not closed.

(ii) If H ⋐ ℝn is a non-empty ordinary compact set, then [H] is functionally compact. In particular, we have
that [0, 1] = [[0, 1]ℝ] is functionally compact.

(iii) For the empty set, we have 0 = 0̃ ⋐f ℝ̃.
(iv) ℝ̃n is not functionally compact since it is not sharply bounded.
(v) The set of compactly supported points ℝ̃c is not functionally compact because the GSF f(x) = x does not

satisfy the conclusion (2.4) of Proposition 2.20.

In the present paper, we need the following properties of functionally compact sets.

Theorem 2.23. Let K ⊆ X ⊆ ℝ̃n, f ∈ GC∞(X, ℝ̃d). Then K ⋐f ℝ̃n implies f(K) ⋐f ℝ̃d.

As a corollary of this theorem and Remark 2.22 (ii), we get the following.

Corollary 2.24. If a, b ∈ ℝ̃ and a ≤ b, then [a, b] ⋐f ℝ̃.

Let us note that a, b ∈ ℝ̃ can also be infinite, e.g., a = [−ε−N], b = [ε−M] or a = [ε−N], b = [ε−M] with M > N.
Finally, in the following result we consider the product of functionally compact sets.

Theorem 2.25. Let K ⋐f ℝ̃n and H ⋐f ℝ̃d, then K × H ⋐f ℝ̃n+d. In particular, if ai ≤ bi for i = 1, . . . , n, then
∏n
i=1[ai , bi] ⋐f ℝ̃n.

A theory of compactly supportedGSF has been developed in [13], and it closely resembles the classical theory
of LF-spaces of compactly supported smooth functions. It establishes that for suitable functionally compact
subsets, the corresponding space of compactly supported GSF contains extensions of all Colombeau gener-
alized functions, and hence also of all Schwartz distributions.

3 Preliminary results for calculus of variations with GSF

In this section, we study extremal values of generalized functions at sharply interior points of intervals
[a, b] ⊆ ρℝ̃. As in the classical calculus of variations, this will provide the basis for proving necessary and
sufficient conditions for general variational problems. Since the new ring of scalars ρℝ̃ has zero divisors and
is not totally ordered, the following extension requires a more refined analysis than in the classical case.

The following lemma shows that we can interchange integration and differentiation while working with
generalized functions.
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Lemma 3.1. Let a, b, c, d ∈ ρℝ̃, with a < b and c < d. Let also f ∈ ρGC∞(X, Y) and assume that [a, b]×[c, d] ⊆
X ⊆ ρℝ̃2 and Y ⊆ ρℝ̃d. Then, for all s ∈ [c, d], we have

d
ds

b

∫
a

f(τ, s)dτ =
b

∫
a

∂
∂s
f(τ, s)dτ. (3.1)

Proof. We first note that f( ⋅ , s) ∈ ρGC∞([a, b], Y), by the closure of GSF with respect to composition. There-
fore, ∂

∂s f( ⋅ , s) ∈
ρGC∞([a, b], ρℝ̃d), and the right-hand side of (3.1) is well defined as an integral of a

GSF. In order to show that also the left-hand side of (3.1) is well defined, we need to prove that also
σ ∈ [c, d] Ü→ ∫

b
a f(τ, σ)dτ ∈ ρℝ̃d is a GSF. Let f be defined by the net fε ∈ C∞(Ωε ,ℝd), with X ⊆ ⟨Ωε⟩, and

let [σε] ∈ [c, d]. Then [a, b] × {[σε]} ⋐f ρℝ̃2 and the extreme value Theorem 2.20 applied to ∂n f
∂σn yields the

existence of N ∈ ℝ>0 such that

!!!!!!!!!

dn
dσn

bε

∫
aε

fε(τ, σε)dτ
!!!!!!!!!
≤
bε

∫
aε

!!!!!!!
∂n

∂σn
fε(τ, σε)

!!!!!!!
dτ ≤ ρ−Nε ⋅ (bε − aε).

This proves that also the left-hand side of (3.1) is well defined as a derivative of a GSF. From the classical
derivation under the integral sign, the Fermat–Reyes Theorem2.9, and Theorem2.13 about definite integrals
of GSF, we obtain

d
ds

b

∫
a

f(τ, s)dτ =
d
ds

b

∫
a

[fε(τ, s)]dτ

=
d
ds[

bε

∫
aε

fε(τ, s)dτ]

= [
d
ds

bε

∫
aε

fε(τ, s)dτ]

=
b

∫
a

[
∂
∂s
fε(τ, s)]dτ

=
b

∫
a

∂
∂s
f(τ, s)dτ.

The next result will be used frequently.

Lemma 3.2. Let (D, ≥) be a directed set and let f : D → ρℝ̃ be a set-theoretical map such that f(d) ≥ 0 for all
d ∈ D, and ∃ limd∈D f(d) ∈ ρℝ̃ in the sharp topology. Then limd∈D f(d) ≥ 0.

Proof. Note that the internal set [0, +∞) = [[0, +∞)ℝ] is sharply closed by (iii) of Theorem 2.6.

Remark 3.3. (i) If x ∈ ρℝ̃, then x ≥ 0 if and only if ∃A ∈ ℝ>0, ∀a ∈ ℝ>A : x ≥ −dρa . Indeed, it suffices to let
a → +∞ in f(a) = x + dρa.

(ii) Assume that x, y ∈ ρℝ̃n and

∃s0 ∈ ρℝ̃>0, ∀s ∈ ρℝ̃>0 : s ≤ s0 ⇒ |x| ≤ s|y|.

Then taking s → 0 in f(s) = s|y| − |x|, we get x = 0.

Definition 3.4. We call x = (x1, . . . , xd) ∈ ρℝ̃d componentwise invertible if and only if for all k ∈ {1, . . . , d},
we have that xk ∈ ρℝ̃ is invertible.

Lemma 3.5. Let f ∈ ρGC∞(U, Y), where Y ⊆ ρℝ̃, and U ⊆ ρℝ̃d is a sharply open subset. Then f ≥ 0 if and only
if f(x) ≥ 0 for all componentwise invertible x ∈ U.
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Proof. By Lemma 2.3, it follows that for V ⊆ ρℝ̃, the set of invertible points in V, i.e., V ∩ ρℝ̃∗ ⊆ V is dense
in V (with respect to the sharp topology). This implies that U ∩ (ρℝ̃d)∗ ⊆ U is dense. By Theorem 2.8 (iv), f is
sharply continuous, so Lemma 3.2 yields f(x) ≥ 0. The other direction is obvious.

Analogously to the classical case, we say that x0 ∈ X is a local minimum of f ∈ ρGC∞(X) if there exists a
sharply open neighborhood (in the trace topology) Y ⊆ X of x0 such that f(x0) ≤ f(y) for all y ∈ Y. A local
maximum is defined accordingly. We will write f(x0) = min!, which is a short hand notation to denote that x0
is a (local) minimum of f .

Lemma 3.6. Let X ⊆ ρℝ̃ and f ∈ ρGC∞(X, ρℝ̃). If x0 ∈ X is a sharply interior localminimumof f , then f �(x0) = 0.

Proof. Without loss of generality, we can assume x0 = 0, because of the closure of GSFwith respect to compo-
sition. Let r ∈ ρℝ̃>0 be such that B2r(0) =: U ⊆ X and f(0) = min! over U. Take any x ∈ ρℝ̃ such that 0 < |x| < r,
so that [−|x|, |x|] ⊆ U. Thus, if x > 0, by Taylor’s Theorem 2.11, there exists ξ ∈ [0, x] such that

f(x) = f(0) + f �(0) ⋅ x + f
��(ξ )
2 ⋅ x2.

Set K := [Brε (0)] ⋐f B2r(0) ⊆ U and M := maxx∈K |f ��(x)| ∈ ρℝ̃≥0. Due to the fact that f(0) is minimal, we have

f �(0) ⋅ x + f
��(ξ )
2 ⋅ x2 = f(x) − f(0) ≥ 0.

Thus,−f �(0) ⋅ x ≤ M
2 x

2 and−f �(0) ≤ M
2 |x|, since x > 0. Analogously, ifwe take x < 0,weget f �(0)≤−M2 x =

M
2 |x|.

Therefore, |f �(0)| ≤ M
2 |x|, and the conclusion follows by Remark 3.3 (ii).

As a consequence of Lemma 2.4 and Theorem 2.8 (iv), we have the following lemma.

Lemma 3.7. Let a, b ∈ ρℝ̃, with a < b, and let f ∈ ρGC∞([a, b], ρℝ̃d) be such that f(x) = 0 for all sharply inte-
rior points x ∈ [a, b]. Then f = 0 on [a, b].

Now, we are able to prove the “second-derivative-test” for GSF.

Lemma 3.8. Let a, b ∈ ρℝ̃, with a < b, and let f ∈ ρGC∞([a, b], ρℝ̃) be such that f(x0) = min! for some sharply
interior x0 ∈ [a, b]. Then f ��(x0) ≥ 0. Vice versa, if f �(x0) = 0 and f ��(x0) > 0, then f(x0) = min!.

Proof. As above, we can assume that x0 = 0. Let r ∈ ρℝ̃>0 be such that B2r(0) =: U ⊆ X and f(0) = min!
over U. Take any x ∈ ρℝ̃ such that 0 < x < r, so that [0, x] ⊆ U, and set K := [Brε (0)] ⋐f B2r(0) ⊆ U and
M := maxx∈K |f ���(x)| ∈ ρℝ̃≥0. By Taylor’s Theorem 2.11, for some ξ ∈ [0, x], we obtain

f(x) = f(0) + f �(0)x + 1
2 f

��(0)x2 + 1
6 f

���(ξ )x3.

By assumption, for all a ∈ ℝ>0, we have

0 ≤ f(x) − f(0) + dρa .

By Lemma 3.6, we know that f �(0) = 0. Thus, for all a ∈ ℝ>0, we obtain

f(x) − f(0) = 1
2 f

��(0)x2 + 1
6 f

���(ξ )x3 ≥ −dρa .

Therefore, also 1
2 f

��(0)x2 + 1
6Mx

3 ≥ −dρa. In this inequality we can set x = dρa/3, assuming that a > A and
dρA < r. We get f ��(0) ≥ −(2 + M

3 )dρ
a/3, and the conclusion follows from Lemma 3.2 as a → +∞.

Now assume that f �(0) = 0 and f ��(0) > 0, so that f ��(0) > dρa for some a ∈ ℝ>0, by Lemma 2.3. Since
f �(0) = 0, for all x ∈ Br(0), Taylor’s formula gives

f(x) − f(0) = 1
2 f

��(0)x2 + 1
6 f

���(ξx)x3,

where ξx ∈ [0, x]. Therefore, f(x) − f(0) > x2(12dρ
a + 1

6 f
���(ξx)x). Now

!!!!!!
1
6 f

���(ξx)x
!!!!!! ≤

1
6M|x| → 0 as x → 0.

Authenticated | lorenzo.luperi.baglini@univie.ac.at author's copy
Download Date | 9/25/17 7:07 PM



12 | A. Lecke, L. Luperi Baglini and P. Giordano, Calculus of variations for GF

Thus,
∃s ∈ ρℝ̃>0 : s < r, ∀x ∈ Bs(0) : −

1
4dρ

a <
1
6 f

���(ξx)x <
1
4dρ

a .

We can hence write f(x) − f(0) > x2(12dρ
a − 1

4dρ
a) = x2 14dρ

a ≥ 0 for all x ∈ Bs(0), which proves that x = 0 is
a local minimum.

For the generalization of Lemmas 3.6 and 3.8 to the multivariate case, one can proceed as above, using the
ideas of [25]. Note, however, that we do not need this generalization in the present work.

4 First variation and critical points

In this section, we define the first variation of a functional and prove that some classical results have their
counterparts in this generalized setting, for example, the fundamental lemma (Lemma4.4) or the connection
between critical points and the Euler–Lagrange equations (Theorem 4.5).

Definition 4.1. If a, b ∈ ρℝ̃ and a < b, we define

ρGC∞
0 (a, b) := {η ∈ ρGC∞(ρℝ̃, ρℝ̃d) : η(a) = 0 = η(b)}.

When the use of the points a, b is clear from the context, we adopt the simplified notation ρGC∞
0 . We also

note here that ρGC∞
0 (a, b) is an ρℝ̃-module.

One of the positive features of the use of GSF for the calculus of variations is their closure with respect to
composition. For this reason, the next definition of functional is formally equal to the classical one, though
it can be applied to arbitrary generalized functions F and u.

Theorem 4.2. Let a, b ∈ ρℝ̃with a < b. Let u ∈ ρGC∞([a, b], ρℝ̃d)and F ∈ ρGC∞([a, b] × ρℝ̃d × ρℝ̃d , ρℝ̃), and
define

I(u) :=
b

∫
a

F(t, u, u̇)dt. (4.1)

Let also η ∈ ρGC∞
0 . Then

δI(u; η) := d
ds I(u + sη)

!!!!!!s=0
=

b

∫
a

η(Fu(t, u, u̇) −
d
dt Fu̇(t, u, u̇))dt.

Proof. Using Theorems 2.10 and 2.15, and Lemma 3.1, we have

d
ds I(u + sη)

!!!!!!s=0
=

d
ds

b

∫
a

F(t, u + sη, u̇ + sη̇)dt
!!!!!!!s=0

=
b

∫
a

∂
∂s
F(t, u + sη, u̇ + sη̇)

!!!!!!s=0
dt

=
b

∫
a

ηFu(t, u, u̇) + η̇Fu̇(t, u, u̇)dt

= [ηFu̇(t, u, u̇)]ba +
b

∫
a

η(Fu(t, u, u̇) −
d
dt Fu̇(t, u, u̇))dt

=
b

∫
a

η(Fu(t, u, u̇) −
d
dt Fu̇(t, u, u̇))dt.
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We call δI(u; η) the first variation of I. In addition, we call u ∈ ρGC∞([a, b], ρℝ̃d) a critical point of I if
δI(u; η) = 0 for all η ∈ ρGC∞

0 .
To prove the fundamental lemma of the calculus of variations, Lemma 4.4, we first show that every GSF

can be approximated using generalized strict delta nets.

Lemma 4.3. Let a, b ∈ ρℝ̃ be such that a < b and let f ∈ ρGC∞([a, b], ρℝ̃). Let x ∈ [a, b] and R ∈ ρℝ̃>0 be such
that BR(x) ⊆ [a, b]. Assume that Gt ∈ ρGC∞(ρℝ̃, ρℝ̃) has the following properties:
(i) ∫

R
−R Gt = 1 for t ∈ ρℝ̃>0 small.

(ii) For t small, (Gt)t∈ρℝ̃>0 is zero outside every ball Bδ(0), 0 < δ < R, i.e.,

∀δ ∈ ρℝ̃>0, ∃ρ ∈ ρℝ̃>0, ∀t ∈ Bρ(0) ∩ ρℝ̃>0, ∀y ∈ [−R, −δ] ∪ [δ, R] : Gt(y) = 0.

(iii) ∃M ∈ ρℝ̃>0, ∃ρ ∈ ρℝ̃, ∀t ∈ Bρ(0) : ∫
R
−R|Gt(y)|dy ≤ M.

Then

lim
t→0+

R

∫
−R

f(x − y)Gt(y)dy = f(x).

Proof. We only have to generalize the classical proof concerning limits of convolutions with strict delta nets.
We first note that

R

∫
−R

f(x − y)Gt(y)dy =
x+R

∫
x−R

f(y)Gt(x − y)dy,

and so these integrals exist because (x − R, x + R)= BR(x)⊆ [a, b]. Using (i), for t small, say for0< t < S∈ ρℝ̃>0,
we get

!!!!!!!!!

R

∫
−R

f(x − y)Gt(y)dy − f(x)
!!!!!!!!!
=
!!!!!!!!!

R

∫
−R

[f(x − y) − f(x)]Gt(y)dy
!!!!!!!!!
≤

R

∫
−R

|f(x − y) − f(x)| ⋅ |Gt(y)|dy.

For each r ∈ ρℝ̃>0, the sharp continuity of f at x yields |f(x − y) − f(x)| < r for all y such that |y| < δ ∈ ρℝ̃>0,
and we can take δ < R. By (ii), for 0 < |t| < min(ρ, S), we have

!!!!!!!!!

R

∫
−R

f(x − y)Gt(y)dy − f(x)
!!!!!!!!!
≤ r

+δ

∫
−δ

|Gt(y)|dy. (4.2)

The right-hand side of (4.2) can be taken arbitrarily small in ρℝ̃>0, because of (iii), the fact that [−δ, δ] ⋐f ρℝ̃
and the application of the extreme value Theorem 2.20 to the GSF Gt.

Lemma 4.4 (Fundamental lemma of the calculus of variations). Let a, b ∈ ρℝ̃ be such that a < b, and let
f ∈ ρGC∞([a, b], ρℝ̃). If

b

∫
a

f(t)η(t)dt = 0 for all η ∈ ρGC∞
0 , (4.3)

then f = 0.

Proof. Let x ∈ [a, b]. Because of Theorem 2.8 (iv) and Lemma 2.4, without loss of generality, we can assume
that x is a sharply interior point, so that BR(x) ⊆ [a, b] for some R ∈ ρℝ̃>0. Let ϕ ∈ D[−1,1](ℝ) be such that
∫ϕ = 1. Set Gt,ε(x) := 1

tε ϕ(
x
tε ), where x ∈ ℝ and t ∈ ρℝ̃>0, and Gt(x) := [Gt,ε(xε)] for all x ∈ ρℝ̃. Then, for t

sufficiently small, we have Gt(x − ⋅ ) ∈ ρGC∞
0 and (4.3) yields∫ba f(y)Gt(x − y)dy = 0. For t small, we both have

that Gt(x − ⋅ ) = 0 on [a, x − R] ∪ [x + R, b] and the assumptions of Lemma 4.3 hold. Therefore,

0 =
b

∫
a

f(y)Gt(x − y)dy =
x+R

∫
x−R

f(y)Gt(x − y)dy =
R

∫
−R

f(x − y)Gt(y)dy,

and hence Lemma 4.3 yields f(x) = 0.
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Thus, we obtain the following theorem.

Theorem 4.5. Let a, b ∈ ρℝ̃ be such that a < b, and let u ∈ ρGC∞([a, b], ρℝ̃d). Then u solves the Euler–
Lagrange equations

Fu −
d
dt Fu̇ = 0, (4.4)

for I given by (4.1), if and only if δI(u; η) = 0 for all η ∈ ρGC∞
0 , i.e., if and only if u is a critical point of I.

5 Second variation and minimizers

As in the classical case (see, e.g., [10]), thanks to the extreme value Theorem 2.20 and the property
of the interval [a, b] of being functionally compact, we can naturally define a topology on the space
ρGC∞([a, b], ρℝ̃d).

Definition 5.1. Let a, b ∈ ρℝ̃, with a < b. Let m ∈ ℕ and v ∈ ρGC∞([a, b], ρℝ̃d). Then

‖v‖m := max
n≤m
1≤i≤d

max(
!!!!!!!
dn

dtn
vi(Mni)

!!!!!!!
,
!!!!!!!
dn

dtn
vi(mni)

!!!!!!!
) ∈ ρℝ̃,

where Mni ,mni ∈ [a, b] satisfy

dn

dtn
vi(mni) ≤

dn

dtn
vi(t) ≤ dn

dtn
vi(Mni) for all t ∈ [a, b].

The following result permits the calculation of the (generalized) norm ‖v‖m using any net (vε) that defines v.

Lemma 5.2. Under the assumptions of Definition 5.1, let a = [aε] and b = [bε] be such that aε < bε for all ε.
Then the following hold:
(i) If the net (vε) defines v, then

‖v‖m = [max
n≤m
1≤i≤d

max
t∈[aε ,bε]

!!!!!!!
dn

dtn
viε(t)

!!!!!!!
].

(ii) ‖v‖m ≥ 0.
(iii) ‖v‖m = 0 if and only if v = 0.
(iv) ‖c ⋅ v‖m = |c| ⋅ ‖v‖m for all c ∈ ρℝ̃.
(v) For all u ∈ ρGC∞([a, b], ρℝ̃d), we have ‖u + v‖m ≤ ‖u‖m + ‖v‖m and ‖u ⋅ v‖m ≤ cm ⋅ ‖u‖m ⋅ ‖v‖m for some

cm ∈ ρℝ̃>0.

Proof. By the standard extreme value theorem applied ε-wise, we get the existence of m̄niε, M̄niε ∈ [aε , bε]
such that

dn

dtn
viε(m̄niε) ≤

dn

dtn
viε(t) ≤

dn

dtn
viε(M̄niε) for all t ∈ [aε , bε].

Hence,
!!!!!!!
dn

dtn
viε(t)

!!!!!!!
≤ max(

!!!!!!!
dn

dtn
viε(m̄niε)

!!!!!!!
,
!!!!!!!
dn

dtn
viε(M̄niε)

!!!!!!!
).

Thus,
max
n≤m
1≤i≤d

max
t∈[aε ,bε]

!!!!!!!
dn

dtn
viε(t)

!!!!!!!
≤ max

n≤m
1≤i≤d

max(
!!!!!!!
dn

dtn
viε(m̄niε)

!!!!!!!
,
!!!!!!!
dn

dtn
viε(M̄niε)

!!!!!!!
).

But m̄niε, M̄niε ∈ [aε , bε], so

[max
n≤m
1≤i≤d

max
t∈[aε ,bε]

!!!!!!!
dn

dtn
viε(t)

!!!!!!!
] = [max

n≤m
1≤i≤d

max(
!!!!!!!
dn

dtn
viε(m̄niε)

!!!!!!!
,
!!!!!!!
dn

dtn
viε(M̄niε)

!!!!!!!
)]

= max
n≤m
1≤i≤d

max(
!!!!!!!
dn

dtn
vi(m̄ni)

!!!!!!!
,
!!!!!!!
dn

dtn
vi(M̄ni)

!!!!!!!
).
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This proves both that ‖v‖m is well defined, i.e., it does not depend on the particular choice of points mni,Mni
as in Definition 5.1, and claim (i). The remaining properties (ii)–(v) follows directly from (i) and the usual
properties of standard Cm-norms.

Using these ρℝ̃-valued norms, we can naturally define a topology on the space ρGC∞([a, b], ρℝ̃d).

Definition 5.3. Let a, b ∈ ρℝ̃, with a < b, m ∈ ℕ, u ∈ ρGC∞([a, b], ρℝ̃d) and r ∈ ρℝ̃>0.
(i) We set Bmr (u) := {v ∈ ρGC∞([a, b], ρℝ̃d) | ‖v − u‖m < r}.
(ii) If U ⊆ ρGC∞([a, b], ρℝ̃d), then we say that U is a sharply open set if

∀u ∈ U, ∃m ∈ ℕ, ∃r ∈ ρℝ̃>0 : Bmr (u) ⊆ U.

As in [15, Theorem 2], one can easily prove that sharply open sets form a topology on ρGC∞([a, b], ρℝ̃d).
Using this topology, we can assess when a curve is a minimizer of the functional I. Note explicitly that there
are no restrictions on the generalized numbers a, b ∈ ρℝ̃, a < b, e.g., they can also both be infinite.

Definition 5.4. Let a, b ∈ ρℝ̃, with a < b, and u ∈ ρGC∞([a, b], ρℝ̃d).
(i) For all p, q ∈ ρℝ̃d, we set

ρGC∞
bd(p, q) := {v ∈ ρGC∞([a, b], ρℝ̃d) | v(a) = p, v(b) = q}.

Note that ρGC∞
bd(0, 0) =

ρGC∞
0 . The subscript “bd” stands here for “boundary values”.

(ii) We say that u is a local minimizer of I in ρGC∞
bd(p, q) if u ∈ ρGC∞

bd(p, q) and

∃r ∈ ρℝ̃>0, ∃m ∈ ℕ, ∀v ∈ Bmr (u) ∩ ρGC∞
bd(p, q) : I(v) ≥ I(u). (5.1)

(iii) We define the second variation of I in the direction η ∈ ρGC∞
0 as

δ2I(u; η) := d2

ds2
!!!!!!!0
I(u + sη).

Note also explicitly that the points p, q ∈ ρℝ̃d can have infinite norm, e.g., |pε| → +∞ as ε → 0. By using the
standard Einstein’s summation conventions, we calculate

δ2I(u; η) = d2

ds2
!!!!!!!0

b

∫
a

F(t, u + sη, u̇ + sη̇)dt

=
b

∫
a

∂2

∂s2
!!!!!!!0
F(t, u + sη, u̇ + sη̇)dt

=
b

∫
a

Fuiuj (t, u, u̇)ηiηj + 2Fui u̇j (t, u, u̇)ηi η̇j + Fu̇i u̇j (t, u, u̇)η̇i η̇j dt,

which we abbreviate as

δ2I(u; η) =
b

∫
a

Fuu(t, u, u̇)ηη + 2Fuu̇(t, u, u̇)ηη̇ + Fu̇u̇(t, u, u̇)η̇η̇ dt.

The following results establish classical necessary and sufficient conditions to decide if a function u is a
minimizer for the given functional (4.1).

Theorem 5.5. Let a, b ∈ ρℝ̃, with a < b, F ∈ ρGC∞([a, b] × ρℝ̃d × ρℝ̃d , ρℝ̃), p, q ∈ ρℝ̃d, and let u be a local
minimizer of I in ρGC∞

bd(p, q). Then
(i) δI(u; η) = 0 for all η ∈ ρGC∞

0 ,
(ii) δ2I(u; η) ≥ 0 for all η ∈ ρGC∞

0 .
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Proof. Let r ∈ ρℝ̃>0 be such that (5.1) holds. Since η ∈ ρGC∞
0 , the map s ∈ ρℝ̃ Ü→ u + sη ∈ ρGC∞

bd(p, q) is well
defined and continuouswith respect to the trace of the sharp topology in its codomain. Therefore, we can find
̄r ∈ ρℝ̃>0 such that u + sη ∈ Bmr (u) ∩ ρGC∞

bd(p, q) for all s ∈ B ̄r(0). We hence have I(u + sη) ≥ I(u). This shows
that the GSF s ∈ B ̄r(0) Ü→ I(u + sη) ∈ ρℝ̃ has a local minimum at s = 0. Now, by employing Lemmas 3.6 and
3.8, the claims are proven.

Theorem 5.6. Let a, b ∈ ρℝ̃, with a < b, and p, q ∈ ρℝ̃d. Let u ∈ ρGC∞
bd(p, q) be such that

(i) δI(u; η) = 0 for all η ∈ ρGC∞
0 ,

(ii) δ2I(v; η) ≥ 0 for all η ∈ ρGC∞
0 and all v ∈ Bmr (u) ∩ GC∞

bd(p, q), where r ∈
ρℝ̃>0 and m ∈ ℕ.

Then u is a local minimizer of the functional I in ρGC∞
bd(p, q).

Moreover, if δ2I(v; η) > 0 for all η ∈ ρGC∞
0 such that ‖η‖m > 0andall v ∈ Bm2r(u)∩GC

∞
bd(p, q), then I(v)> I(u)

for all v ∈ Bmr (u) ∩ GC∞
bd(p, q) such that ‖v − u‖m > 0.

Proof. For any v ∈ Bmr (u) ∩ GC∞
bd(p, q), we set ψ(s) := I(u + s(v − u)) ∈ ρℝ̃ for all s ∈ B1(0), so that we have

u + s(v − u) ∈ Bmr (u). Since (v − u)(a) = 0 = (v − u)(b), we have v − u ∈ ρGC∞
0 , and properties (i), (ii) yield

ψ�(0) = δI(u; v − u) = 0 andψ��(s) = δ2I(u + s(v − u); v − u) ≥ 0 for all s ∈ B1(0). We claim that s = 0 is amin-
imum of ψ. In fact, for all s ∈ B1(0), by Taylor’s Theorem 2.11, we have

ψ(s) = ψ(0) + sψ�(0) + s
2

2 ψ
��(ξ )

for some ξ ∈ [0, s]. But ψ�(0) = 0, and hence ψ(s) − ψ(0) = s2
2 ψ

��(ξ ) ≥ 0. Finally, Lemma 3.2 yields

lim
s→1−

ψ(s) = I(v) ≥ ψ(0) = I(u),

which is our conclusion. Note explicitly that if δ2I(v; η) = 0 for all η ∈ ρGC∞
0 and all v ∈ Bmr (u) ∩ GC∞

bd(p, q),
then ψ��(ξ ) = 0 and hence I(v) = I(u).

Now, assume that δ2I(v; η) > 0 for all η ∈ ρGC∞
0 such that ‖η‖m > 0 and all v ∈ Bm2r(u) ∩ GC∞

bd(p, q),
and take v ∈ Bmr (u) ∩ GC∞

bd(p, q) such that ‖v − u‖m > 0. As above, set ψ(s) := I(u + s(v − u)) ∈ ρℝ̃ for all
s ∈ B3/2(0), so that u + s(v − u) ∈ Bm2r(u). We have ψ�(0) = 0 and ψ��(s) = δ2I(u + s(v − u); v − u) > 0 for all
s ∈ B3/2(0) because ‖v − u‖m > 0. Using Taylor’s theorem, we get ψ(1) = ψ(0) + 1

2ψ
��(ξ ) for some ξ ∈ [0, 1].

Therefore, ψ(1) − ψ(0) = I(v) − I(u) = 1
2ψ

��(ξ ) > 0.

Lemma 5.7. Let (ak)k∈ℕ, (bk)k∈ℕ and (ck)k∈ℕ be sequences in ρℝ̃>0. Assume that both (ak)k , (bk)k → 0 and
ck

ak+bk → 1 in the sharp topology as k → +∞. Let f ∈ ρGC∞([a1, b1], ρℝ̃). Finally, let ak < t < bk for all k ∈ ℕ.
Then

f(t) = lim
k→∞

1
ck

t+bk

∫
t−ak

f(s)ds.

Proof. We can apply the integral mean value theorem for each ε and each defining net (fε) of f to get the
existence of τk ∈ [t − ak , t + bk] such that

f(τk) =
1

bk + ak

t+bk

∫
t−ak

f(s)ds = ck
bk + ak

1
ck

t+bk

∫
t−ak

f(s)ds.

Now, we take the limit for k → ∞, and the claim follows by assumption and Theorem 2.8 (iv), i.e., by the
sharp continuity of f .

We now derive the so-called necessary Legendre condition.

Theorem 5.8. Let a, b ∈ ρℝ̃, with a < b, and let u ∈ ρGC∞([a, b], ρℝ̃d) be aminimizer of the functional I. Then
Fu̇u̇(t, u(t), u̇(t)) is positive semi-definite for all t ∈ [a, b], i.e.,

Fu̇i u̇j (t, u(t), u̇(t))λiλj ≥ 0 for all λ = (λ1, . . . , λd) ∈ ρℝ̃d . (5.2)
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tεa b

2ρ2kε

2ρ2kε

tε − ρkε tε + ρkε

λερkε

2ρ2kε

Figure 1. This figure illustrates the function ϑε we are considering (blue). The dotted green triangle symbolizes the function
which is used in the classical proofs of the Legendre necessary condition (cf. [23, Theorem 1.3.2]).

Proof. Let λ = [λε] ∈ ρℝ̃d and let k, h ∈ ℕ be arbitrary. Let t = [tε] ∈ [a, b]. We can assume that t is a sharply
interior point, because otherwise we can use sharp continuity of the left-hand side of (5.2) and Lemma 3.2.
We can also assume that λ is componentwise invertible because of Lemma3.5.Wewant tomimic the classical
proof of [23, Theorem1.3.2], but considering a “regularized” versionof the triangular functionused there (see
Figure 1). In particular: (1) The smoothed triangle must have an infinitesimal height which is proportional
to λ, and we will take ρkε as this infinitesimal. (2) In the proof we need that the derivative at t is equal to λ,
and this justifies the drawing of the peak in Figure 1. (3) To regularize the singular points of the triangular
function, we need a smaller infinitesimal, and we can take, e.g., ρ2kε . So, consider a net of smooth functions
ϑε on [aε , bε] such that the following properties hold:
(i) ϑε(x) = 0 for x ≤ tε − ρkε − ρ2kε .
(ii) ϑε(x) = 0 for x ≥ tε + ρkε + ρ2kε .
(iii) ϑε(x) = λ(x − tε) + ρkελ for x ∈ [tε − ρkε + ρ2kε , tε].
(iv) ϑε(x) = −λ(x − tε) + ρkελ for x ∈ [tε + ρ2kε , tε + ρkε − ρ2kε ].
(v) |ϑε(x)| ≤ ρkε ⋅ |λ| + 2ρ2kε |λ|.
(vi) |ϑ̇ε(x)| ≤ 2|λ| for all x.
The net (ϑε) defines a GSF ϑ := [ϑε(−)] ∈ ρGC∞

0 because t is a sharply interior point. Setting for simplicity
ak := dρk + dρ2k, by assumption, we have

0 ≤ δ2I(u, ϑ) =
t+ak

∫
t−ak

Fuu(t, u, u̇)ϑϑ + 2Fu̇u(t, u, u̇)ϑ̇ϑ + Fu̇u̇(t, u, u̇)ϑ̇ϑ̇ dt. (5.3)

Now, setting M := max[a,b]|Fuu(t, u, u̇)| and N := max[a,b]|Fuu̇(t, u, u̇)|, by (v), we have

!!!!!!!!!

t+ak

∫
t−ak

Fuu(t, u, u̇)ϑϑ dt
!!!!!!!!!
≤ M ⋅ |ϑ(t)|2 ⋅ 2ak = O(dρ3k),

where we used the evident notation Gk = O(dρk) to denote that there exists some A ∈ ρℝ̃>0 such that
Gk ≤ A ⋅ dρk for all k ∈ ℕ. Using (v) and (vi), we analogously have

!!!!!!!!!

t+ak

∫
t−ak

Fu̇u(t, u, u̇)ϑ̇ϑ dt
!!!!!!!!!
≤ 4N ⋅ |ϑ(t)| ⋅ ak ⋅ |λ| = O(dρ2k).
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Note that there always exists C ∈ ρℝ̃ such that |λ| ≤ C dρk. Therefore,

lim
k→+∞

1
2dρk

t+ak

∫
t−ak

Fuu(t, u, u̇)ϑϑ + 2Fu̇u(t, u, u̇)ϑ̇ϑ dt = 0. (5.4)

Using Lemmas 5.7 and 3.2, (5.4) and (5.3), we obtain

Fu̇u̇(t, u(t)u̇(t))ϑ̇(t)ϑ̇(t) = lim
k→+∞

1
2dρk

t+ak

∫
t−ak

Fu̇u̇(t, u, u̇)ϑ̇ϑ̇ dt ≥ 0.

But (iii) yields ϑ̇(t) = λ, and this concludes the proof.

6 Jacobi fields

As in the classical case, Theorem 5.5 (ii) motivates us to define the accessory integral

Q(η) :=
b

∫
a

ψ(t, η, η̇)dt for all η ∈ ρGC∞
0 ,

where
ψ(t, l, v) := Fuu(t, u, u̇)ll + 2Fuu̇(t, u, u̇)lv + Fu̇u̇(t, u, u̇)vv (6.1)

for all t ∈ [a, b] and (l, v) ∈ ρℝ̃d × ρℝ̃d. Note that if u minimizes I, then

Q(η) ≥ 0 for all η ∈ ρGC∞
0 .

As usual, we note that η = 0 is a minimizer of the functional Q, and we are interested to know if there are
others. In order to solve this problem, we consider the Euler–Lagrange equations for Q, which are given by

d
dt ψη̇(t, η, η̇) = ψη(t, η, η̇).

In other words,
d
dt {Fu̇u̇(t, u, u̇)η̇ + Fuu̇(t, u, u̇)η} = Fuu̇(t, u, u̇)η̇ + Fuu(t, u, u̇)η. (6.2)

Since u is given, (6.2) is an ρℝ̃-linear system of second order equations in the unknown GSF η and with time
dependent coefficients in ρℝ̃. We call (6.2) the Jacobi equations I with respect to u. As in the classical setting,
we introduce the following definition.

Definition 6.1. A solution η ∈ ρGC∞
0 of the Jacobi equations (6.2) is called a Jacobi field along u.

The following result confirms that the intuitive interpretation of a Jacobi field as the tangent space of a smooth
family of solutions of the Euler–Lagrange equation still holds in this generalized setting.

Lemma 6.2. Let u ∈ ρGC∞([−δ, δ] × [a, b], ρℝ̃d), where δ ∈ ρℝ̃>0. We write us := u(s, −) for all s ∈ [−δ, δ]. As-
sume that each us satisfies the Euler–Lagrange equations (4.4):

d
dt Fu̇(t, us , u̇s) = Fu(t, us , u̇s) for all s ∈ [−δ, δ].

Then
η(t) := d

ds
!!!!!!0
us(t) for all t ∈ [a, b]

is a Jacobi field along u.

Proof. A straight forward calculation gives

0 =
d
ds

!!!!!!0
(
d
dt Fu̇(t, us , u̇s) − Fu(t, us , u̇s))

=
d
dt (Fu̇u̇(t, u, u̇)η̇ + Fuu̇(t, u, u̇)η) − Fuu̇(t, u, u̇)η̇ − Fuu(t, u, u̇)η.
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6.1 Conjugate points and Jacobi’s theorem

The classical key result concerning Jacobi fields relates conjugate points andminimizers. Themain aim of the
present section is to derive this theorem in our generalized framework, by extending the ideas of the proof of
[23, Theorem 1.3.4].

A crucial notion is hence that of piecewise GSF.

Definition 6.3. We call piecewise GSF an n-tuple (f1, . . . , fn) with the following properties:
(i) For all i = 1, . . . , n there exist ai , ai+1 ∈ ρℝ̃ such that ai < ai+1 and fi ∈ ρGC∞([ai , ai+1], ρℝ̃d). Note that

[a, b] = [a�, b�] implies a = a� and b = b� because the relation ≤ is antisymmetric. Therefore, the points
ai, ai+1 are uniquely determined by the set-theoretical function fi.

(ii) For all i = 1, . . . , n, we have fi(ai+1) = fi+1(ai+1).
Every pointwise GSF (f1, . . . , fn) defines a set-theoretical function:
(iii) For all t ∈ ⋃n

i=1[ai , ai+1], we set (f1, . . . , fn)(t) := fi(t) if t ∈ [ai , ai+1].
We also use the arrow notation (f1, . . . , fn) : ⋃n

i=1[ai , ai+1] → ρℝ̃d to say that both (i) and (ii) hold.

Remark 6.4. (i) Clearly, t ∈ [ai , ai+1] ∩ [ai+1, ai+2] implies t = ai+1, so that condition (ii) yields that the eval-
uation (iii) is well defined.

(ii) Since the order relation ≤ is not a total one, we do not have that [ai , ai+1] ∪ [ai+1, ai+2] = [ai , ai+2].
(iii) If ν : [a1, a2] ∪ [a2, a3] → ρℝ̃d is a set-theoretical function originating from a piecewise GSF (f1, f2), then

neither the GSF fi nor the points ai are uniquely determined by ν. For this reason, we prefer to stress our
notations with symbols like (f1, f2)(t) ∈ ρℝ̃d.

(iv) Every GSF f ∈ ρGC∞([a1, a2], ρℝ̃d) can be seen as a particular case of a piecewise GSF.
(v) If (g1, . . . , gn), (f1, . . . , fn) : ⋃n

i=1[ai , ai+1] → ρℝ̃d and r ∈ ρℝ̃, then also (g1, . . . , gn) + (f1, . . . , fn) :=
(g1 + f1, . . . , gn + fn) and r ⋅ (f1, . . . , fn) := (r ⋅ f1, . . . , r ⋅ fn) are piecewise GSF, and we hence have a
structure of an ρℝ̃-module.

(vi) If (f1, . . . , fn) : ⋃n
i=1[ai , ai+1] → ρℝ̃d and F ∈ ρGC∞(ρℝ̃d , ρℝ̃n), then we can define the composition

F ∘ (f1, . . . , fn) := (F ∘ f1, . . . , F ∘ fn) :
n
⋃
i=1

[ai , ai+1] → ρℝ̃n .

Piecewise GSF inherit from their defining components a well-behaved differential and integral calculus. The
former is even more general and taken from [1].

Definition 6.5. Let x = [xε] ∈ ρℝ̃. Then we set
(i) ν(x) := sup{b ∈ ℝ | |xε| = O(ρbε )} ∈ ℝ ∪ {+∞},
(ii) |x|e := e−ν(x) ∈ ℝ≥0,
(iii) dρ(x) := dρ− log|x|e ∈ ρℝ̃>0.

It is worth noting that | − |e : ρℝ̃→ ℝ≥0 induces an ultrametric on ρℝ̃ that generates exactly the sharp topo-
logy, see, e.g., [2, 11] and references therein. However, wewill not use this ultrametric structure in the present
paper, and we only introduced it to get an invertible infinitesimal dρ(x) that goes to zero with x. It is in fact
easy to show that

lim
x→0

x
dρ(x) = 1

in the sharp topology. The following definition is based on [1, Definition 2.2].

Definition 6.6. Let T ⊆ ρℝ̃ and let f : T → ρℝ̃d be an arbitrary set-theoretical function. Let t0 ∈ T be a sharply
interior point of T. Then we say that f is differentiable at t0 if

∃m ∈ ρℝ̃d : lim
h→0

f(t + h) − f(t0) − m ⋅ h
dρ(h) = 0.

In this case, using Landau little-oh notation, we can hence write

f(t + h) = f(t0) + m ⋅ h + o(dρ(h)) as h → 0. (6.3)
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As in the classical case, (6.3) implies the uniqueness of m ∈ ρℝ̃d, so that we can define f �(t0) := ̇f (t0) := m,
and the usual elementary rules of differential calculus. By the Fermat–Reyes theorem, this definition of
derivative generalizes that given for GSF.

In particular, this notion of derivative applies to the set-theoretical function induced by a piecewise
GSF (f1, . . . , fn). We therefore have that (f1, . . . , fn)(−) is differentiable at each ai < t < ai+1, and that
(f1, . . . , fn)�(t) = f �i (t), but clearly there is no guarantee that (f1, . . . , fn)(−) is also differentiable at each
point ai.

The notion of definite integral is naturally introduced in the following definition.

Definition 6.7. Let (f1, . . . , fn) : ⋃n
i=1[ai , ai+1] → ρℝ̃d be a piecewise GSF. Then
an+1

∫
a1

(f1, . . . , fn)(t)dt :=
n
∑
i=1

ai+1

∫
ai

fi(t)dt.

Since our main aim in using piecewise GSF is to prove Jacobi’s theorem, we do not need to prove that the
usual elementary rules of integration hold, since we will always reduce to integrals of GSF.

Having a notion of derivative and of definite integral also for piecewise GSF allows to study functionals
of the form

ν := (f1, . . . , fn), a1 = a, an = b ⇒ I(ν) :=
b

∫
a

F(t, ν(t), ν̇(t))dt ∈ ρℝ̃. (6.4)

This leads to the following natural definition: we say that a piecewise GSF v is a piecewise GSF (global) mini-
mizer if I(v) ≤ I(ṽ) for all ṽ ∈ ρGC∞

0 . For the proof of Jacobi’s theorem, wewill only need this particular notion
of global minimizer. Note explicitly that in (6.4), we only need the existence of right and left derivatives of
GSF, because of Definition 6.7, and of Definition 2.14 of a definite integral of a GSF.

Classically, several proofs of Jacobi’s theorem use both some form of implicit function theorem and of
uniqueness of solution for linear ODE.

Theorem 6.8 (Implicit function theorem). LetU ⊆ ρℝ̃n,V ⊆ ρℝ̃d be sharply open sets. Let F ∈ ρGC∞(U × V, ρℝ̃d)
and (x0, y0) ∈ U × V . If ∂2F(x0, y0) is invertible in L(ρℝ̃d , ρℝ̃d), then there exists a sharply open neighborhood
U1 × V1 ⊆ U × V of (x0, y0) such that

∀x ∈ U1, ∃!yx ∈ V1 : F(x, yx) = F(x0, y0).

Moreover, the function f(x) := yx for all x ∈ U1 is a GSF f ∈ ρGC∞(U1, V1) and satisfies

Df(x) = −(∂2F(x, f(x)))−1 ∘ ∂1F(x, f(x)).

Proof. The usual deduction of the implicit function theorem from the inverse function theorem in Banach
spaces can be easily adapted by using Theorem 2.12 and noting that det[∂2F(−, −)] is a GSF such that
|det[∂2F(x0, y0)]| ∈ ρℝ̃>0.

In the next theorem, the dependence of the entire theory on the initial infinitesimal net ρ = (ρε) ↓ 0 plays an
essential role. Indirectly, the same important role will reverberate in the final Jacobi’s theorem.

Theorem 6.9 (Solution of first order linear ODE). LetA ∈ ρGC∞([a, b], ρℝ̃d×d), where a, b ∈ ρℝ̃, a < b, and let
t0 ∈ [a, b] and y0 ∈ ρℝ̃d. Assume that

!!!!!!!!!

t

∫
t0

A(s)ds
!!!!!!!!!
≤ −C ⋅ log dρ for all t ∈ [a, b], (6.5)

where C ∈ ℝ>0. Then there exists one and only one y ∈ ρGC∞([a, b], ρℝ̃d) such that

{
{
{

y�(t) = A(t) ⋅ y(t) if t ∈ [a, b],
y(t0) = y0.

(6.6)

Moreover, this y is given by y(t) = exp(∫tt0 A(s)ds) ⋅ y0 for all t ∈ [a, b].
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Proof. We first note that

exp(
t

∫
t0

A(s)ds) = [ exp(
tε

∫
t0ε

Aε(s)ds)],

where t = [tε], t0 = [t0ε] and A(s) = [Aε(sε)] ∈ ρℝ̃d×d. This exponential matrix in ρℝ̃d×d is a GSF because for
all t ∈ [a, b], we have

exp(
t

∫
t0

A(s)ds) ≤ e−C log dρ ≤ dρ−C .

Therefore, all values of y(t) = exp(∫tt0 A(s)ds) ⋅ y0 are ρ-moderate. Analogously, one can prove that also y(k)(t)
are moderate for all k ∈ ℕ and t ∈ [a, b]. Considering that derivatives can be calculated ε-wise, we have that
this GSF y satisfies (6.6), and this proves the existence part.

To show uniqueness, we can proceed as in the smooth case. Assume that z ∈ ρGC∞([a, b], ρℝ̃d) satisfies
(6.6), and set h(t) := exp(−∫

t
t0
A(s)ds) for all t ∈ [a, b]. Since h� = −A ⋅ h, we have

(hz)� = h�z + hz� = −Ahz + hAz = −Ahz + Ahz = 0.

From the uniqueness of primitives of GSF and Theorem 2.13, we have that h ⋅ z = h(t0) ⋅ z(t0) = y0. Therefore,
z = h−1 ⋅ y0.

If α, β ∈ ρℝ̃, we write α = Oℝ(β) to denote that there exists C ∈ ℝ>0 such that |α| ≤ C ⋅ |β|. Therefore, assump-
tion (6.5) can be written as ∫tt0 A(s)ds = Oℝ(log dρ). Note that this assumption is weaker, in general, than

(b − a) ⋅ max
t∈[a,b]

|A(t)| = Oℝ(log dρ).

The following result is the key regularity property that is needed to prove Jacobi’s theorem.

Lemma 6.10. Let a, a�, b ∈ ρℝ̃, with a < a� < b, and let K ∈ ρGC∞([a, b] × ρℝ̃d × ρℝ̃d , ρℝ̃). Let, in addition,
ν = (η, β) : [a, a�] ∪ [a�, b] → ρℝ̃d be a piecewise GSF which satisfies the Euler–Lagrange equation

Ku(t, ν(t), ν̇(t)) −
d
dt Ku̇(t, ν(t), ν̇(t)) = 0 for all t ∈ [a, a�) ∪ (a�, b]. (6.7)

Finally, assume that det(Ku̇i u̇j (a�, η(a�), η̇(a�))i,j=i,...,d) ∈ ρℝ̃ is invertible. Then

lim
t→a�
t<a�

ν̇(t) = lim
t→a�
a�<t

ν̇(t) = η̇(a�).

In particular, if β ≡ 0|[a� ,b], then η̇(a�) = 0.

Proof. Set Φ(t, l, v, q) := Ku̇(t, l, v) − q for all t ∈ [a, b] and all l, v, q ∈ ρℝ̃d. For simplicity, set

(t0, l0, v0, q0) := (a�, η(a�), η̇(a�), Ku̇(a�, η(a�), η̇(a�))).

Our assumption on the invertibility of Ku̇u̇(a�, η(a�), η̇(a�)) = ∂vΦ(t0, l0, v0, q0)makes it possible to apply the
implicit function Theorem 6.8 to conclude that there exists a neighborhood T × L × V × Q of (t0, l0, v0, q0)
such that

∀(t, l, q) ∈ T × L × Q, ∃!v ∈ V : Φ(t, l, v, q) = Φ(t0, l0, v0, q0). (6.8)

But we have Φ(t0, l0, v0, q0) = Ku̇(a�, η(a�), η̇(a�)) − q0 = 0. Moreover, the unique function ϕ defined by
Φ(t, l, ϕ(t, l, q), q) = 0 for all (t, l, q) ∈ T × L × Q is a GSF that belongs to ρGC∞(T × L × Q, V). Now, for all
t ∈ [a, a�) ∪ (a�, b], we have

Φ(t, ν(t), ν̇(t), Ku̇(t, ν(t), ν̇(t))) = Ku̇(t, ν(t), ν̇(t)) − Ku̇(t, ν(t), ν̇(t)) = 0.

Therefore, the uniqueness in (6.8) yields

ν̇(t) = ϕ(t, ν(t), Ku̇(t, ν(t), ν̇(t))) for all t ∈ [a, a�) ∪ (a�, b].
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We now integrate the Euler–Lagrange equation (6.7) on [a, t], obtaining

Ku̇(t, ν(t), ν̇(t)) =
t

∫
a

Ku(s, ν(s), ν̇(s))ds + Ku̇(a, η(a), η̇(a)) for all t ∈ [a, a�) ∪ (a�, b].

This entails that we can write

ν̇(t) = ϕ(t, ν(t),
t

∫
a

Ku(s, ν(s), ν̇(s))ds + Ku̇(a, η(a), η̇(a))) for all t ∈ [a, a�) ∪ (a�, b]. (6.9)

But the function t ∈ [a, a�) ∪ (a�, b] Ü→ ∫
t
a Ku(s, ν(s), ν̇(s))ds ∈

ρℝ̃d has equal limits on the left and on the
right of a� because on [a, a�) and on (a�, b] it is a GSF. In fact, for t < a�, we have

!!!!!!!!!

t

∫
a

Ku(s, ν(s), ν̇(s))ds −
a�

∫
a

Ku(s, ν(s), ν̇(s))ds
!!!!!!!!!
≤ max
t∈[a,a�]

|Ku(s, η(s), η̇(s))| ⋅ |t − a�|,

and this goes to 0 as t → a�, t < a�. Analogously, we can proceed for t > a� using β. Therefore,

lim
t→a�
t<a�

t

∫
a

Ku(s, ν(s), ν̇(s))ds = lim
t→a�
t>a�

t

∫
a

Ku(s, ν(s), ν̇(s))ds.

Applying this equality in (6.9), we get limt→a� ,t<a� ν̇(t) = η̇(a�) = limt→a� ,a�<t ν̇(t), as claimed. Finally, if
β ≡ 0|[a� ,b], then limt→a� ,a�<t ν̇(t) = 0.

In the following definition and below, we use the complete notation ρGC∞
0 (a, a�) (see Definition 4.1).

Definition 6.11. Let a, a�, b ∈ ρℝ̃, where a < a� < b. We call a� conjugate to a with respect to the variational
problem (4.1) if there exists a non-identically vanishing Jacobi field η ∈ ρGC∞

0 (a, a�) along u|[a,a�] such that
η(a) = 0 = η(a�), where ψ is given by (6.1).

Jacobi’s theorem shows that we cannot have minimizers if there are interior points conjugate to a. In order to
prove it in the present generalized context, we finally need the following lemma.

Lemma 6.12. Let u ∈ ρGC∞([a, b], ρℝ̃d) and a� ∈ (a, b). Let η ∈ ρGC∞
0 (a, a�) be a Jacobi field along u|[a,a�],

with η(a) = 0 = η(a�). Then
a�

∫
a

ψ(t, η, η̇)dt = 0.

Proof. Since ψ is ρℝ̃-homogeneous of second order in (η, η̇), we have

2ψ(t, η, η̇) = ψη(t, η, η̇)η + ψη̇(t, η, η̇)η̇.

Thus, by integration by parts, we calculate

2
a�

∫
a

ψ(t, η, η̇)dt =
a�

∫
a

ηψη(t, η, η̇) + η̇ψη̇(t, η, η̇)dt =
a�

∫
a

η(ψη(t, η, η̇) −
d
dt ψη̇(t, η, η̇))dt = 0,

where we used the fact that η is a Jacobi field.

After these preparations, we can finally prove Jacobi’s theorem.

Theorem 6.13 (Jacobi). Let a, b ∈ ρℝ̃, with a < b, F ∈ ρGC∞([a, b] × ρℝ̃d × ρℝ̃d , ρℝ̃) and u ∈ ρGC∞([a, b], ρℝ̃).
Assume that the following hold:
(i) a� ∈ (a, b) is conjugate to a.
(ii) det Fu̇u̇(t, u(t), u̇(t)) ∈ ρℝ̃ is invertible for all t ∈ [a, b].
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(iii) For all t ∈ [a, a�],
t

∫
a�

F−1u̇u̇(s, u(s), u̇(s)) ⋅ [
d
ds Fuu̇(s, u(s), u̇(s)) − Fuu(s, u(s), u̇(s))]ds = Oℝ(log dρ),

t

∫
a�

F−1u̇u̇(s, u(s), u̇(s)) ⋅
d
ds Fu̇u̇(s, u(s), u̇(s))ds = Oℝ(log dρ).

Then u cannot be a local minimizer of I. Therefore, for any r ∈ ρℝ̃>0, there exists v ∈ ρGC∞
bd(u(a), u(b)) and

m ∈ ℕ such that ‖v − u‖m < r but I(u) ̸≤ I(v).

Proof. By contradiction, assume that u is a local minimizer, and let η ∈ ρGC∞
0 (a, a�) be a Jacobi field

along u|[a,a�] such that the conditions from Definition 6.11 hold for η. We want to prove that η ≡ 0. De-
fine ν := (η, 0|[a� ,b]), which is a piecewise GSF since η(a�) = 0. Since also η(a) = 0, Lemma 6.12 and the
homogeneity of ψ yield

Q(ν) =
b

∫
a

ψ(t, ν(t), ν̇(t))dt =
a�

∫
a

ψ(t, η(t), η̇(t))dt +
b

∫
a�

ψ(t, 0, 0)dt = 0.

Thus, Theorem5.5 (necessary condition for u being aminimizer) givesQ(ν̃) ≥ 0 = Q(ν) for all ν̃ ∈ ρGC∞
0 (a, b).

Therefore, ν is a minimizer of the functional Q. Since ν is only a piecewise GSF, we cannot directly apply
Theorem 4.5 (Euler–Lagrange equations). But, for all ϕ ∈ ρGC∞

0 (a, b) and all s ∈ ρℝ̃, we have

Q(ν + sϕ) =
b

∫
a

ψ(t, ν + sϕ, ν̇ + sϕ̇)dt =
a�

∫
a

ψ(t, η + sϕ, η̇ + sϕ̇)dt +
b

∫
a�

ψ(t, sϕ, sϕ̇)dt. (6.10)

This shows that s ∈ ρℝ̃ Ü→ Q(ν + sϕ) ∈ ρℝ̃ is a GSF, and hence s = 0 is a minimum for this function. By
Lemma 3.6 and (6.10), we get

δQ(ν, ϕ) = 0 =
d
ds Q(ν + sϕ)

!!!!!!0

=
a�

∫
a

(ψη(t, η, η̇) −
d
dt ψη̇(t, η, η̇))ϕ dt +

b

∫
a�

(ϕψη(t, 0, 0) + ϕ̇ψη̇(t, 0, 0))dt

=
a�

∫
a

(ψη(t, η, η̇) −
d
dt ψη̇(t, η, η̇))ϕ dt.

By the fundamental Lemma 4.4, this implies that η satisfies the Euler–Lagrange equations for ψ in the in-
terval [a, a�). Therefore, ν satisfies the same equations in [a, a�) ∪ (a�, b]. Moreover, ψη̇η̇(a�, η(a�), η̇(a�)) =
Fu̇u̇(a�, u(a�), u̇(a�)) is invertible by assumption (ii). Thus, all the hypotheses of the regularity Lemma 6.10
hold, and we derive that η̇(a�) = 0.

For all t ∈ [a, b], we define

ξ(t) := −F−1u̇u̇ ⋅ [
d
dt Fuu̇(t, u, u̇) − Fuu(t, u, u̇)],

ϑ(t) := −F−1u̇u̇ ⋅
d
dt Fu̇u̇(t, u, u̇),

so that we can re-write the Jacobi equations (6.2) for η on [a, a�] as a system of first order ODE:

{{{{{{{
{{{{{{{
{

ẏ := (
η̇
ż
) = (

0 1
ξ ϑ

) ⋅(
η
z
) =: A ⋅ y for all t ∈ [a, a�],

y(a�) = (
η(a�)
η̇(a�)

) = 0.
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By assumptions (iii), we obtain ∫
t
a� A(t) = Oℝ(log dρ) for all t ∈ [a, a�], and we can hence apply Theorem 6.9,

obtaining y ≡ 0, and thus η ≡ 0.

Note that if one of the quantities in (iii) depends even only polynomially on ε, then we are forced to take, e.g.,
ρε = ε1/ε to fulfill this assumption. This underlines the importance of the parameter ρ, making the entire the-
ory dependent on the parameter ρ, in order to avoid unnecessary constraints on the scope of the functionals
we look upon.

7 Noether’s theorem

In this section, we state and prove Noether’s theorem by following the lines of [3]. We first note that any
X ∈ ρGC∞(J × X, Y), where J ⊆ ρℝ̃, can also be considered as a family in GSF which smoothly depends on
the parameter s ∈ J. In this case, we hence say that (Xs)s∈J is a generalized smooth family in ρGC∞(X, Y).
In particular, we can reformulate in the language of GSF the classical definition of one-parameter group of
generalized diffeomorphisms of X as follows:
(i) (Xs)s∈ρℝ̃ is a generalized smooth family in ρGC∞(X, X).
(ii) For all s ∈ ρℝ̃, the map Xs : X → X is invertible, and X−1

s ∈ ρGC∞(X, X).
(iii) X0(x) = x for all x ∈ X.
(iv) Xs ∘ Xt = Xs+t for all s, t ∈ ρℝ̃.
In our proofs, we will in fact only use properties (i) and (iii).

The proof of Noether’s theorem is classically anticipated by the following time-independent version,
which the general case is subsequently reduced to.

Theorem 7.1. Let K ∈ ρGC∞(L × V, ρℝ̃), where L, V ⊆ ρℝ̃n are sharply open sets. Let w ∈ ρGC∞((a, b), L) be a
solution of the Euler–Lagrange equation corresponding to K, i.e., for all t ∈ (a, b),

ẇ(t) ∈ V, Ku(w(t), ẇ(t)) =
d
dt Ku̇(w(t), ẇ(t)). (7.1)

Suppose that 0 is a sharply interior point of J ⊆ ρℝ̃ and (Xs)s∈J is a generalized smooth family in ρGC∞(L, L)
such that for all t ∈ (a, b),
(i) ∂

∂tXs(w(t)) ∈ V,
(ii) X0(w(t)) = w(t),
(iii) K is invariant under (Xs)s∈J along w, i.e.,

K(w(t), ẇ(t)) = K(Xs(w(t)),
∂
∂t
Xs(w(t))) for all s ∈ J. (7.2)

Then, the quantity

Ku̇j (w(t), ẇ(t))
∂
∂s

!!!!!!!s=0
Xjs(w(t)) ∈ ρℝ̃

is constant in t ∈ (a, b).

Proof. Wefirst note that both sides of (7.2) are in ρGC∞((a, b), ρℝ̃). Let τ ∈ (a, b) be arbitrary but fixed. Since
s = 0 ∈ J is a sharply interior point, we can consider d

ds |s=0. Then, using (7.2) and (ii), we obtain

0 =
∂
∂s

!!!!!!!s=0
K(Xs(w),

∂
∂t
Xs(w)) =

τ

∫
a

Ku(w, ẇ)
∂
∂s

!!!!!!!s=0
Xs(w) + Ku̇(w, ẇ)

∂
∂t

∂
∂s

!!!!!!!s=0
Xs(w)dt.

Since the Euler–Lagrange equations (7.1) for K are given by Ku(w, ẇ) = d
dtKu̇(w, ẇ), we have

0 =
d
dt (Ku̇(w, ẇ))

∂
∂s

!!!!!!!s=0
Xs(w) + Ku̇(w, ẇ)

∂
∂t

∂
∂s

!!!!!!!s=0
Xs(w) =

d
dt(Ku̇(w, ẇ)

∂
∂s

!!!!!!!s=0
Xs(w)),

which is our conclusion by the uniqueness part of Theorem 2.13.
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We are now able to prove Noether’s theorem. For the convenience of the reader, in its statement and proof we
use the variables t, T, l, L, v, V so as to recall tempus, locus, velocitas, respectively.

Theorem 7.2 (Noether). Let a, b ∈ ρℝ̃d, with a < b, and F ∈ ρGC∞([a, b] × ρℝ̃d × ρℝ̃d , ρℝ̃). Let, in addition,
u ∈ ρGC∞([a, b], ρℝ̃d) be a solution of the Euler–Lagrange equation (4.4) corresponding to F. Suppose that 0 is
a sharply interior point of J ⊆ ρℝ̃and (Xs)s∈J is a generalized smooth family in ρGC∞((a, b) × ρℝ̃d , (a, b) × ρℝ̃d).
We denote by Ts(t, l) := X1s (t, l) ∈ (a, b) and Ls(t, l) := X2s (t, l) ∈ ρℝ̃d, for all (t, l) ∈ (a, b) × ρℝ̃d, the two pro-
jections of Xs on (a, b) and ρℝ̃d, respectively. We assume that for all t ∈ (a, b),
(i) ∂

∂t Ts(t, u(t)) ∈
ρℝ̃ is invertible,

(ii) T0(t, u(t)) = t and L0(t, u(t)) = u(t),
(iii) F(t, u(t), u̇(t)) = F[Ts(t, u), Ls(t, u),

∂
∂t Ls(t,u)
∂
∂t Ts(t,u)

] ⋅ ∂∂t Ts(t, u) for all s ∈ J.
Then, the quantity

Fu̇j (t, u(t), u̇(t))
∂
∂s

!!!!!!!s=0
Ljs(t, u(t)) + [F(t, u(t), u̇(t)) − Fu̇k (t, u(t), u̇(t))u̇k(t)]

∂
∂s

!!!!!!!s=0
Ts(t, u(t)) (7.3)

is constant in t ∈ [a, b].

Proof. Since (7.3) is a GSF in t ∈ [a, b], by sharp continuity it suffices to prove the claim for all t ∈ (a, b). Set
L := (a, b) × ρℝ̃d, V := ρℝ̃∗ × ρℝ̃d (we recall that ρℝ̃∗ denotes the set of all invertible generalized numbers
in ρℝ̃). Define K ∈ ρGC∞(L × V, ρℝ̃) by

K(t, l; p, v) := F(t, l, vp ) ⋅ p for all (t, l) ∈ L and all (p, v) ∈ V, (7.4)

and w ∈ ρGC∞((a, b), L) by w(t) := (t, u(t)) for all t ∈ (a, b). We note that L, V ⊆ ρℝ̃d+1 are sharply open sub-
sets and that ẇ(t) = (1, u̇(t)) ∈ V. The notations for partial derivatives used in the present work result from
the symbolic writing K(u1, . . . , ud+1; u̇1, . . . , u̇d+1), so that the variables used in (7.4) yield

Kuj (t, l; p, v) =
{
{
{

Kt(t, l; p, v) = Ft(t, l, vp ) ⋅ p if j = 1,
Klj (t, l; p, v) = Fuj−1 (t, l, vp ) ⋅ p if j = 2, . . . , d + 1,

(7.5)

and

Ku̇j (t, l; p, v) =
{
{
{

Kp(t, l; p, v) = F(t, l, vp ) − Fu̇k (t, l,
v
p )

vk
p if j = 1,

Kvj (t, l; p, v) = Fu̇j−1 (t, l, vp ) if j = 2, . . . , d + 1.
(7.6)

From these, for all t ∈ (a, b) and all j = 2, . . . , d + 1, it follows that

Ku1 (w, ẇ) −
d
dt Ku̇

1 (w, ẇ) = [
d
dt Fu̇

k (t, u, u̇) − Fuk (t, u, u̇)] ⋅ u̇k ,

Kuj (w, ẇ) −
d
dt Ku̇

j (w, ẇ) = Fuj−1 (t, u, u̇) −
d
dt Fu̇

j−1 (t, u, u̇).

Therefore, since u satisfies the Euler–Lagrange equations for F, this entails that w is a solution of the analo-
gous equations for K in (a, b). Now, (i) gives

∂
∂t
Xs(w(t)) = (

∂
∂t
Ts(t, u(t)),

∂
∂t
Ls(t, u(t))) ∈ ρℝ̃∗ × ρℝ̃d = V.

Moreover, (ii) gives X0(w(t)) = (T0(t, u(t)), L0(t, u(t))) = w(t). Finally,

K(w, ẇ) = F(t, u, u̇),

K(Xs(w),
∂
∂t
Xs(w)) = F[Ts(t, u), Ls(t, u),

∂
∂t Ls(t, u)
∂
∂t Ts(t, u)

] ⋅
∂
∂t
Ts(t, u).

We can hence apply Theorem 7.1, and from (7.5) and (7.6), we get that

Ku̇j (w, ẇ)
∂
∂s

!!!!!!!0
Xjs(w) = Fu̇j (t, u(t), u̇(t))

∂
∂s

!!!!!!!s=0
Ljs(t, u(t))

+ [F(t, u(t), u̇(t)) − Fu̇k (t, u(t), u̇(t))u̇k(t)]
∂
∂s

!!!!!!!s=0
Ts(t, u(t))

is constant in t ∈ (a, b).
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8 Application to C1,1 Riemannian metric
In the following, we apply what we did so far to the problem of length minimizers in (ℝd , g), where g ∈ C1,1

is a Riemannian metric. Furthermore, we assume that (ℝd , g) is geodesically complete. Note that the seem-
ing restriction of considering only ℝd as our manifold weighs not so heavy. Indeed, the question of length
minimizers can be considered to be a local one, since it is not guaranteed that global minimizers exist at
all, whereas local minimizers always exist. Additionally, note that it was shown that it suffices to consider
smooth manifolds (cf. [20, Theorem 2.9]) instead of Ck manifolds with 1 ≤ k < +∞. Therefore, there is no
need to consider non-smooth charts.

In this section, we fix an embedding (ιbΩ)Ω, where b ∈ ρℝ̃ satisfies b ≥ dρ−a for some a ∈ ℝ>0, and where
Ω ⊆ ℝd is an arbitrary open set, see Theorem 2.18. Actually, the embedding also depends on the dimension
d ∈ ℕ>0, but to avoid cumbersome notations, we denote embeddings always with the symbol ι.

By [27, Remark 2.6.2], it follows that we can always find a net of smooth functions (gεij) such that by
setting g̃ := ι(g) =: [gεij(−)] ∈

ρGC∞(ρℝ̃d × ρℝ̃d , ρℝ̃), we have that gεij is a Riemannian metric for all ε. By
Theorem 2.18 (iii), it follows that gεij → gij in C0 norm. Let Γεij be the Christoffel symbols of gε, and set
Γ̃ij := [Γεij(−)] ∈

ρGC∞(ρℝ̃d , ρℝ̃d). A curve γ ∈ ρGC∞(J, ρℝ̃d), with J being a sharply open subset of ρℝ̃, is said
to be a geodesic of (ρℝ̃d , g̃) if

γ̈(t) + Γ̃ij(γ(t))γ̇i(t)γ̇j(t) = 0 for all t ∈ J. (8.1)

Definition 8.1. Wesay that (ρℝ̃d , g̃) is geodesically complete if every solutionof the geodesic equationbelongs
to ρGC∞(ρℝ̃, ρℝ̃d), i.e., if for all p ∈ ρℝ̃d and all v ∈ ρℝ̃d, there exists a geodesic γ ∈ ρGC∞(ρℝ̃, ρℝ̃d) of (ρℝ̃d , g̃)
such that γ(0) = p and γ̇(0) = v.

This definition includes also the possibility that the point p or the vector v could be infinite. By Theorem2.19,
it follows that if we consider only finite p and v, then any geodesic γ ∈ ρGC∞(ρℝ̃, ρℝ̃d) induces a Colombeau
generalized function γ|c(ℝ) ∈ Gs(ℝ)d. Therefore, the space (c(ℝd), g̃|c(ℝd)×c(ℝd)) is geodesically complete in the
sense of [39]. We recall that c(Ω) is the set of compactly supported (i.e., finite) generalized points in Ω (see
Theorem 2.18).

The definition of length of a (non-singular) curve needs the following.

Remark 8.2. We set
√− = (−)1/2 : x = [xε] ∈ ρℝ̃>0 Ü→ [√xε] ∈ ρℝ̃>0.

Lemma2.3 readily implies that√− ∈ ρGC∞(ρℝ̃>0, ρℝ̃>0). Therefore, the square root is definedon every strictly
positive infinitesimal, but it cannot be extended to ρℝ̃≥0.

Definition 8.3. (i) Let p̃, q̃ ∈ ρℝ̃d, then
ρGC∞

>0(p̃, q̃) := {λ ∈ ρGC∞([0, 1], ρℝ̃d) | λ(0) = p̃, λ(1) = q̃, |λ̇(t)| > 0 ∀t ∈ [0, 1]}.

Moreover, for λ ∈ ρGC∞
>0(p̃, q̃), we set

Lg̃(λ) :=
1

∫
0

(g̃ij(α(t))α̇i(t)α̇j(t))1/2 dt ∈ ρℝ̃.

(ii) Let x = [xε] ∈ ρℝ̃n. Thenwe set st(x) := limε→0 xε ∈ ℝd, if this limit exists. Note that x ≈ st(x) in this case.

Note that (8.1) are the usual geodesic equations for the generalized metric g̃, whose derivation is completely
analogous to that in the smooth case. Thus, they are the Euler–Lagrange equations of Lg̃.

We are interested only in global minimizers of the functional Lg̃, i.e., curves λ0 ∈ X(p̃, q̃) such that
Lg̃(λ0) ≤ Lg̃(λ) for all λ ∈ ρGC∞

>0(p̃, q̃).

Lemma 8.4. Let p, q ∈ ℝd and p̃, q̃ ∈ ρℝ̃d be such that st(p̃) = p and st(q̃) = q. Let λ = [λε(−)] ∈ ρGC∞
>0(p̃, q̃)

be such that there exists

λ̄ ∈ C1>0(p, q) := {w ∈ C1([0, 1]ℝ,ℝd) | w(0) = p, w(1) = q, |ẇ(t)| > 0 ∀t ∈ [0, 1]ℝ}

such that λε → λ̄ in C1 as ε → 0. Then st(Lg̃(λ)) = Lg(λ̄).
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Proof. We calculate

!!!!!!!!!

1

∫
0

(gεij(λε)λ̇
i
ε λ̇
j
ε)1/2 − (gij(λ̄) ̇λ̄i ̇λ̄j)1/2 dt

!!!!!!!!!
=
!!!!!!!!!

1

∫
0

gεij(λε)λ̇
i
ε λ̇
j
ε − gij(λ̄)

̇λ̄i ̇λ̄j

(gεij(λε)λ̇
i
ε λ̇
j
ε)1/2 + (gij(λ̄) ̇λ̄i ̇λ̄j)1/2

dt
!!!!!!!!!
.

By assumption, (gεij(λε)λ̇
i
ε λ̇
j
ε)1/2 → (gij(λ̄) ̇λ̄i ̇λ̄j)1/2, so that there exists C ∈ ℝ>0 such that

!!!!!!!!!

1

∫
0

(gεij(λε)λ̇
i
ε λ̇
j
ε)1/2 − (gij(λ̄) ̇λ̄i ̇λ̄j)1/2 dt

!!!!!!!!!
≤ C

1

∫
0

!!!!(g
ε
ij(λε) − gij(λε) + gij(λε) − gij(λ̄))λ̇

i
ε λ̇
j
ε + gij(λ̄)(λ̇iε λ̇

j
ε −

̇λ̄i ̇λ̄j)!!!!dt.

We hence obtain the claim by the triangle inequality and the convergence of λε, λ̇ε and gεij to λ̄,
̇λ̄ and gij,

respectively.

Now, we consider p, q ∈ ℝd, with p ̸= q. Let

u ∈ {u ∈ C2,1([0, 1],ℝd) | u(0) = p, u(1) = q}

be a solution of the geodesic equation
{{{
{{{
{

ü = −Γij(u)u̇i u̇j ,
p = u(0),
q = u(1).

(8.2)

Let c0 := u̇(0). Obviously, u is also the unique solution of

{{{
{{{
{

ü = −Γij(u)u̇i u̇j ,
p = u(0),
c0 = u̇(0).

Using these initial conditions, for each fixed ε, we can solve the following problem:

{{{
{{{
{

ÿ = −Γεij(y)ẏ
i ẏj ,

p = y(0),
c0 = ẏ(0)

(8.3)

for a unique yε ∈ C∞([−dε , dε]ℝ,ℝd) and some dε ∈ ℝ>0.

Lemma 8.5. Let u and yε be as above. Then the following hold:
(i) For ε sufficiently small, the solution yε can be extended to a solution yε ∈ C∞([0, 1]ℝ,ℝd) of (8.3) such

that yε(1) = q.
(ii) yε → u in C2.
(iii) The net (yε) defines a GSF, i.e., y := [yε(−)] ∈ ρGC∞

>0(p, q).

Proof. (i)–(ii) For all i, j, we have that Γεij → Γij locally uniformly. Thus, we obtain these claims by (8.2) and
by continuous dependence on parameters in ODE, see, e.g., [26, Lemma 2.3].

(iii) If y := [yε(−)] ∈ ρGC∞([0, 1], ρℝ̃d), then we have to show that for all ε, all the derivatives of yε are
moderate. This is obviously true for yε , ẏε and ÿε. The claim follows now from the fact that

dn+2

dtn+2
yε = −

dn
dtn (Γ

εk
ij (y)ẏ

i
ε ẏ
j
ε),

so that there exists a polynomial P such that

dn
dtn (Γ

εk
ij (y)ẏ

i
ε ẏ
j
ε) = P(yε ,

d
dt yε , . . . ,

dn+1

dtn+1
yε , Γεkij ,DΓ

εk
ij , . . . ,D

nΓεkij ).

If |ẏ(t)| > 0 for all t ∈ [0, 1], then, by (ii), we have that yε → u in C2. Furthermore, gε → g in C1, by as-
sumption, and we know that g(u̇, u̇) = c > 0 for some c ∈ ℝ>0, since u is a g-geodesic (cf. [22, Lemma 1.4.5]).
Therefore, we obtain that gε(ẏε , ẏε) > c

2 > 0 for ε > 0 small enough.
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Finally, the standard part of the generalized length of y is the length of u.

Theorem 8.6. Let u and yε be as above. We conclude (using Lemma 8.4) that st(Lg̃(y)) = Lg(u).

Proposition 8.7. Let y = [yε(−)] be as above. In addition, assume that each yε is Lgε -minimizing. Then Lg̃(y) is
minimal.

Proof. Let λ = [λε(−)] ∈ ρGC∞
>0(p, q).Wehave that Lg̃(λ) = [Lgε (λε)]and that Lg̃(y) = [Lgε (yε)]. By assumption,

for all ε, we have Lgε (λε) ≥ Lgε (yε). Therefore, Lg̃(λ) ≥ Lg̃(y), as claimed.

Corollary 8.8. Let λ ∈ ρGC∞
>0(p, q) be a minimizer of Lg̃ and assume that for ε small, yε is Lgε -minimizing. Then

Lg̃(y) = Lg̃(λ).

Corollary 8.8 gives us a way to answer the question if a certain classical geodesic between two given classical
points p and q is a length-minimizer.

Furthermore, we are able to prove the following theorem, relating generalized minimizers to classical
minimizers.

Theorem 8.9. Let p, q ∈ ℝd and let γ ∈ ρGC∞
>0(p, q) such that Lg̃(γ) is minimal. Assume that st(Lg̃(γ)) exists

and that there exists w ∈ C1>0(p, q) such that Lg(w) = st(Lg̃(γ)). Then w is g-minimizing and g-geodesic.

Proof. Assume to the contrary that there exists a curve σ ∈ C2 connecting p and q (without loss of generality,
σ is a g-geodesic) such that Lg(σ) < Lg(w). Now we construct (as done above) gε and σε, and set σ̃ := [σε].
Then

st(Lg̃(σ̃)) = Lg(σ) < Lg(w) = st(Lg̃(γ)).

But, by assumption, we have that Lg̃(γ) ≤ Lg̃(σ̃), which implies

st(Lg̃(γ)) ≤ st(Lg̃(σ̃)) < st(Lg̃(γ)).

This is a contradiction.

9 Conclusions

We can summarize the present work as follows.
(i) The setting of GSF allows to treat Schwartz distributions more closely to classical smooth functions.

The framework is so flexible and the extensions of classical results are so natural in many ways that one may
treat it like smooth functions.

(ii) One key step of the theory is the change of the ring of scalars into a non-Archimedean one, and the
use of the strict order relation < to deal with topological properties. So, the use of < and of ρℝ̃-valued norms
allows a natural approach to topology, even of infinite dimensional spaces (cf. Definition 5.3). On the other
hand, the use of a ring with zero divisors and a non-total order relation requires a more refined and careful
analysis. However, as proved in the present work, very frequently classical proofs can be formally repeated in
this context, but paying particular attention to using the relation < and invertibility instead of being non-zero
inℝ, and avoiding the total order property.

(iii) Others crucial properties are the closure of GSF with respect to composition and the use of the
gauge ρ, because they do not force to narrow the theory into particular cases.

(iv) The present extension of the classical theory of calculus of variations shows that the use of GSF is a
powerful analytical technique. The final application shows how to use them as amethod to address problems
in an Archimedean setting based on the real fieldℝ.

Concerning possible future developments, we note the following.
(v) A generalization of the whole construction to piecewise GSF seems possible.

Authenticated | lorenzo.luperi.baglini@univie.ac.at author's copy
Download Date | 9/25/17 7:07 PM



A. Lecke, L. Luperi Baglini and P. Giordano, Calculus of variations for GF | 29

(vi) A more elegant approach for the integration of piecewise GSF could use the existence of right and
left limits of (f1, . . . , fn)(−) and hyperfinite Riemann-like sums, i.e.,

N
∑
i=1
f(x�i )(xi − xi−1) := [

Nε
∑
i=1
fε(x�i,ε)(xi,ε − xi−1,ε)] ∈ ρℝ̃d ,

extended to N ∈ ℕ̃ := {[int(xε)] | [xε] ∈ ρℝ̃}, where int(−) is the integer part function.
The present work could lay the foundations for further works concerning the possibility to extend other

results of the calculus of variations in this generalized setting.
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